Skip to content
2000
Volume 24, Issue 10
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Brain ischemia-reperfusion injury (CIRI) refers to brain ischemia that leads to cellular dysfunction and cell death after a certain period, and ischemic damage is rescued by providing blood supply and reperfusion. And then, reperfusion includes components such as ion imbalance, mitochondrial dysfunction, oxidative stress, neuroinflammation, Ca2+ overload, and apoptosis, which do not cause tissue damage. Autophagy also occurs in CIRI due to oxygen deficiency, and autophagy has been shown to protect cells from ischemic injury. Flavonoids are a class of essential and diversified secondary plant metabolites found in different concentrations in leaves, flowers, roots, and fruits. Various studies have shown that flavonoids have healing qualifications such as anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial. We aim to determine how flavonoids may affect signaling pathways and kinases in rats with CIRI. The results show that the activity of JAK2/STAT3, NF-κB, RhoA/ROCK, JNK-p38, and cAMKII signaling pathways increases under CIRI, and the PI3K/Akt/mTOR signaling pathway is suppressed. Studies using various flavonoids (kaempferol, chrysin, naringin, naringenin, quercetin, wogonin) have shown a neuroprotective effect by reversing the situation in signaling pathways during CIRI damage.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273374176250414051135
2025-04-30
2025-09-24
Loading full text...

Full text loading...

References

  1. AjoolabadyA. WangS. KroemerG. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics.Pharmacol. Ther.202122510784810.1016/j.pharmthera.2021.107848 33823204
    [Google Scholar]
  2. JurcauA. SimionA. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysiology to therapeutic strategies.Int. J. Mol. Sci.20212311410.3390/ijms23010014 35008440
    [Google Scholar]
  3. OspelJ.M. van der LugtA. GounisM. GoyalM. MajoieC.B.L.M. A clinical perspective on endovascular stroke treatment biomechanics.J. Biomech.202112711069410.1016/j.jbiomech.2021.110694 34419825
    [Google Scholar]
  4. SheR. LiuD. LiaoJ. WangG. GeJ. MeiZ. Mitochondrial dysfunctions induce PANoptosis and ferroptosis in cerebral ischemia/reperfusion injury: From pathology to therapeutic potential.Front. Cell. Neurosci.202317119162910.3389/fncel.2023.1191629 37293623
    [Google Scholar]
  5. ZhangZ. HeJ. WangB. Circular RNA circ_HECTD1 regulates cell injury after cerebral infarction by miR-27a-3p/FSTL1 axis.Cell Cycle202120991492610.1080/15384101.2021.1909885 33843447
    [Google Scholar]
  6. XuJ. LiuX. LuoL. A metabonomics investigation into the therapeutic effects of buchang naoxintong capsules on reversing the amino acid-protein interaction network of cerebral ischemia.Oxid. Med. Cell. Longev.20192019111410.1155/2019/7258624 31015890
    [Google Scholar]
  7. GrisottoC. TaïléJ. PlanesseC. High-fat diet aggravates cerebral infarct, hemorrhagic transformation and neuroinflammation in a mouse stroke model.Int. J. Mol. Sci.2021229457110.3390/ijms22094571 33925459
    [Google Scholar]
  8. LiS. JiangD. EhlerdingE.B. Intrathecal administration of nanoclusters for protecting neurons against oxidative stress in cerebral ischemia/reperfusion injury.ACS Nano20191311133821338910.1021/acsnano.9b06780 31603304
    [Google Scholar]
  9. XingY. ZhongL. GuoJ. BaoC. LuoY. MinL. Fingolimod alleviates inflammation after cerebral ischemia via HMGB1/TLR4/] NF-κB signaling pathway.J. Integr. Neurosci.202423814210.31083/j.jin2308142 39207074
    [Google Scholar]
  10. ArenillasJ.F. SobrinoT. CastilloJ. DávalosA. The role of angiogenesis in damage and recovery from ischemic stroke.Curr. Treat. Options Cardiovasc. Med.20079320521210.1007/s11936‑007‑0014‑5 17601384
    [Google Scholar]
  11. PedragosaJ Miró-MurF Otxoa-de-AmezagaA CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice.J Cereb Blood Flow Metab2020401_suppl)(Suppl.S98S11610.1177/0271678X2090905532151226
    [Google Scholar]
  12. HuK. LiY. JiaW. Chemogenetic activation of glutamatergic neurons in the motor cortex promotes functional recovery after ischemic stroke in rats.Behav. Brain Res.2019359818810.1016/j.bbr.2018.10.029 30366033
    [Google Scholar]
  13. LiuY. FuN. SuJ. WangX. LiX. Rapid enkephalin delivery using exosomes to promote neurons recovery in ischemic stroke by inhibiting neuronal p53/Caspase-3.BioMed Res. Int.20192019111110.1155/2019/4273290 30949500
    [Google Scholar]
  14. JiangM.Q. YuS.P. WeiZ.Z. Conversion of reactive astrocytes to induced neurons enhances neuronal repair and functional recovery after ischemic stroke.Front. Aging Neurosci.20211361285610.3389/fnagi.2021.612856 33841125
    [Google Scholar]
  15. WangS. ZhangH. XuY. Crosstalk between microglia and T cells contributes to brain damage and recovery after ischemic stroke.Neurol. Res.201638649550310.1080/01616412.2016.1188473 27244271
    [Google Scholar]
  16. Santamaría-CadavidM. Rodríguez-CastroE. Rodríguez-YáñezM. Regulatory T cells participate in the recovery of ischemic stroke patients.BMC Neurol.20202016810.1186/s12883‑020‑01648‑w 32111174
    [Google Scholar]
  17. HermannD.M. LieszA. DzyubenkoE. Implications of immune responses for ischemic brain injury and stroke recovery.Brain Behav. Immun.20219629229410.1016/j.bbi.2021.05.020
    [Google Scholar]
  18. YanB.C. WangJ. RuiY. Neuroprotective effects of gabapentin against cerebral ischemia reperfusion-induced neuronal autophagic injury via regulation of the PI3K/Akt/mTOR signaling pathways.J. Neuropathol. Exp. Neurol.201978215717110.1093/jnen/nly119 30597043
    [Google Scholar]
  19. XuY. YangY. YangJ. Glycine receptor beta subunit (GlyR-β) promotes potential angiogenesis and neurological regeneration during early-stage recovery after cerebral ischemia stroke/] reperfusion in mice.J. Integr. Neurosci.202423814510.31083/j.jin2308145 39207064
    [Google Scholar]
  20. MeiZ-G. FengZ-T. WangJ-F. Puerarin protects rat brain against ischemia/reperfusion injury by suppressing autophagy via the AMPK-mTOR-ULK1 signaling pathway.Neural Regen. Res.201813698999810.4103/1673‑5374.233441 29926825
