Skip to content
2000
Volume 24, Issue 10
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Introduction

Glioma, a global concern, a rare but aggressive brain cancer, poses a unique challenge for health scientists. The diagnosis solely depends on Magnetic resonance imaging (MRI) and computed tomography (CT) scans, which are effective but may lead to misinterpretation.

Objective

The present study explores outcomes and develops effective strategies for early detection of glioma. The study also focuses on exploring a comprehensive panel of blood biochemical parameters in this challenging landscape.

Methods

A retrospective study included all adults above 18 years (n=78) diagnosed with Glioma and admitted to King Abdullah Medical City, Mecca. Routine blood biochemistry of whole blood was performed, showing Glioma either IDH mutant or Wild type detected standard protocol.

Results

Demographic variations categorized by age, gender, nationality, Glioma types, and subtypes, revealing a predominant occurrence in the 51-60 age range. Among gliomas, 33.3% were IDH Mutant, while the remaining 66.7% were Wild type, with Glioblastoma (wild type) being the most prevalent at 64.1%. Creatinine levels (0.60 ± 0.17 mg/dL, 0.2) and urea levels (4.14 ± 1.55 mg/dL, 0.05) were lower in females, while alkaline phosphatase (74.90 ± 25.17 uL, 0.3) and total bilirubin (0.38 ± 0.20 mg/dL, 0.01) also showed significant differences. Neutrophils were significantly lower in females (4.51 ± 2.31 uL, 0.01), with elevated lymphocytes (7.46 ± 3.14 uL) and CRP (4.65 ± 7.98 mg/dL, 0.001). The mutant type had lower levels of ALP (78.46 ± 29.08 uL), AST (22.30 ± 11.06 uL), ALT (30.06 ± 19.22 uL), and GGT (66.15 ± 40.76 uL) compared to the wild type (ALP: 86.98 ± 30.33 uL, AST: 29.98 ± 15.10 uL, ALT: 36.32 ± 20.94 uL, GGT: 83.44 ± 45.91 uL). GGT showed significant variation (0.01), with higher neutrophil levels in the wild type (5.69 ± 4.12 uL) compared to the mutant (3.82 ± 2.28 uL). Lymphocytes (4.84 ± 22.94 uL) and CRP (4.29 ± 6.87 mg/dL) were significantly higher (0.001) in the wild type.

Discussion

Altered KFL and LFT in Mutant and wild-form Glioma depend upon the gender of patients. Combining these biochemical parameters with existing imaging modalities such as MRI and CT could potentiate the diagnostic accuracy of Glioma, offering a more comprehensive approach to patient care.

Conclusion

The insightful, findings do not replace the crucial role of imaging techniques but could complement them in a multi-model diagnostic approach particularly with altered KFT and LFT in Mutant and wild-form Glioma.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273360604250420020956
2025-05-12
2025-09-30
Loading full text...

Full text loading...

References

  1. MenonS. BishtR. Biomarkers in Cancer Detection and Monitoring of Therapeutics.Amsterdam, NetherlandsElsevier2024153210.1016/B978‑0‑323‑95116‑6.00007‑4
    [Google Scholar]
  2. JardimS.R. de SouzaL.M.P. de SouzaH.S.P. The rise of gastrointestinal cancers as a global phenomenon: Unhealthy behavior or progress?Int. J. Environ. Res. Publ. Heal.2023204364010.3390/ijerph20043640 36834334
    [Google Scholar]
  3. BaiJ. CuiJ. ShiF. YuC. Global epidemiological patterns in the burden of main non-communicable diseases, 1990-2019: Relationships with socio-demographic index.Int. J. Public Health202368160550210.3389/ijph.2023.1605502 36726528
    [Google Scholar]
  4. LeiterA. VeluswamyR.R. WisniveskyJ.P. The global burden of lung cancer: Current status and future trends.Nat. Rev. Clin. Oncol.202320962463910.1038/s41571‑023‑00798‑3 37479810
    [Google Scholar]