    [Google Scholar]
  21. MaqoudF. ScalaR. HoxhaM. ZappacostaB. TricaricoD. ATP-sensitive Potassium channel subunits in neuroinflammation: Novel drug targets in neurodegenerative disorders.CNS Neurol. Disord. Drug Targets2022212130149
    [Google Scholar]
  22. XieW. ZhouP. SunY. Protective effects and target network analysis of ginsenoside Rg1 in cerebral ischemia and reperfusion injury: A comprehensive overview of experimental studies.Cells201871227010.3390/cells7120270 30545139
    [Google Scholar]
  23. TianQ. LiJ. LvR. A coloaded liposome in situ gel as a novel therapeutic strategy to treat cerebral ischemia reperfusion injury.Brain Res.2025184714929210.1016/j.brainres.2024.149292 39461665
    [Google Scholar]
  24. LussierG. EvansA.J. HoustonI. Compact arterial monitoring device use in resuscitative endovascular balloon occlusion of the Aorta (REBOA): A simple validation study in swine.Cureus20241610e7078910.7759/cureus.70789 39493181
    [Google Scholar]
  25. TangH. GamdzykM. HuangL. Delayed recanalization after MCAO ameliorates ischemic stroke by inhibiting apoptosis via HGF/c-Met/STAT3/Bcl-2 pathway in rats.Exp. Neurol.202033011335910.1016/j.expneurol.2020.113359 32428505
    [Google Scholar]
  26. LiX. MaN. XuJ. Targeting ferroptosis: Pathological mechanism and treatment of ischemia‐reperfusion injury.Oxid. Med. Cell. Longev.202120211158792210.1155/2021/1587922 34745412
    [Google Scholar]
  27. MaH. HouF. ChenA. LiT. ZhuY. ZhaoQ. Mu-Xiang-You-Fang protects PC12 cells against OGD/R-induced autophagy via the AMPK/mTOR signaling pathway.J. Ethnopharmacol.202025211258310.1016/j.jep.2020.112583 31978519
    [Google Scholar]
  28. LiL LinZ YuanJ The neuroprotective mechanisms of naringenin: Inhibition of apoptosis through the PI3K/AKT pathway after hypoxic-ischemic brain damage.J Ethnopharmacol2024318Pt A11694110.1016/j.jep.2023.11694137480970
    [Google Scholar]
  29. LiuS. ZhangX. LinB. Melastoma dodecandrum lour. Protects against cerebral ischemia–reperfusion injury by ameliorating oxidative stress and endoplasmic reticulum stress.J. Ethnopharmacol.202533611873510.1016/j.jep.2024.118735 39182701
    [Google Scholar]
  30. LimS. KimT.J. KimY.J. KimC. KoS.B. KimB.S. Senolytic therapy for cerebral ischemia-reperfusion injury.Int. J. Mol. Sci.202122211196710.3390/ijms222111967 34769397
    [Google Scholar]
  31. ZhangQ. JiaM. WangY. WangQ. WuJ. Cell death mechanisms in cerebral ischemia-reperfusion injury.Neurochem. Res.202247123525354210.1007/s11064‑022‑03697‑8 35976487
    [Google Scholar]
  32. SuiC. LiuY. JiangJ. TangJ. YuL. LvG. Ginsenoside Rg1 ameliorates cerebral ischemia-reperfusion injury by regulating Pink1/Parkin-mediated mitochondrial autophagy and inhibiting microglia NLRP3 activation.Brain Res. Bull.202421611104310.1016/j.brainresbull.2024.111043 39134096
    [Google Scholar]
  33. WuF ZhangR FengQ ChengH XueJ ChenJ. (-)- Clausenamide alleviated ER stress and apoptosis induced by OGD/R in primary neuron cultures.Neurol Res2020429730810.1080/01616412.2020.177104032588767
    [Google Scholar]
  34. ZhangZ. ZhangL. ZhouL. LeiY. ZhangY. HuangC. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress.Redox Biol.20192510104710.1016/j.redox.2018.11.005 30470534
    [Google Scholar]
  35. ZhouZ. XuN. MateiN. Sodium butyrate attenuated neuronal apoptosis via GPR41/Gβγ/PI3K/Akt pathway after MCAO in rats.J. Cereb. Blood Flow Metab.202141226728110.1177/0271678X20910533 32151222
    [Google Scholar]
  36. ZhangY. ZhangH. ZhaoF. Mitochondrial-targeted and ROS-responsive nanocarrier via nose-to-brain pathway for ischemic stroke treatment.Acta Pharm. Sin. B202313125107512010.1016/j.apsb.2023.06.011 38045064
    [Google Scholar]
  37. YangJ.L. MukdaS. ChenS.D. Diverse roles of mitochondria in ischemic stroke.Redox Biol.20181626327510.1016/j.redox.2018.03.002 29549824
    [Google Scholar]
  38. QuanY. XinY. TianG. ZhouJ. LiuX. Mitochondrial ROS‐Modulated mtDNA: A potential target for cardiac aging.Oxid. Med. Cell. Longev.20202020111110.1155/2020/9423593 32308810
    [Google Scholar]
  39. NishimotoS. FukudaD. SataM. Emerging roles of Toll-like receptor 9 in cardiometabolic disorders.Inflamm. Regen.20204011810.1186/s41232‑020‑00118‑7 32714475
    [Google Scholar]
  40. TripathiA. BartoshA. WhiteheadC. PillaiA. Activation of cell-free mtDNA-TLR9 signaling mediates chronic stress-induced social behavior deficits.Mol. Psychiatry20232893806381510.1038/s41380‑023‑02189‑7 37528226
    [Google Scholar]
  41. LiS. BianL. FuX. Gastrodin pretreatment alleviates rat brain injury caused by cerebral ischemic-reperfusion.Brain Res.2019171220721610.1016/j.brainres.2019.02.006 30742808
    [Google Scholar]
  42. YangB. FigueroaD.M. HouY. NEIL1 stimulates neurogenesis and suppresses neuroinflammation after stress.Free Radic. Biol. Med.2019141475810.1016/j.freeradbiomed.2019.05.037 31175982
    [Google Scholar]
  43. ShuQ. FanH. LiS.J. Protective effects of Progranulin against focal cerebral ischemia‐reperfusion injury in rats by suppressing endoplasmic reticulum stress and NF‐κB activation in reactive astrocytes.In: J Cell Biochem.2018119(8)65849710.1002/jcb.26790 29665049
    [Google Scholar]
  44. ShenC.C. HuangH.M. OuH.C. ChenH.L. ChenW.C. JengK.C. Protective effect of nicotinamide on neuronal cells under oxygen and glucose deprivation and hypoxia/reoxygenation.J. Biomed. Sci.200411447248110.1007/BF02256096 15153782
    [Google Scholar]
  45. KumarG. MukherjeeS. PaliwalP. Neuroprotective effect of chlorogenic acid in global cerebral ischemia-reperfusion rat model.Naunyn Schmiedebergs Arch. Pharmacol.2019392101293130910.1007/s00210‑019‑01670‑x 31190087
    [Google Scholar]
  46. GuoP. JinZ. WuH. Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/] reperfusion.Brain Behav.2019910e0142510.1002/brb3.1425 31566928
    [Google Scholar]
  47. AhsanA. LiuM. ZhengY. Natural compounds modulate the autophagy with potential implication of stroke.Acta Pharm. Sin. B20211171708172010.1016/j.apsb.2020.10.018 34386317
    [Google Scholar]
  48. CaiY. YangE. YaoX. FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury.Redox Biol.20213810179210.1016/j.redox.2020.101792 33212415
    [Google Scholar]
  49. YangL. TaoY. LuoL. ZhangY. WangX. MengX. Dengzhan Xixin injection derived from a traditional Chinese herb Erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis.J. Ethnopharmacol.202228811498810.1016/j.jep.2022.114988 35032588
    [Google Scholar]
  50. LiL. TanJ. MiaoY. LeiP. ZhangQ. ROS and autophagy: Interactions and molecular regulatory mechanisms.Cell. Mol. Neurobiol.201535561562110.1007/s10571‑015‑0166‑x 25722131
    [Google Scholar]
  51. ShangJ. WenY. ZhangX. Naoxintong capsule accelerates mitophagy in cerebral ischemia-reperfusion injury via TP53/] PINK1/PRKN pathway based on network pharmacology analysis and experimental validation.J. Ethnopharmacol.202533611872110.1016/j.jep.2024.118721 39173723
    [Google Scholar]
  52. SunX. CuiX. Isorhapontigenin alleviates cerebral ischemia/reperfusion injuries in rats and modulated the PI3K/Akt signaling pathway.Naunyn Schmiedebergs Arch. Pharmacol.202039391753176010.1007/s00210‑019‑01794‑0 31900521
    [Google Scholar]
  53. AdamsJ.M. CoryS. The Bcl-2 apoptotic switch in cancer development and therapy.Oncogene20072691324133710.1038/sj.onc.1210220 17322918
    [Google Scholar]
  54. ChoiY.J. KimS.Y. OhJ.M. JuhnnY.S. Stimulatory heterotrimeric G protein augments gamma ray-induced apoptosis by up-regulation of Bak expression via CREB and AP-1 in H1299 human lung cancer cells.Exp. Mol. Med.200941859260010.3858/emm.2009.41.8.065 19381065
    [Google Scholar]
  55. ChoE.A. KimE.J. KwakS.J. JuhnnY.S. cAMP signaling inhibits radiation-induced ATM phosphorylation leading to the augmentation of apoptosis in human lung cancer cells.Mol. Cancer20141313610.1186/1476‑4598‑13‑36 24568192
    [Google Scholar]
  56. YanoT. ItohY. SendoT. KubotaT. OishiR. Cyclic AMP reverses radiocontrast media–induced apoptosis in LLC-PK1 cells by activating A kinase/PI3 kinase.Kidney Int.20036462052206310.1046/j.1523‑1755.2003.00335.x 14633127
    [Google Scholar]
  57. OtakaN. ShibataR. OhashiK. Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury.Circ. Res.2018123121326133810.1161/CIRCRESAHA.118.313777 30566056
    [Google Scholar]
  58. AhadM.A. KumaranK.R. NingT. Insights into the neuropathology of cerebral ischemia and its mechanisms.Rev. Neurosci.202031552153810.1515/revneuro‑2019‑0099 32126019
    [Google Scholar]
  59. YiJ. ParkS. KapadiaR. VemugantiR. Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage.Neurochem. Int.2007507-81014102710.1016/j.neuint.2007.04.019 17532542
    [Google Scholar]
  60. KhanamN. GhoshA. NathD. Synergistic effect of chrysin and kaempferol in ameliorating Cerebral Ischemic Reperfusion injury in rat by controlling expression of proinflammatory mediators NF-κB and STAT3.Nutr. Neurosci.2024282138148 38808704
    [Google Scholar]
  61. GogolevaV.S. DrutskayaM.S. AtretkhanyK.S-N. The role of microglia in the homeostasis of the central nervous system and neuroinflammation.Mol. Biol.2019535790798 31661478
    [Google Scholar]
  62. KwonH.S. KohS.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes.Transl. Neurodegener.2020914210.1186/s40035‑020‑00221‑2 33239064
    [Google Scholar]
  63. JayarajR.L. AzimullahS. BeiramR. JalalF.Y. RosenbergG.A. Neuroinflammation: Friend and foe for ischemic stroke.J. Neuroinflammation201916114210.1186/s12974‑019‑1516‑2 31291966
    [Google Scholar]
  64. ChenY. GongK. GuoL. Downregulation of phosphoglycerate mutase 5 improves microglial inflammasome activation after traumatic brain injury.Cell Death Discov.20217129010.1038/s41420‑021‑00686‑8 34642327
    [Google Scholar]
  65. ChuH. HuangC. ZhouZ. TangY. DongQ. GuoQ. Inflammatory score predicts early hematoma expansion and poor outcomes in patients with intracerebral hemorrhage.Int. J. Surg.2023109326627610.1097/JS9.0000000000000191 37093070
    [Google Scholar]
  66. ChenY. LongT. ChenJ. WTAP participates in neuronal damage by protein translation of NLRP3 in an m6A-YTHDF1-dependent manner after traumatic brain injury.Int. J. Surg.202411095396540810.1097/JS9.0000000000001794 38874470
    [Google Scholar]
  67. ZhangS. Microglial activation after ischaemic stroke.Stroke Vasc. Neurol.201942717410.1136/svn‑2018‑000196 31338213
    [Google Scholar]
  68. DengW. MandevilleE. TerasakiY. Transcriptomic characterization of microglia activation in a rat model of ischemic stroke.J. Cereb. Blood Flow Metab.2020401_supplS34S4810.1177/0271678X20932870 33208001
    [Google Scholar]
  69. QinC. ZhouL.Q. MaX.T. Dual functions of microglia in ischemic stroke.Neurosci. Bull.201935592193310.1007/s12264‑019‑00388‑3 31062335
    [Google Scholar]
  70. JiangC.T. WuW.F. DengY.H. GeJ.W. Modulators of microglia activation and polarization in ischemic stroke (Review).Mol. Med. Rep.20202152006201810.3892/mmr.2020.11003 32323760
    [Google Scholar]
  71. AmatoS. ArnoldA. Modeling microglia activation and inflammation-based neuroprotectant strategies during ischemic stroke.Bull. Math. Biol.20218367210.1007/s11538‑021‑00905‑4 33982158
    [Google Scholar]
  72. ZhangM. WuQ. TangM. ChenZ. WuH. Exosomal Mir-3613-3p derived from oxygen–glucose deprivation-treated brain microvascular endothelial cell promotes microglial M1 polarization.Cell. Mol. Biol. Lett.20232811810.1186/s11658‑023‑00432‑1 36870962
    [Google Scholar]
  73. WufuerR. FanZ. LiuK. ZhangY. Differential yet integral contributions of Nrf1 and Nrf2 in the human HepG2 cells on antioxidant cytoprotective response against tert-butylhydroquinone as a pro-oxidative stressor.Antioxidants20211010161010.3390/antiox10101610 34679746
    [Google Scholar]
  74. HuS. FengJ. WangM. Nrf1 is an indispensable redox-determining factor for mitochondrial homeostasis by integrating multi-hierarchical regulatory networks.Redox Biol.20225710247010.1016/j.redox.2022.102470 36174386
    [Google Scholar]
  75. ChenY. HeW. QiuJ. Pterostilbene improves neurological dysfunction and neuroinflammation after ischaemic stroke via HDAC3/Nrf1-mediated microglial activation.Cell. Mol. Biol. Lett.202429111410.1186/s11658‑024‑00634‑1 39198723
    [Google Scholar]
  76. KapanovaG. TashenovaG. AkhenbekovaA. TokpınarA. YılmazS. Cerebral ischemia reperfusion injury: From public health perspectives to mechanisms.Folia Neuropathol.202260438438910.5114/fn.2022.120101 36734380