  5. RajappaS. SinghM. UeharaR. SchachterleS.E. SetiaS. Cancer incidence and mortality trends in Asia based on regions and human development index levels: An analyses from GLOBOCAN 2020.Curr. Med. Res. Opin.20233981127113710.1080/03007995.2023.2231761 37395248
    [Google Scholar]
  6. SheikhR.A. NaqviS. Al-SulamiA.M. Synchronized glioma insights: Trends, blood group correlations, staging dynamics, and the vanguard of liquid biopsy advancements.CNS Neurol. Disord. Drug Targ.2025241748210.2174/0118715273306577240612053957 38956913
    [Google Scholar]
  7. DresslerE.V. LiuM. GarciaC.R. Patterns and disparities of care in glioblastoma.Neurooncol. Pract.201961374610.1093/nop/npy014 30740232
    [Google Scholar]
  8. GieryngA. PszczolkowskaD. WalentynowiczK.A. RajanW.D. KaminskaB. Immune microenvironment of gliomas.Lab. Invest.201797549851810.1038/labinvest.2017.19 28287634
    [Google Scholar]
  9. ElguindyM. YoungJ.S. MondalI. LuR.O. HoW.S. Glioma-immune cell crosstalk in tumor progression.Cancers (Basel)202416230810.3390/cancers16020308 38254796
    [Google Scholar]
  10. JinY. YeX. Prognostic value of C-reactive protein in patients with glioma: A meta-analysis.Biomarkers Med.20241813-1462963710.1080/17520363.2024.2380246 39082387
    [Google Scholar]
  11. AlmatroudiA. Palpatory findings in italian osteopathic clinical practice: A qualitative study.In: Healthcare.202210(9)1796
    [Google Scholar]
  12. KimN. LeeJ. NamD-H. Impact of boost sequence in concurrent chemo-radiotherapy on newly diagnosed IDH-wildtype glioblastoma multiforme.J. Neurooncol.2023165226126810.1007/s11060‑023‑04465‑6 37861921
    [Google Scholar]
  13. HerdyJ.R. MertensJ. GageF.H. Neuronal senescence may drive brain aging.Science202438467031404140610.1126/science.adi3450 38935713
    [Google Scholar]
  14. VoorterP.H.M. van DintherM. JansenW.J. Blood-brain barrier disruption and perivascular spaces in small vessel disease and neurodegenerative diseases: A review on MRI methods and insights.J. Magn. Reson. Imag.202459239741110.1002/jmri.28989 37658640
    [Google Scholar]
  15. ZhouW. WangX. DongY. Stem cell-derived extracellular vesicles in the therapeutic intervention of Alzheimer’s disease, Parkinson’s disease, and stroke.Theranostics20241483358338410.7150/thno.95953 38855176
    [Google Scholar]
  16. BehlT. KaurI. SehgalA. The road to precision medicine: Eliminating the “One Size Fits All” approach in Alzheimer’s disease.Biomed. Pharmacother.202215311333710.1016/j.biopha.2022.113337 35780617
    [Google Scholar]
  17. BradyA.P. Error and discrepancy in radiology: Inevitable or avoidable?Insights Imaging20178117118210.1007/s13244‑016‑0534‑1 27928712
    [Google Scholar]
  18. Alix-PanabièresC. PantelK. Liquid biopsy: From discovery to clinical application.Cancer Discov.202111485887310.1158/2159‑8290.CD‑20‑1311 33811121
    [Google Scholar]
  19. WuJ. HuS. ZhangL. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis.Theranostics202010104544455610.7150/thno.40532 32292514
    [Google Scholar]
  20. SantiniD. BotticelliA. GalvanoA. Network approach in liquidomics landscape.J. Exp. Clin. Cancer Res.202342119310.1186/s13046‑023‑02743‑9 37542343
    [Google Scholar]
  21. WesselingP. KrosJ.M. JeukenJ.W.M. The pathological diagnosis of diffuse gliomas: Towards a smart synthesis of microscopic and molecular information in a multidisciplinary context.Diagn. Histopathol.2011171148649410.1016/j.mpdhp.2011.08.005
    [Google Scholar]
  22. TakanoS. TianW. MatsudaM. Detection of IDH1 mutation in human gliomas: Comparison of immunohistochemistry and sequencing.Brain Tumor Pathol.201128211512310.1007/s10014‑011‑0023‑7 21344322
    [Google Scholar]
  23. ZoisC.E. HendriksA.M. HaiderS. Liver glycogen phosphorylase is upregulated in glioblastoma and provides a metabolic vulnerability to high dose radiation.Cell Death Dis.202213657310.1038/s41419‑022‑05005‑2 35764612
    [Google Scholar]
  24. WangS.Q. YuanQ. ZhangG.T. Preoperative blood testing for glioblastoma, brain metastases, and primary central nervous system lymphoma differentiation.Transl. Cancer Res.2022111637110.21037/tcr‑21‑1957 35261885
    [Google Scholar]
  25. MaasS.L.N. DraaismaK. SnijdersT.J. Routine blood tests do not predict survival in patients with glioblastoma—multivariable analysis of 497 patients.World Neurosurg.2019126e1081e109110.1016/j.wneu.2019.03.053 30880204
    [Google Scholar]
  26. SuZ. ZouZ. HayS.I. Global, regional, and national time trends in mortality for congenital heart disease, 1990-2019: An age-period-cohort analysis for the Global Burden of Disease 2019 study.EClinicalMedicine20224310124910.1016/j.eclinm.2021.101249 35059612
    [Google Scholar]
  27. TyrovolasS. El BcheraouiC. AlghnamS.A. The burden of disease in Saudi Arabia 1990-2017: Results from the global burden of disease study 2017.Lancet Planet. Health202045e195e20810.1016/S2542‑5196(20)30075‑9 32442495
    [Google Scholar]
  28. AlqahtaniA.S. AlqhtaniN.R. GufranK. Analysis of trends in demographic distribution of dental workforce in the Kingdom of Saudi Arabia.J. Healthc. Eng.20222022532162810.1155/2022/5321628 36312596
    [Google Scholar]
  29. CokerT. SaxtonJ. RetatL. The future health and economic burden of obesity-attributable type 2 diabetes and liver disease among the working-age population in Saudi Arabia.PLoS One2022177e027110810.1371/journal.pone.0271108 35834577
    [Google Scholar]
  30. ThierheimerM. CioffiG. WaiteK.A. KruchkoC. OstromQ.T. Barnholtz-SloanJ.S. Mortality trends in primary malignant brain and central nervous system tumors vary by histopathology, age, race, and sex.J. Neurooncol.2023162116717710.1007/s11060‑023‑04279‑6 36928698
    [Google Scholar]
  31. MillerK.D. OstromQ.T. KruchkoC. Brain and other central nervous system tumor statistics, 2021.CA Canc. J. Clin.202171538140610.3322/caac.21693 34427324
    [Google Scholar]
  32. JonesC. PerrymanL. HargraveD. Paediatric and adult malignant glioma: Close relatives or distant cousins?Nat. Rev. Clin. Oncol.20129740041310.1038/nrclinonc.2012.87 22641364
    [Google Scholar]
  33. AnagnostakisF. PiperiC. Targeting options of tumor-associated macrophages (TAM) activity in gliomas.Curr. Neuropharmacol.202321345747010.2174/1570159X20666220120120203 35048810
    [Google Scholar]
  34. ColopiA. FudaS. SantiS. Impact of age and gender on glioblastoma onset, progression, and management.Mech. Ageing Dev.202321111180110.1016/j.mad.2023.111801 36996926
    [Google Scholar]
  35. SchaffL.R. MellinghoffI.K. Glioblastoma and other primary brain malignancies in adults: A review.JAMA2023329757458710.1001/jama.2023.0023 36809318
    [Google Scholar]
  36. PellerinoA. CacceseM. PadovanM. CerrettiG. LombardiG. Epidemiology, risk factors, and prognostic factors of gliomas.Clin. Transl. Imag.202210546747510.1007/s40336‑022‑00489‑6
    [Google Scholar]
  37. PanC. ZhangM. XiaoX. A multimodal imaging-based classification for pediatric diffuse intrinsic pontine gliomas.Neurosurg. Rev.202346115110.1007/s10143‑023‑02068‑3 37358632
    [Google Scholar]
  38. AggarwalP. LuoW. PehlivanK.C. Pediatric versus adult high grade glioma: Immunotherapeutic and genomic considerations.Front. Immunol.202213103809610.3389/fimmu.2022.1038096 36483545
    [Google Scholar]
  39. BentayebiK. AkedR.E. EzzahidiO. Targeting molecular mechanisms underlying treatment efficacy and resistance in DIPG: A review of current and future strategies.Brain Disord.20241410013210.1016/j.dscb.2024.100132
    [Google Scholar]
  40. PancaldiA. PuglieseM. MigliozziC. BlomJ. CelliniM. IughettiL. Neuropsychological outcomes of children treated for brain tumors.Children (Basel)202310347210.3390/children10030472 36980030