    [Google Scholar]
  77. WuM.Y. YiangG.T. LiaoW.T. Current mechanistic concepts in ischemia and reperfusion injury.Cell. Physiol. Biochem.20184641650166710.1159/000489241 29694958
    [Google Scholar]
  78. ZalcmanG. FedermanN. RomanoA. CaMKII isoforms in learning and memory: Localization and function.Front. Mol. Neurosci.20181144510.3389/fnmol.2018.00445 30564099
    [Google Scholar]
  79. SałaciakK. KoszałkaA. ŻmudzkaE. PytkaK. The calcium/] calmodulin-dependent kinases II and IV as therapeutic targets in neurodegenerative and neuropsychiatric disorders.Int. J. Mol. Sci.2021229430710.3390/ijms22094307 33919163
    [Google Scholar]
  80. BuonaratiO R CookS G GoodellD J CaMKII versus DAPK1 binding to GluN2B in ischemic neuronal cell death after resuscitation from cardiac arrest.Cell Rep202030118.: e410.1016/j.celrep.2019.11.07631914378
    [Google Scholar]
  81. HuY. ChangL. ZhuY. Inhibition of anaplastic lymphoma kinase protects from ischemic stroke.Stroke20245541075108510.1161/STROKEAHA.123.045991 38445502
    [Google Scholar]
  82. PernerF. PernerC. ErnstT. HeidelF.H. Roles of JAK2 in aging, inflammation, hematopoiesis and malignant transformation.Cells20198885410.3390/cells8080854 31398915
    [Google Scholar]
  83. ZhuH. JianZ. ZhongY. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition.Front. Immunol.20211271494310.3389/fimmu.2021.714943 34367186
    [Google Scholar]
  84. ZhangM. ZhangY. PengJ. Gastrodin against oxidative stress-inflammation crosstalk via inhibiting mtDNA/TLR9 and JAK2/STAT3 signaling to ameliorate ischemic stroke injury.Int. Immunopharmacol.202414111301210.1016/j.intimp.2024.113012 39182268
    [Google Scholar]
  85. ChenX. NieX. MaoJ. ZhangY. YinK. JiangS. Perfluorooctanesulfonate induces neuroinflammation through the secretion of TNF-α mediated by the JAK2/STAT3 pathway.Neurotoxicology201866324210.1016/j.neuro.2018.03.003 29526747
    [Google Scholar]
  86. HuangB. LangX. LiX. The role of IL-6/JAK2/STAT3 signaling pathway in cancers.Front. Oncol.202212102317710.3389/fonc.2022.1023177 36591515
    [Google Scholar]
  87. ZhangW. JinY. WangD. CuiJ. Neuroprotective effects of leptin on cerebral ischemia through JAK2/STAT3/PGC-1-mediated mitochondrial function modulation.Brain Res. Bull.202015611813010.1016/j.brainresbull.2020.01.002 31935431
    [Google Scholar]
  88. ZhouK. ChenJ. WuJ. Atractylenolide III ameliorates cerebral ischemic injury and neuroinflammation associated with inhibiting JAK2/STAT3/Drp1-dependent mitochondrial fission in microglia.Phytomedicine20195915292210.1016/j.phymed.2019.152922 30981186
    [Google Scholar]
  89. YangW. XiaY. CaoY. EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis.Mol. Cell201248577178410.1016/j.molcel.2012.09.028 23123196
    [Google Scholar]
  90. YangW. XiaY. HawkeD. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis.Cell2012150468569610.1016/j.cell.2012.07.018 22901803
    [Google Scholar]
  91. YangW. XiaY. JiH. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation.Nature2011480737511812210.1038/nature10598 22056988
    [Google Scholar]
  92. YanX.L. ZhangX.B. AoR. GuanL. Effects of shRNA-mediated silencing of PKM2 gene on aerobic glycolysis, cell migration, cell invasion, and apoptosis in colorectal cancer cells.J. Cell. Biochem.2017118124792480310.1002/jcb.26148 28543190
    [Google Scholar]
  93. TeeS.S. ParkJ.M. HurdR.E. PKM2 activation sensitizes cancer cells to growth inhibition by 2-deoxy-D-glucose.Oncotarget2017853909599096810.18632/oncotarget.19630 29207616
    [Google Scholar]
  94. WangP. SunC. ZhuT. XuY. Structural insight into mechanisms for dynamic regulation of PKM2.Protein Cell20156427528710.1007/s13238‑015‑0132‑x 25645022
    [Google Scholar]
  95. YangW. ZhengY. XiaY. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect.Nat. Cell Biol.201214121295130410.1038/ncb2629 23178880
    [Google Scholar]
  96. GaoJ. LiuR. TangJ. Suppressing nuclear translocation of microglial PKM2 confers neuroprotection via downregulation of neuroinflammation after mouse cerebral ischemia–reperfusion injury.Int. Immunopharmacol.202414111288010.1016/j.intimp.2024.112880 39153304
    [Google Scholar]
  97. ZhangS.M. FanB. LiY.L. ZuoZ.Y. LiG.Y. Oxidative stress-involved mitophagy of retinal pigment epithelium and retinal degenerative diseases.Cell. Mol. Neurobiol.20234373265327610.1007/s10571‑023‑01383‑z 37391574
    [Google Scholar]
  98. LiuJ. DongW. GaoC. MengY. Salvianolic acid B protects cardiomyocytes from ischemia/reperfusion injury by mediating circTRRAP/miR-214-3p/SOX6 axis.Int. Heart J.20226361176118610.1536/ihj.22‑102 36450557
    [Google Scholar]
  99. AshtonK.J. KiesslingC.J. ThompsonJ.L.M. Early cardiac aging linked to impaired stress-resistance and transcriptional control of stress response, quality control and mitochondrial pathways.Exp. Gerontol.202317111201110.1016/j.exger.2022.112011 36347360
    [Google Scholar]
  100. TanakaK. The PINK1–Parkin axis: An overview.Neurosci. Res.202015991510.1016/j.neures.2020.01.006 31982458
    [Google Scholar]
  101. CorsiniE. BuosoE. GalbiatiV. RacchiM. Role of Protein Kinase C in immune cell activation and its implication chemical-induced immunotoxicity.Adv. Exp. Med. Biol.202115116310.1007/978‑3‑030‑49844‑3_6
    [Google Scholar]
  102. BuosoE. MasiM. RacchiM. CorsiniE. Endocrine-disrupting chemicals’(EDCs) effects on tumour microenvironment and cancer progression: Emerging contribution of RACK1.Int. J. Mol. Sci.20202123922910.3390/ijms21239229 33287384
    [Google Scholar]
  103. ZhaoL. ChenY. LiH. DingX. LiJ. Deciphering the neuroprotective mechanisms of RACK1 in cerebral ischemia‐reperfusion injury: Pioneering insights into mitochondrial autophagy and the PINK1/Parkin axis.CNS Neurosci. Ther.2024308e1483610.1111/cns.14836 39097918
    [Google Scholar]
  104. SongN.N. ZhaoY. SunC. DUSP10 alleviates ischemic stroke-induced neuronal damage by restricting p38/JNK pathway.Behav. Brain Res.202345011447810.1016/j.bbr.2023.114478 37164190
    [Google Scholar]