    [Google Scholar]
  41. GrochansS. CybulskaA.M. SimińskaD. Epidemiology of glioblastoma multiforme-literature review.Cancers (Basel)20221410241210.3390/cancers14102412 35626018
    [Google Scholar]
  42. WangG.M. CioffiG. PatilN. Importance of the intersection of age and sex to understand variation in incidence and survival for primary malignant gliomas.Neuro-oncol.202224230231010.1093/neuonc/noab199 34387331
    [Google Scholar]
  43. LiuJ. LiC. WangY. Prognostic and predictive factors in elderly patients with glioblastoma: A single-center retrospective study.Front. Ag. Neurosci.20221377796210.3389/fnagi.2021.777962 35173600
    [Google Scholar]
  44. MaW. ShengX. LiG. WeiQ. ZhouZ. QiuX. Effectiveness of different treatment strategies in elderly patients with glioblastoma: An evidence map of randomized controlled trials.Crit. Rev. Oncol. Hematol.202217310364510.1016/j.critrevonc.2022.103645 35227898
    [Google Scholar]
  45. FokasE. Glynne-JonesR. FleischmannM. Radiotherapy dose escalation using endorectal brachytherapy in elderly and frail patients with rectal cancer unsuitable for surgery: Lessons from studies in fit patients and future perspectives.Canc. Treat. Rev.202311210249010.1016/j.ctrv.2022.102490 36463667
    [Google Scholar]
  46. ColopiA. FudaS. SantiS. Impact of age and gender on glioblastoma onset, progression, and management.Mech. Age. Dev.202321111180110.1016/j.mad.2023.111801 36996926
    [Google Scholar]
  47. LinW. WangQ. ChenY. Identification of a 6-RBP gene signature for a comprehensive analysis of glioma and ischemic stroke: Cognitive impairment and aging-related hypoxic stress.Front. Aging Neurosci.20221495119710.3389/fnagi.2022.951197 36118697
    [Google Scholar]
  48. TakasugiM. YoshidaY. OhtaniN. Cellular senescence and the tumour microenvironment.Mol. Oncol.202216183333335110.1002/1878‑0261.13268 35674109
    [Google Scholar]
  49. SalekiK. BanazadehM. SaghazadehA. RezaeiN. Aging, testosterone, and neuroplasticity: Friend or foe?Rev. Neurosci.202334324727310.1515/revneuro‑2022‑0033 36017670
    [Google Scholar]
  50. ChenS. JiangY. WangC. Epigenetic clocks and gliomas: Unveiling the molecular interactions between aging and tumor development.Front. Mol. Biosci.202411144642810.3389/fmolb.2024.1446428 39130373
    [Google Scholar]
  51. AhmedA.E. AlsamghanA. MomenahM.A. Metabolic syndrome and cardiometabolic risk factors in the mixed hypercholesterolemic populations with respect to gender, age, and obesity in Asir, Saudi Arabia.Int. J. Environ. Res. Publ. Heal.202219221498510.3390/ijerph192214985 36429701
    [Google Scholar]
  52. YinJ. LiuG. ZhangY. Gender differences in gliomas: From epidemiological trends to changes at the hormonal and molecular levels.Canc. Lett.202459821711410.1016/j.canlet.2024.217114 38992488
    [Google Scholar]
  53. YangW. WarringtonN.M. TaylorS.J. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data.Sci. Transl. Med.201911473eaao525310.1126/scitranslmed.aao5253 30602536
    [Google Scholar]
  54. LeeJ. KayK. TroikeK. AhluwaliaM.S. LathiaJ.D. Sex differences in glioblastoma immunotherapy response.Neuromolec. Med.2022241505510.1007/s12017‑021‑08659‑x 33864598
    [Google Scholar]
  55. SciarraF. CampoloF. FranceschiniE. CarlomagnoF. VenneriM. Gender-specific impact of sex hormones on the immune system.Int. J. Mol. Sci.2023247630210.3390/ijms24076302 37047274
    [Google Scholar]
  56. ShvetcovA. RuitenbergM.J. DelerueF. GoldW.A. BrownD.A. FinneyC.A. The neuroprotective effects of estrogen and estrogenic compounds in spinal cord injury.Neurosci. Biobehav. Rev.202314610507410.1016/j.neubiorev.2023.105074 36736846
    [Google Scholar]
  57. SutherlandL. CarterL. Sex as a biological variable in early-phase oncology clinical trials: Enhancing the path to personalised medicine.Heliyon20241012e3259710.1016/j.heliyon.2024.e32597 39183838
    [Google Scholar]
  58. BecherE. Oertelt-PrigioneS. The Impact of Sex and Gender in Medicine and Pharmacology.In: Handbook Expert Pharmacology.ChamSpringer202332310.1007/164_2023_688
    [Google Scholar]
  59. CarranoA. JuarezJ.J. IncontriD. IbarraA. Guerrero CazaresH. Sex-specific differences in glioblastoma.Cells2021107178310.3390/cells10071783 34359952
    [Google Scholar]
  60. BabuR. KomisarowJ.M. AgarwalV.J. Glioblastoma in the elderly: The effect of aggressive and modern therapies on survival.J. Neurosurg.20161244998100710.3171/2015.4.JNS142200 26452121
    [Google Scholar]
  61. MillerK.D. OrtizA.P. PinheiroP.S. Cancer statistics for the US Hispanic/Latino population, 2021.CA Cancer J. Clin.202171646648710.3322/caac.21695 34545941
    [Google Scholar]
  62. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  63. LiZ. ZhangZ. RenY. Aging and age‐related diseases: From mechanisms to therapeutic strategies.Biogerontology202122216518710.1007/s10522‑021‑09910‑5 33502634
    [Google Scholar]
  64. LouisD.N. PerryA. WesselingP. The 2021 WHO classification of tumors of the central nervous system: A summary.Neuro-oncol.20212381231125110.1093/neuonc/noab106 34185076
    [Google Scholar]
  65. ClarkO. YenK. MellinghoffI.K. Molecular pathways: Isocitrate dehydrogenase mutations in cancer.Clin. Cancer Res.20162281837184210.1158/1078‑0432.CCR‑13‑1333 26819452
    [Google Scholar]
  66. YanH. ParsonsD.W. JinG. IDH1 and IDH2 mutations in gliomas.N. Engl. J. Med.2009360876577310.1056/NEJMoa0808710 19228619
    [Google Scholar]
  67. PoetschL. BronnimannC. LoiseauH. Characteristics of IDH-mutant gliomas with non-canonical IDH mutation.J. Neurooncol.2021151227928610.1007/s11060‑020‑03662‑x 33205355
    [Google Scholar]
  68. WatanabeT. VitalA. NobusawaS. KleihuesP. OhgakiH. Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li-Fraumeni syndrome.Acta Neuropathol.2009117665365610.1007/s00401‑009‑0528‑x 19340432
    [Google Scholar]
  69. TangF. WangD.W. XiC. Local and systemic effects of IDH mutations on primary glioma patients.Immunology2023169450351410.1111/imm.13649 37054988
    [Google Scholar]
  70. Rizo-TéllezS.A. FilepJ.G. Beyond host defense and tissue injury: The emerging role of neutrophils in tissue repair.Am. J. Physiol. Cell Physiol.20243263C661C68310.1152/ajpcell.00652.2023 38189129
    [Google Scholar]
  71. CasiliG. Human brain and spinal cord tumors: From bench to bedside.In: Neuroimmunology and Neurogenetics.ChamSpringer20231419
    [Google Scholar]
  72. QiZ. CaiJ. MengX. CaiS. TangC. LangL. Prognostic value of preoperative inflammatory markers among different molecular subtypes of lower-grade glioma.J. Clin. Neurosci.20229618018610.1016/j.jocn.2021.10.006 34802893
    [Google Scholar]
  73. HambardzumyanD. GutmannD.H. KettenmannH. The role of microglia and macrophages in glioma maintenance and progression.Nat. Neurosci.2016191202710.1038/nn.4185 26713745
    [Google Scholar]
  74. ZhangL. YuX. ZhengL. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer.Nature2018564773526827210.1038/s41586‑018‑0694‑x 30479382
    [Google Scholar]
  75. LinY.J. WeiK.C. ChenP.Y. LimM. HwangT.L. Roles of neutrophils in glioma and brain metastases.Front. Immunol.20211270138310.3389/fimmu.2021.701383 34484197
    [Google Scholar]
  76. DharmajayaR. SariD.K. Role and value of inflammatory markers in brain tumors: A case controlled study.Ann. Med. Surg. (Lond.)20216310210710.1016/j.amsu.2021.01.055 33659053
    [Google Scholar]
  77. FengY. WangJ. TanD. ChengP. WuA. Relationship between circulating inflammatory factors and glioma risk and prognosis: A meta‐analysis.Cancer Med.20198177454746810.1002/cam4.2585 31599129