  105. XingY. YangS.D. WangM.M. DongF. FengY.S. ZhangF. Electroacupuncture alleviated neuronal apoptosis following ischemic stroke in rats via midkine and ERK/JNK/p38 signaling pathway.J. Mol. Neurosci.2018661263610.1007/s12031‑018‑1142‑y 30062439
    [Google Scholar]
  106. HuangW. LvB. ZengH. Paracrine factors secreted by MSCs promote astrocyte survival associated with GFAP downregulation after ischemic stroke via p38 MAPK and JNK.J. Cell. Physiol.2015230102461247510.1002/jcp.24981 25752945
    [Google Scholar]
  107. DhillonA.S. HaganS. RathO. KolchW. MAP kinase signalling pathways in cancer.Oncogene200726223279329010.1038/sj.onc.1210421 17496922
    [Google Scholar]
  108. JiangM. LiJ. PengQ. Neuroprotective effects of bilobalide on cerebral ischemia and reperfusion injury are associated with inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation.J. Neuroinflammation201411116710.1186/s12974‑014‑0167‑6 25256700
    [Google Scholar]
  109. WangL. LiZ. ZhangX. Protective effect of shikonin in experimental ischemic stroke: Attenuated TLR4, p-p38MAPK, NF-κB, TNF-α and MMP-9 expression, up-regulated claudin-5 expression, ameliorated BBB permeability.Neurochem. Res.20143919710610.1007/s11064‑013‑1194‑x 24248858
    [Google Scholar]
  110. PfeilschifterW. CzechB. HoffmannB.P. Pyrrolidine dithiocarbamate activates p38 MAPK and protects brain endothelial cells from apoptosis: A mechanism for the protective effect in stroke?Neurochem. Res.20103591391140110.1007/s11064‑010‑0197‑0 20514517
    [Google Scholar]
  111. ChengC.Y. LinJ.G. TangN.Y. KaoS.T. HsiehC.L. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: Possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways.BMC Complement. Altern. Med.201515124110.1186/s12906‑015‑0752‑y 26187498
    [Google Scholar]
  112. ZhuC. WangD. ChangC. Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling.Korean J. Physiol. Pharmacol.202428323925210.4196/kjpp.2024.28.3.239 38682172
    [Google Scholar]
  113. OgierJ.M. NayagamB.A. LockhartP.J. ASK1 inhibition: A therapeutic strategy with multi-system benefits.J. Mol. Med.202098333534810.1007/s00109‑020‑01878‑y 32060587
    [Google Scholar]
  114. ObsilovaV. HonzejkovaK. ObsilT. Structural insights support targeting ASK1 kinase for therapeutic interventions.Int. J. Mol. Sci.202122241339510.3390/ijms222413395 34948191
    [Google Scholar]
  115. RusnakL. FuH. Regulation of ASK1 signaling by scaffold and adaptor proteins.Adv. Biol. Regul.201766233010.1016/j.jbior.2017.10.003 29102394
    [Google Scholar]
  116. CheonS.Y. KimE.J. KimJ.M. KooB.N. Cell type‐specific mechanisms in the pathogenesis of ischemic stroke: The role of apoptosis signal‐regulating kinase 1.Oxid. Med. Cell. Longev.201820181259604310.1155/2018/2596043 29743976
    [Google Scholar]
  117. ShiizakiS. NaguroI. IchijoH. Activation mechanisms of ASK1 in response to various stresses and its significance in intracellular signaling.Adv. Biol. Regul.201353113514410.1016/j.jbior.2012.09.006 23031789
    [Google Scholar]
  118. LiF. MaoQ. WangJ. Salidroside inhibited cerebral ischemia/reperfusion-induced oxidative stress and apoptosis via Nrf2/Trx1 signaling pathway.Metab. Brain Dis.20223782965297810.1007/s11011‑022‑01061‑x 35976554
    [Google Scholar]
  119. HeJ. LiS. TengY. Increasing expression of dual-specificity phosphatase 12 mitigates oxygen-glucose deprivation/] reoxygenation-induced neuronal apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway.Autoimmunity2024571234591910.1080/08916934.2024.2345919 38721693
    [Google Scholar]
  120. AshrafizadehM. MirzaeiS. HushmandiK. Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects.Life Sci.202127811964910.1016/j.lfs.2021.119649 34043989
    [Google Scholar]
  121. SteinbergG.R. HardieD.G. New insights into activation and function of the AMPK.Nat. Rev. Mol. Cell Biol.202324425527210.1038/s41580‑022‑00547‑x 36316383
    [Google Scholar]
  122. EntezariM. HashemiD. TaheriazamA. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation.Biomed. Pharmacother.202214611256310.1016/j.biopha.2021.112563 35062059
    [Google Scholar]
  123. Martin-VegaA. CobbM.H. Navigating the ERK1/2 MAPK Cascade.Biomolecules20231310155510.3390/biom13101555 37892237
    [Google Scholar]
  124. SchanbacherC. BieberM. ReindersY. ERK1/2 activity is critical for the outcome of ischemic stroke.Int. J. Mol. Sci.202223270610.3390/ijms23020706 35054890
    [Google Scholar]
  125. LeeH. ZandkarimiF. ZhangY. Energy-stress-mediated AMPK activation inhibits ferroptosis.Nat. Cell Biol.202022222523410.1038/s41556‑020‑0461‑8 32029897
    [Google Scholar]
  126. CaiJ. ChenX. LiuX. AMPK: The key to ischemia‐reperfusion injury.J. Cell. Physiol.2022237114079409610.1002/jcp.30875 36134582
    [Google Scholar]
  127. WangL. DaiM. GeY. EGCG protects the mouse brain against cerebral ischemia/reperfusion injury by suppressing autophagy via the AKT/AMPK/mTOR phosphorylation pathway.Front. Pharmacol.20221392139410.3389/fphar.2022.921394 36147330
    [Google Scholar]
  128. LiY. ZhengJ. ZhuY. QuY. SuoR. ZhuY. Neuroprotective effects of methylcobalamin in cerebral ischemia/reperfusion injury through activation of the ERK1/2 signaling pathway.Int. Immunopharmacol.20219910804010.1016/j.intimp.2021.108040 34435586
    [Google Scholar]
  129. ZhangJ. WangS. ZhangH. The role of the AMPK/ERK1/2 signaling pathway in neuronal oxidative stress damage following cerebral ischemia-reperfusion.Tissue Cell20248910247210.1016/j.tice.2024.102472 39003914
    [Google Scholar]
  130. TurnhamR.E. ScottJ.D. Protein kinase A catalytic subunit isoform PRKACA; History, function and physiology.Gene2016577210110810.1016/j.gene.2015.11.052 26687711
    [Google Scholar]
  131. ZhangT. LuuM.D.A. DolgaA.M. EiselU.L.M. SchmidtM. The old second messenger cAMP teams up with novel cell death mechanisms: Potential translational therapeutical benefit for Alzheimer’s disease and Parkinson’s disease.Front. Physiol.202314120728010.3389/fphys.2023.1207280 37405135
    [Google Scholar]
  132. PatraC. FosterK. CorleyJ.E. DimriM. BradyM.F. Biochemistry, cAMP.Treasure Island (FL)StatPearls2023
    [Google Scholar]
  133. ZhangH. KongQ. WangJ. JiangY. HuaH. Complex roles of cAMP–PKA–CREB signaling in cancer.Exp. Hematol. Oncol.2020913210.1186/s40164‑020‑00191‑1 33292604
    [Google Scholar]
  134. NiuX.Q. LiD.D. BaoY.J. Neuroprotective effect of meglumine cyclic adenylate against ischemia/reperfusion injury via STAT3-Ser727 phosphorylation.J. Stroke Cerebrovasc. Dis.202332110689210.1016/j.jstrokecerebrovasdis.2022.106892 36402093
    [Google Scholar]
  135. AronowskiJ. GrottaJ.C. WaxhamM.N. Ischemia-induced translocation of Ca2+/calmodulin-dependent protein kinase II: Potential role in neuronal damage.J. Neurochem.19925851743175310.1111/j.1471‑4159.1992.tb10049.x 1313852
    [Google Scholar]
  136. BlomqvistP. LindvallR.O. SteneviR. WielochT. Cyclic AMP concentrations in rat neocortex and hippocampus during and following incomplete ischemia: Effects of central noradrenergic neurons, prostaglandins, and adenosine.J. Neurochem.19854451345135310.1111/j.1471‑4159.1985.tb08768.x 2985751
    [Google Scholar]
  137. HuX. LiS. DoychevaD.M. Rh‐CSF1 attenuates oxidative stress and neuronal apoptosis via the CSF1R/PLCG2/PKA/UCP2 signaling pathway in a rat model of neonatal HIE.Oxid. Med. Cell. Longev.20202020112010.1155/2020/6801587 33101590
    [Google Scholar]
  138. BaiH. ZhaoL. LiuH. Adiponectin confers neuroprotection against cerebral ischemia-reperfusion injury through activating the cAMP/PKA-CREB-BDNF signaling.Brain Res. Bull.201814314515410.1016/j.brainresbull.2018.10.013 30395885
    [Google Scholar]
  139. WangM.D. HuangY. ZhangG.P. Exendin-4 improved rat cortical neuron survival under oxygen/glucose deprivation through PKA pathway.Neuroscience201222638839610.1016/j.neuroscience.2012.09.025 23000625
    [Google Scholar]
  140. ErsahinT. TuncbagN. Cetin-AtalayR. The PI3K/AKT/mTOR interactive pathway.Mol. Biosyst.20151171946195410.1039/C5MB00101C 25924008
    [Google Scholar]
  141. LuL. LiuY. GongY. ZhengX. A preliminary report: Genistein attenuates cerebral ischemia injury in ovariectomized rats via regulation of the PI3K-Akt-mTOR pathway.Gen. Physiol. Biophys.201938538939710.4149/gpb_2019024 31595881
    [Google Scholar]
  142. El-MarasyS.A. Abdel-RahmanR.F. Abd-ElsalamR.M. Neuroprotective effect of vildagliptin against cerebral ischemia in rats.Naunyn Schmiedebergs Arch. Pharmacol.2018391101133114510.1007/s00210‑018‑1537‑x 30022232
    [Google Scholar]
  143. ZhuY.M. WangC.C. ChenL. Both PI3K/Akt and ERK1/2 pathways participate in the protection by dexmedetomidine against transient focal cerebral ischemia/reperfusion injury in rats.Brain Res.201314941810.1016/j.brainres.2012.11.047 23219579
    [Google Scholar]
  144. JinL. MoY. YueE.L. LiuY. LiuK.Y. Ibrutinib ameliorates cerebral ischemia/reperfusion injury through autophagy activation and PI3K/Akt/mTOR signaling pathway in diabetic mice.Bioengineered20211217432744510.1080/21655979.2021.1974810 34605340
    [Google Scholar]
  145. MengJ. MaH. ZhuY. ZhaoQ. Dehydrocostuslactone attenuated oxygen and glucose deprivation/reperfusion-induced PC12 cell injury through inhibition of apoptosis and autophagy by activating the PI3K/AKT/mTOR pathway.Eur. J. Pharmacol.202191117455410.1016/j.ejphar.2021.174554 34627804
    [Google Scholar]
  146. LiJ. WangK. LiuM. HeJ. ZhangH. LiuH. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway.J. Mol. Histol.202354317318110.1007/s10735‑023‑10120‑1 37186301
    [Google Scholar]
  147. KohS.H. LoE.H. The role of the PI3K pathway in the regeneration of the damaged brain by neural stem cells after cerebral infarction.J. Clin. Neurol.201511429730410.3988/jcn.2015.11.4.297 26320845
    [Google Scholar]
  148. LiuJ. XuP. LiuD. TCM regulates PI3K/Akt signal pathway to intervene atherosclerotic cardiovascular disease.Evid. Based Complement. Alternat. Med.20212021111110.1155/2021/4854755 34956379
    [Google Scholar]
  149. KoutsaliarisI.K. MoschonasI.C. PechlivaniL.M. TsoukaA.N. TselepisA.D. Inflammation, oxidative stress, vascular aging and atherosclerotic ischemic stroke.Curr. Med. Chem.202229345496550910.2174/0929867328666210921161711 34547993
    [Google Scholar]
  150. LiuT. WangW. LiX. Advances of phytotherapy in ischemic stroke targeting PI3K/Akt signaling.Phytother. Res.202337125509552810.1002/ptr.7994 37641491
    [Google Scholar]
  151. WeiH. LiY. HanS. cPKCγ-modulated autophagy in neurons alleviates ischemic injury in brain of mice with ischemic stroke through Akt-mTOR pathway.Transl. Stroke Res.20167649751110.1007/s12975‑016‑0484‑4 27510769
    [Google Scholar]
  152. KoizumiS. HirayamaY. MorizawaY.M. New roles of reactive astrocytes in the brain; an organizer of cerebral ischemia.Neurochem. Int.201811910711410.1016/j.neuint.2018.01.007 29360494
    [Google Scholar]
  153. PevnaV. WagnièresG. HuntosovaV. Autophagy and apoptosis induced in U87 MG glioblastoma cells by hypericin-mediated photodynamic therapy can be photobiomodulated with 808 nm light.Biomedicines2021911170310.3390/biomedicines9111703 34829932
    [Google Scholar]
  154. LanT. XuY. LiS. LiN. ZhangS. ZhuH. Cornin protects against cerebral ischemia/reperfusion injury by preventing autophagy via the PI3K/Akt/mTOR pathway.BMC Pharmacol. Toxicol.20222318210.1186/s40360‑022‑00620‑3 36280856
    [Google Scholar]
  155. YangS.C. ChenP.J. ChangS.H. Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity.Biochem. Pharmacol.201815438439610.1016/j.bcp.2018.06.003 29883707
    [Google Scholar]
  156. AhmedS.I. HayatM.Q. TahirM. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl.BMC Complement. Altern. Med.201616146010.1186/s12906‑016‑1443‑z 27835979
    [Google Scholar]
  157. CarulloG. CappelloA.R. FrattaruoloL. BadolatoM. ArmentanoB. AielloF. Quercetin and derivatives: Useful tools in inflammation and pain management.Future Med. Chem.201791799310.4155/fmc‑2016‑0186 27995808
    [Google Scholar]
  158. ParkK.Y. JungG.O. LeeK.T. Antimutagenic activity of flavonoids from the heartwood of Rhus verniciflua.J. Ethnopharmacol.2004901737910.1016/j.jep.2003.09.043 14698512
    [Google Scholar]
  159. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.41 28620474
    [Google Scholar]
  160. SharmaA. SharmaP. TuliH.S. SharmaA. Phytochemical and pharmacological properties of flavonols.In: eLS: Encyclopedia for Life Science.wiley201823112
    [Google Scholar]