    [Google Scholar]
  78. MaS.J. YuH. KhanM. Evaluation of optimal threshold of neutrophil-lymphocyte ratio and its association with survival outcomes among patients with head and neck cancer.JAMA Netw. Open202254e227567e710.1001/jamanetworkopen.2022.7567 35426920
    [Google Scholar]
  79. SharmaP. MedhiP. BhattacharyyaM. NathJ. KalitaA. Prognostic significance of neutrophil-lymphocyte ratio in patients of high-grade glioma undergoing adjuvant chemoradiation: A prospective study.Asian Pac. J. Cancer Prev.202324103487349410.31557/APJCP.2023.24.10.3487 37898854
    [Google Scholar]
  80. LiH.Y. SunC.R. HeM. YinL.C. DuH.G. ZhangJ.M. Correlation between tumor location and clinical properties of glioblastomas in frontal and temporal lobes.World Neurosurg.2018112e407e41410.1016/j.wneu.2018.01.055 29355809
    [Google Scholar]
  81. das NevesW. AlvesC.R.R. de Souza BorgesA.P. Serum creatinine as a potential biomarker of skeletal muscle atrophy in non-small cell lung cancer patients.Front. Physiol.20211262541710.3389/fphys.2021.625417 33912068
    [Google Scholar]
  82. NaikG.S. WaikarS.S. JohnsonA.E.W. Complex inter-relationship of body mass index, gender and serum creatinine on survival: Exploring the obesity paradox in melanoma patients treated with checkpoint inhibition.J. Immunother. Canc.2019718910.1186/s40425‑019‑0512‑5 30922394
    [Google Scholar]
  83. ShacharS.S. WilliamsG.R. MussH.B. NishijimaT.F. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review.Eur. J. Canc.201657586710.1016/j.ejca.2015.12.030 26882087
    [Google Scholar]
  84. DengY. ZhaoL. HuangX. ZengY. XiongZ. ZuoM. Contribution of skeletal muscle to cancer immunotherapy: A focus on muscle function, inflammation, and microbiota.Nutrition202310511182910.1016/j.nut.2022.111829 36265324
    [Google Scholar]
  85. ChenW-H. SongQ. WangB. WangS. ZhangY-M. Lower serum levels of bilirubin in the newly diagnosed lung cancer patients: A case-control study in China.J Canc Res Ther2015116Suppl. 216810.4103/0973‑1482.168179 26506870
    [Google Scholar]
  86. KlopackE.T. CrimminsE.M. ColeS.W. SeemanT.E. CarrollJ.E. Social stressors associated with age-related T lymphocyte percentages in older US adults: Evidence from the us health and retirement study.Proc. Natl. Acad. Sci. USA202211925e220278011910.1073/pnas.2202780119 35696572
    [Google Scholar]
  87. CordellE.C. AlghamriM.S. CastroM.G. GutmannD.H. T lymphocytes as dynamic regulators of glioma pathobiology.Neuro-oncol.202224101647165710.1093/neuonc/noac055 35325210
    [Google Scholar]
  88. AnwarF. Al-AbbasiF.A. NaqviS. Therapeutic potential of nanomedicine in management of Alzheimer’s Disease and glioma.Int. J. Nanomedicine2023182737275610.2147/IJN.S405454 37250469
    [Google Scholar]
  89. WellerM. WenP.Y. ChangS.M. Glioma.Nat. Rev. Dis. Prim.20241013310.1038/s41572‑024‑00516‑y 38724526
    [Google Scholar]
  90. CovellM.M. BowersC. KazimS.F. Baseline labs predict adverse postoperative outcomes following metastatic brain tumor resection: Analysis of 5943 patients from a prospective surgical registry (2015-2019).Eur. J. Surg. Oncol.2023491010704410.1016/j.ejso.2023.107044 37659341
    [Google Scholar]
  91. HashiguchiM. TanakaK. NagashimaH. Glutamic acid and total creatine as predictive markers for epilepsy in glioblastoma by using magnetic resonance spectroscopy before surgery.World Neurosurg.2022160e501e51010.1016/j.wneu.2022.01.056 35077889
    [Google Scholar]
  92. RashidiA. BillinghamL.K. ZolpA. Myeloid cell-derived creatine in the hypoxic niche promotes glioblastoma growth.Cell Metab.2024361627710.1016/j.cmet.2023.11.013 38134929
    [Google Scholar]
  93. CaiK. TainR.W. ZhouX.J. Creatine CEST MRI for differentiating gliomas with different degrees of aggressiveness.Mol. Imaging Biol.201719222523210.1007/s11307‑016‑0995‑0 27541025