  161. AherneS.A. O’BrienN.M. Dietary flavonols: Chemistry, food content, and metabolism.Nutrition2002181758110.1016/S0899‑9007(01)00695‑5 11827770
    [Google Scholar]
  162. HollmanP.C.H. ArtsI.C.W. Flavonols, flavones and flavanols - Nature, occurrence and dietary burden.J. Sci. Food Agric.20008071081109310.1002/(SICI)1097‑0010(20000515)80:7<1081::AID‑JSFA566>3.0.CO;2‑G
    [Google Scholar]
  163. LiuX. Le BourvellecC. GuyotS. RenardC.M.G.C. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization.Compr. Rev. Food Sci. Food Saf.20212054841488010.1111/1541‑4337.12797 34288366
    [Google Scholar]
  164. HostetlerG.L. RalstonR.A. SchwartzS.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity.Adv. Nutr.20178342343510.3945/an.116.012948 28507008
    [Google Scholar]
  165. SohnS.I. PandianS. OhY.J. KangH.J. ChoW.S. ChoY.S. Metabolic engineering of isoflavones: An updated overview.Front Plant Sci20211267010310.3389/fpls.2021.670103 34163508
    [Google Scholar]
  166. KřížováL. DadákováK. KašparovskáJ. KašparovskýT. Isoflavones.Molecules2019246107610.3390/molecules24061076 30893792
    [Google Scholar]
  167. MohammedH.A. KhanR.A. Anthocyanins: Traditional uses, structural and functional variations, approaches to increase yields and products’ quality, hepatoprotection, liver longevity, and commercial products.Int. J. Mol. Sci.2022234214910.3390/ijms23042149 35216263
    [Google Scholar]
  168. KhanM.K. Zill-E-Huma DanglesO. A comprehensive review on flavanones, the major citrus polyphenols.J. Food Compos. Anal.20143318510410.1016/j.jfca.2013.11.004
    [Google Scholar]
  169. Tomás‐BarberánFA CliffordMN Flavanones, chalcones and dihydrochalcones–nature, occurrence and dietary burden.J Sci Food Agric200080710738010.1002/(SICI)1097‑0010(20000515)80:7<1073::AID‑JSFA568>3.0.CO;2‑B
    [Google Scholar]
  170. ZhuangC. ZhangW. ShengC. ZhangW. XingC. MiaoZ. Chalcone: A privileged structure in medicinal chemistry.Chem. Rev.2017117127762781010.1021/acs.chemrev.7b00020 28488435
    [Google Scholar]
  171. RudrapalM. KhanJ. DukhyilA.A.B. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics.Molecules20212623717710.3390/molecules26237177 34885754
    [Google Scholar]
  172. WindleV. SzymanskaA. GranterbuttonS. An analysis of four different methods of producing focal cerebral ischemia with endothelin-1 in the rat.Exp. Neurol.2006201232433410.1016/j.expneurol.2006.04.012 16740259
    [Google Scholar]
  173. ChengZ. TuJ. WangK. LiF. HeY. WuW. Wogonin alleviates NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/SIRT1.Brain Res. Bull.202420711088610.1016/j.brainresbull.2024.110886 38253131
    [Google Scholar]
  174. LiY. YaoJ. HanC. Quercetin, inflammation and immunity.Nutrients20168316710.3390/nu8030167 26999194
    [Google Scholar]
  175. GrewalA.K. SinghT.G. SharmaD. Mechanistic insights and perspectives involved in neuroprotective action of quercetin.Biomed. Pharmacother.202114011172910.1016/j.biopha.2021.111729 34044274
    [Google Scholar]
  176. AndresS. PevnyS. ZiegenhagenR. Safety aspects of the use of quercetin as a dietary supplement.Mol. Nutr. Food Res.2018621170044710.1002/mnfr.201700447 29127724
    [Google Scholar]
  177. ShabirI. Kumar PandeyV. ShamsR. Promising bioactive properties of quercetin for potential food applications and health benefits: A review.Front. Nutr.2022999975210.3389/fnut.2022.999752 36532555
    [Google Scholar]
  178. ZhangY. FuK. WangC. Protective effects of dietary quercetin on cerebral ischemic injury: Pharmacology, pharmacokinetics and bioavailability-enhancing nanoformulations.Food Funct.202314104470448910.1039/D2FO03122A 37067239
    [Google Scholar]
  179. YangR. ShenY.J. ChenM. Quercetin attenuates ischemia reperfusion injury by protecting the blood-brain barrier through Sirt1 in MCAO rats.J. Asian Nat. Prod. Res.202224327828910.1080/10286020.2021.1949302 34292112
    [Google Scholar]
  180. ParkD.J. JeonS.J. KangJ.B. KohP.O. Quercetin reduces ischemic brain injury by preventing ischemia-induced decreases in the neuronal calcium sensor protein hippocalcin.Neuroscience2020430476210.1016/j.neuroscience.2020.01.015 31982469
    [Google Scholar]
  181. LiL. JiangW. YuB. Quercetin improves cerebral ischemia/reperfusion injury by promoting microglia/macrophages M2 polarization via regulating PI3K/Akt/NF-κB signaling pathway.Biomed. Pharmacother.202316811565310.1016/j.biopha.2023.115653 37812891
    [Google Scholar]
  182. PodderB. SongH.Y. KimY.S. Naringenin exerts cytoprotective effect against paraquat-induced toxicity in human bronchial epithelial BEAS-2B cells through NRF2 activation.J. Microbiol. Biotechnol.201424560561310.4014/jmb.1402.02001 24561720
    [Google Scholar]
  183. ChenR. QiQ.L. WangM.T. LiQ.Y. Therapeutic potential of naringin: An overview.Pharm. Biol.201654123203321010.1080/13880209.2016.1216131 27564838
    [Google Scholar]
  184. WangD.M. YangY.J. ZhangL. ZhangX. GuanF.F. ZhangL.F. Naringin enhances CaMKII activity and improves long-term memory in a mouse model of Alzheimer’s disease.Int. J. Mol. Sci.20131435576558610.3390/ijms14035576 23478434
    [Google Scholar]
  185. RahaS. YumnamS. HongG.E. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/] mTOR cascade via activation of MAPK pathways in AGS cancer cells.Int. J. Oncol.20154731061106910.3892/ijo.2015.3095 26201693
    [Google Scholar]
  186. GaurV. AggarwalA. KumarA. Protective effect of naringin against ischemic reperfusion cerebral injury: Possible neurobehavioral, biochemical and cellular alterations in rat brain.Eur. J. Pharmacol.20096161-314715410.1016/j.ejphar.2009.06.056 19577560
    [Google Scholar]
  187. CaoW. FengS.J. KanM.C. Naringin targets NFKB1 to alleviate oxygen-glucose deprivation/reoxygenation–induced injury in PC12 cells via modulating HIF-1α/AKT/mTOR-signaling pathway.J. Mol. Neurosci.202171110111110.1007/s12031‑020‑01630‑8 32557145
    [Google Scholar]
  188. SalehiB. FokouP.V.T. Sharifi-RadM. The therapeutic potential of naringenin: A review of clinical trials.Pharmaceuticals20191211110.3390/ph12010011 30634637
    [Google Scholar]
  189. Hernández-AquinoE. MurielP. Beneficial effects of naringenin in liver diseases: Molecular mechanisms.World J. Gastroenterol.201824161679170710.3748/wjg.v24.i16.1679 29713125
    [Google Scholar]
  190. QiZ. XuY. LiangZ. Naringin ameliorates cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in a type 2 diabetic rat model.Mol. Med. Rep.20151257093710110.3892/mmr.2015.4232 26300349
    [Google Scholar]
  191. HuaF.Z. YingJ. ZhangJ. Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-κB-mediated inflammation.Int. J. Mol. Med.20163841271128010.3892/ijmm.2016.2715 27572468
    [Google Scholar]
  192. Krishna ChandranA.M. ChristinaH. DasS. MumbrekarK.D. Satish RaoB.S. Neuroprotective role of naringenin against methylmercury induced cognitive impairment and mitochondrial damage in a mouse model.Environ. Toxicol. Pharmacol.20197110322410.1016/j.etap.2019.103224 31376681
    [Google Scholar]
  193. Khajevand-KhazaeiM.R. ZiaeeP. MotevalizadehS.A. Naringenin ameliorates learning and memory impairment following systemic lipopolysaccharide challenge in the rat.Eur. J. Pharmacol.201882611412210.1016/j.ejphar.2018.03.001 29518393
    [Google Scholar]
  194. LuB. NagappanG. GuanX. NathanP.J. WrenP. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases.Nat. Rev. Neurosci.201314640141610.1038/nrn3505 23674053
    [Google Scholar]
  195. LealG. BramhamC.R. DuarteC.B. BDNF and hippocampal synaptic plasticity.Vitam. Horm.201710415319510.1016/bs.vh.2016.10.004 28215294
    [Google Scholar]
  196. LuB. NagappanG. LuY. BDNF and synaptic plasticity, cognitive function, and dysfunction.Handb. Exp. Pharmacol.201422022325010.1007/978‑3‑642‑45106‑5_9 24668475
    [Google Scholar]
  197. ZhouJ. SunF. ZhangW. FengZ. YangY. MeiZ. Novel insight into the therapeutical potential of flavonoids from traditional Chinese medicine against cerebral ischemia/reperfusion injury.Front. Pharmacol.202415135276010.3389/fphar.2024.1352760 38487170
    [Google Scholar]
  198. LiT.F. MaJ. HanX.W. Chrysin ameliorates cerebral ischemia/reperfusion (I/R) injury in rats by regulating the PI3K/Akt/] mTOR pathway.Neurochem. Int.201912910449610.1016/j.neuint.2019.104496 31247243
    [Google Scholar]
  199. WuY. ChengC. LiQ. The application of citrus folium in breast cancer and the mechanism of its main component nobiletin: A systematic review.Evid. Based Complement. Alternat. Med.20212021111510.1155/2021/2847466 34257674
    [Google Scholar]
  200. LiW. ZhaoR. WangX. Nobiletin-ameliorated lipopolysaccharide-induced inflammation in acute lung injury by suppression of NF-κB pathway in vivo and vitro.Inflammation2018413996100710.1007/s10753‑018‑0753‑3 29541888
    [Google Scholar]
  201. CajasY.N. Cañón-BeltránK. Ladrón de GuevaraM. Antioxidant nobiletin enhances oocyte maturation and subsequent embryo development and quality.Int. J. Mol. Sci.20202115534010.3390/ijms21155340 32727154
    [Google Scholar]
  202. AshrafizadehM. ZarrabiA. SaberifarS. Nobiletin in cancer therapy: How this plant derived-natural compound targets various oncogene and onco-suppressor pathways.Biomedicines20208511010.3390/biomedicines8050110 32380783
    [Google Scholar]
  203. HuangD. QinJ. LuN. Neuroprotective effects of nobiletin on cerebral ischemia/reperfusion injury rats by inhibiting Rho/] ROCK signaling pathway.Ann. Transl. Med.20221024138510.21037/atm‑22‑6119 36660614
    [Google Scholar]
  204. LiuM. ZhangG. WuS. Schaftoside alleviates HFD-induced hepatic lipid accumulation in mice via upregulating farnesoid X receptor.J. Ethnopharmacol.202025511277610.1016/j.jep.2020.112776 32205261
    [Google Scholar]
  205. KimP.S. ShinJ.H. JoD.S. Anti-melanogenic activity of schaftoside in Rhizoma Arisaematis by increasing autophagy in B16F1 cells.Biochem. Biophys. Res. Commun.2018503130931510.1016/j.bbrc.2018.06.021 29890139
    [Google Scholar]
  206. ZhangL. WuM. ChenZ. Schaftoside improves cerebral ischemia-reperfusion injury by enhancing autophagy and reducing apoptosis and inflammation through the AMPK/mTOR pathway.Adv. Clin. Exp. Med.202231121343135410.17219/acem/152207 36135814
    [Google Scholar]
  207. HuangL. ChenC. ZhangX. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation.J. Mol. Neurosci.201864112913910.1007/s12031‑017‑1006‑x 29243061
    [Google Scholar]
  208. WangL. MaQ. Clinical benefits and pharmacology of scutellarin: A comprehensive review.Pharmacol. Ther.201819010512710.1016/j.pharmthera.2018.05.006 29742480
    [Google Scholar]
  209. ChenH.L. JiaW.J. LiH.E. Scutellarin exerts anti-inflammatory effects in activated microglia/brain macrophage in cerebral ischemia and in activated BV-2 microglia through regulation of MAPKs signaling pathway.Neuromolecular Med.202022226427710.1007/s12017‑019‑08582‑2 31792810
    [Google Scholar]
  210. FanX. LinF. ChenY. Luteolin-7-O-β-d-glucuronide ameliorates cerebral ischemic injury: Involvement of RIP3/MLKL signaling pathway.Molecules2024297166510.3390/molecules29071665 38611943
    [Google Scholar]
  211. PengF. DuQ. PengC. A review: The pharmacology of isoliquiritigenin.Phytother. Res.201529796997710.1002/ptr.5348 25907962
    [Google Scholar]
  212. ZhangW. WangG. ZhouS. Protective effects of isoliquiritigenin on LPS-induced acute lung injury by activating PPAR-γ.Inflammation20184141290129610.1007/s10753‑018‑0777‑8 29654430
    [Google Scholar]
  213. PrajapatiR. SeongS.H. ParkS.E. PaudelP. JungH.A. ChoiJ.S. Isoliquiritigenin, a potent human monoamine oxidase inhibitor, modulates dopamine D1, D3, and vasopressin V1A receptors.Sci. Rep.20211112352810.1038/s41598‑021‑02843‑6 34876600
    [Google Scholar]
  214. ZhanC. YangJ. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats.Pharmacol. Res.200653330330910.1016/j.phrs.2005.12.008 16459097
    [Google Scholar]
  215. WangR. ZhangW. Isoliquiritigenin regulates microglial M1/M2 polarisation by mediating the P38/MAPK pathway in cerebral stroke.J. Pharm. Pharmacol.202375682883610.1093/jpp/rgad027 37027320
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273374176250414051135
Loading
/content/journals/cnsnddt/10.2174/0118715273374176250414051135
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): flavonoids; Ischemia; kinases; neuroinflamation; rat; reperfusion; signaling pathways; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test