    [Google Scholar]
  94. JothiJ. JanardhanamV.A. KrishnaswamyR. Metabolic variations between low-grade and high-grade gliomas—profiling by 1H NMR spectroscopy.J. Proteome Res.20201962483249010.1021/acs.jproteome.0c00243 32393032
    [Google Scholar]
  95. Perdomo-PantojaA. Mejía-PérezS.I. Gómez-Flores-RamosL. Renin angiotensin system and its role in biomarkers and treatment in gliomas.J. Neurooncol.2018138111510.1007/s11060‑018‑2789‑5 29450812
    [Google Scholar]
  96. O’LearyJ.G. WongF. ReddyK.R. Gender-specific differences in baseline, peak, and delta serum creatinine: The NACSELD experience.Dig. Dis. Sci.201762376877610.1007/s10620‑016‑4416‑7 28025746
    [Google Scholar]
  97. ChenJ.H. ChenJ.Y. ChenY.C. LiW.C. Sex difference in the association between creatinine-to-cystatin C ratio and metabolic syndrome among Chinese adults.Front. Endocrinol. (Lausanne)202415138929510.3389/fendo.2024.1389295 39205686
    [Google Scholar]
  98. YerliH. AgildereA.M. ÖzenÖ. GeyikE. AtalayB. ElhanA.H. Evaluation of cerebral glioma grade by using normal side creatine as an internal reference in multi-voxel 1H-MR spectroscopy.Diagn. Interv. Radiol.200713139 17354186
    [Google Scholar]
  99. ZhaoH. HeimbergerA.B. LuZ. Metabolomics profiling in plasma samples from glioma patients correlates with tumor phenotypes.Oncotarget2016715204862049510.18632/oncotarget.7974 26967252
    [Google Scholar]
  100. McKinleyB.P. MichalekA.M. FenstermakerR.A. PlunkettR.J. The impact of age and gender on the incidence of glial tumors in New York state from 1976-1995.J. Neurosurg.200093693293910.3171/jns.2000.93.6.0932 11117865
    [Google Scholar]
  101. HottaT. NakashimaK. HataK. TsubataY. IsobeT. High serum C-reactive protein levels predict survival in patients with treated advanced lung adenocarcinoma.J. Thorac. Dis.20211331476148410.21037/jtd‑20‑3123 33841940
    [Google Scholar]
  102. LeeB. HwangS. BaeH. ChoiK.H. SuhY.L. Diagnostic utility of genetic alterations in distinguishing IDH ‐wildtype glioblastoma from lower‐grade gliomas: Insight from next‐generation sequencing analysis of 479 cases.Brain Pathol.2024345e1323410.1111/bpa.13234 38217295
    [Google Scholar]
  103. AuezovaR. IvanovaN. AkshulakovS. Isocitrate dehydrogenase 1 mutation is associated with reduced levels of inflammation in glioma patients.Cancer Manag. Res.2019113227323610.2147/CMAR.S195754 31114362
    [Google Scholar]
  104. WachJ. ApallasS. SchneiderM. Baseline serum C-reactive protein and plasma fibrinogen-based score in the prediction of survival in glioblastoma.Front. Oncol.20211165361410.3389/fonc.2021.653614 33747971
    [Google Scholar]
  105. KasarinaiteA. SintonM. SaundersP.T.K. HayD.C. The influence of sex hormones in liver function and disease.Cells20231212160410.3390/cells12121604 37371074
    [Google Scholar]
  106. Kautzky-WillerA. In Sex and gender aspects in clinical medicine.1st EdLondonSpringer201112514910.1007/978‑0‑85729‑832‑4
    [Google Scholar]
  107. HeL. XieX. XueJ. ZhangZ. Sex-specific differences in the effect of lymphocyte-to-C-reactive protein ratio on subclinical myocardial injury in the general population free from cardiovascular disease.Nutr. Metab. Cardiovasc. Dis.202333122389239710.1016/j.numecd.2023.07.035 37788954
    [Google Scholar]
  108. AmankulorN.M. KimY. AroraS. Mutant IDH1 regulates the tumor-associated immune system in gliomas.Genes Dev.201731877478610.1101/gad.294991.116 28465358
    [Google Scholar]
  109. ZhangH. GaoJ. TangY. JinT. TaoJ. Inflammasomes cross-talk with lymphocytes to connect the innate and adaptive immune response.J. Adv. Res.20235418119310.1016/j.jare.2023.01.012 36681114
    [Google Scholar]
  110. van WeverwijkA. de VisserK.E. Mechanisms driving the immunoregulatory function of cancer cells.Nat. Rev. Cancer202323419321510.1038/s41568‑022‑00544‑4 36717668
    [Google Scholar]
  111. TürkÇ. ÇamlarM. Evaluation of neutrophil lymphocyte ratio and IDH mutation in patients with glioblastoma.J Tepe Educ Res Hosp202333221021310.4274/terh.galenos.2022.59837
    [Google Scholar]
  112. FackF. TarditoS. HochartG. Altered metabolic landscape in IDH‐mutant gliomas affects phospholipid, energy, and oxidative stress pathways.EMBO Mol. Med.20179121681169510.15252/emmm.201707729 29054837
    [Google Scholar]
  113. BleekerF.E. AtaiN.A. LambaS. The prognostic IDH1 R132 mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma.Acta Neuropathol.2010119448749410.1007/s00401‑010‑0645‑6 20127344
    [Google Scholar]
  114. GroothofD. ShehabN.B.N. ErlerN.S. Creatinine, cystatin C, muscle mass, and mortality: Findings from a primary and replication population‐based cohort.J Cach Sarcop Musc20241541528153810.1002/jcsm.13511 38898741
    [Google Scholar]
  115. LiH. JiangW. LiuS. Connecting the mechanisms of tumor sex differences with cancer therapy.Mol. Cell. Biochem.2024479221323110.1007/s11010‑023‑04723‑1 37027097
    [Google Scholar]
  116. El-MansouryB. El HibaO. JayakumarA.R. Physiology and Function of Glial Cells in Health and Disease.Miami, MoroccoIGI Global2024261279
    [Google Scholar]
  117. OgidiO.I. OgounT.R. AlexE.I. EdwardR.B. JoshuaM.T. BunuE.M. Radiomics and Radiogenomics in Neuro-Oncology.Amsterdam, NetherlandsElsevier202533410.1016/B978‑0‑443‑18509‑0.00002‑5
    [Google Scholar]
  118. PalmerJ.D. PrasadR.N. CioffiG. Exposure to radon and heavy particulate pollution and incidence of brain tumors.Neuro-oncol.202325240741710.1093/neuonc/noac163 35762336
    [Google Scholar]
  119. SmithC.J. PerfettiT.A. ChokshiC. VenugopalC. AshfordJ.W. SinghS.K. Risk factors for glioblastoma are shared by other brain tumor types.Hum. Exp. Toxicol.2024430960327124124179610.1177/09603271241241796 38520250
    [Google Scholar]
  120. ChakrabortyB. ByemerwaJ. KrebsT. LimF. ChangC.Y. McDonnellD.P. Estrogen receptor signaling in the immune system.Endocr. Rev.202344111714110.1210/endrev/bnac017 35709009
    [Google Scholar]
  121. WilkinsonN.M. ChenH.C. LechnerM.G. SuM.A. Sex differences in immunity.Annu. Rev. Immunol.2022401759410.1146/annurev‑immunol‑101320‑125133 34985929
    [Google Scholar]
  122. JacksonS.S. MarksM.A. KatkiH.A. Sex disparities in the incidence of 21 cancer types: Quantification of the contribution of risk factors.Cancer2022128193531354010.1002/cncr.34390 35934938
    [Google Scholar]
  123. NematiM. ShayanfarM. AlmasiF. Dietary patterns in relation to glioma: A case-control study.Cancer Metab.2024121810.1186/s40170‑024‑00336‑4 38500219
    [Google Scholar]
  124. XingJ. CaiH. LinZ. Examining the function of macrophage oxidative stress response and immune system in glioblastoma multiforme through analysis of single-cell transcriptomics.Front. Immunol.202414128813710.3389/fimmu.2023.1288137 38274828
    [Google Scholar]
  125. YounisM.A. TawfeekH.M. AbdellatifA.A.H. Abdel-AleemJ.A. HarashimaH. Clinical translation of nanomedicines: Challenges, opportunities, and keys.Adv. Drug Deliv. Rev.202218111408310.1016/j.addr.2021.114083 34929251
    [Google Scholar]
  126. LoneS.N. NisarS. MasoodiT. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments.Mol. Cancer20222117910.1186/s12943‑022‑01543‑7 35303879
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273360604250420020956
Loading
/content/journals/cnsnddt/10.2174/0118715273360604250420020956
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CRP; early detection; Glioma; inflammatory markers; kidney; liver function
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test