Skip to content
2000
Volume 24, Issue 10
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Neurodegenerative diseases pose serious threats to public health worldwide. Biomarkers for neurodegenerative disorders are essential to enhance the diagnostic process in clinical settings and to aid in the creation and assessment of effective disease-modifying treatments. In recent times, affordable and readily available blood-based biomarkers identifying the same neurodegenerative disease pathologies have been created, potentially transforming the diagnostic approach for these disorders worldwide. Emerging relevant biomarkers for α-synuclein pathology in Parkinson's disease include blood-based indicators of overall neurodegeneration and glial activation. Cell-free DNA (cfDNA), an encouraging non-invasive biomarker commonly utilized in oncology and pregnancy, has demonstrated significant potential in clinical uses for diagnosing neurodegenerative disorders. In this section, we explore the latest cfDNA studies related to neurodegenerative disorders. Moreover, we present a perspective on the possible role of cfDNA as a diagnostic, therapeutic, and prognostic indicator for neurodegenerative disorders. This review provides a summary of the most recent progress in biomarkers for neurodegenerative disorders such as Alzheimer’s, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and traumatic brain injury.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273366438250408120558
2025-04-28
2025-09-24
Loading full text...

Full text loading...

References

  1. WilsonD.M.III CooksonM.R. Van Den BoschL. ZetterbergH. HoltzmanD.M. DewachterI. Hallmarks of neurodegenerative diseases.Cell2023186469371410.1016/j.cell.2022.12.032 36803602
    [Google Scholar]
  2. ZahraW. RaiS.N. BirlaH. The global economic impact of neurodegenerative diseases: Opportunities and challenges.In: Bioeconomy for Sustainable Development.Springer2020333345
    [Google Scholar]
  3. LampteyR.N.L. ChaulagainB. TrivediR. GothwalA. LayekB. SinghJ. A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics.Int. J. Mol. Sci.2022233185110.3390/ijms23031851 35163773
    [Google Scholar]
  4. BaldacciF. MazzucchiS. Della VecchiaA. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases.Expert Rev. Mol. Diagn.202020442144110.1080/14737159.2020.1731306 32066283
    [Google Scholar]
  5. YoungP.N.E. EstarellasM. CoomansE. Imaging biomarkers in neurodegeneration: current and future practices.Alzheimers Res. Ther.20201214910.1186/s13195‑020‑00612‑7 32340618
    [Google Scholar]
  6. HampelH. O’BryantS.E. MolinuevoJ.L. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic.Nat. Rev. Neurol.2018141163965210.1038/s41582‑018‑0079‑7 30297701
    [Google Scholar]
  7. ZetterbergH. BlennowK. From cerebrospinal fluid to blood: The third wave of fluid biomarkers for Alzheimer’s Disease.J. Alzheimers Dis.201864s1S271S27910.3233/JAD‑179926 29758941
    [Google Scholar]
  8. SobańskiM. Zacharzewska-GondekA. Waliszewska-ProsółM. SąsiadekM.J. ZimnyA. BladowskaJ. A review of neuroimaging in rare neurodegenerative diseases.Dement. Geriatr. Cogn. Disord.202049654455610.1159/000512543 33508841
    [Google Scholar]
  9. MehtaN.H. SussR.A. DykeJ.P. Quantifying cerebrospinal fluid dynamics: A review of human neuroimaging contributions to CSF physiology and neurodegenerative disease.Neurobiol. Dis.202217010577610.1016/j.nbd.2022.105776 35643187
    [Google Scholar]
  10. VijR. AroraS. Computer vision with deep learning techniques for neurodegenerative diseases analysis using neuroimaging: a survey.In: International Conference on Innovative Computing and Communications: Proceedings of ICICC 2021Springer20221798910.1007/978‑981‑16‑2597‑8_15
    [Google Scholar]
  11. CiureaA.V. MohanA.G. Covache-BusuiocR.A. Unraveling molecular and genetic insights into neurodegenerative diseases: Advances in understanding Alzheimer’s, Parkinson’s, and Huntington’s diseases and amyotrophic lateral sclerosis.Int. J. Mol. Sci.202324131080910.3390/ijms241310809 37445986
    [Google Scholar]
  12. HanssonO. Biomarkers for neurodegenerative diseases.Nat. Med.202127695496310.1038/s41591‑021‑01382‑x 34083813
    [Google Scholar]
  13. AbramovA.Y. BachurinS.O. Neurodegenerative disorders: Searching for targets and new ways of diseases treatment.Med. Res. Rev.20214152603260510.1002/med.21794 33645761
    [Google Scholar]
  14. BagheriS.M. AllahtavakoliM. MoradiA. Acetylcholinesterase inhibitory activity of Ferula plants and their potential for treatment of Alzheimer’s disease.J. Complement. Integr. Med.202421444045010.1515/jcim‑2022‑0284 36857494
    [Google Scholar]
  15. JostS.T. KaldenbachM.A. AntoniniA. Levodopa dose equivalency in Parkinson’s disease: Updated systematic review and proposals.Mov. Disord.20233871236125210.1002/mds.29410 37147135
    [Google Scholar]
  16. PatwardhanA.G. BelemkarS. An update on Alzheimer’s disease: Immunotherapeutic agents, stem cell therapy and gene editing.Life Sci.202128211979010.1016/j.lfs.2021.119790 34245772
    [Google Scholar]
  17. AlkanliS.S. AlkanliN. AyA. AlbenizI. CRISPR/Cas9 mediated therapeutic approach in Huntington’s disease.Mol. Neurobiol.20236031486149810.1007/s12035‑022‑03150‑5 36482283
    [Google Scholar]
  18. LannfeltL. RelkinN.R. SiemersE.R. Amyloid-ß-directed immunotherapy for Alzheimer’s disease.J. Intern. Med.2014275328429510.1111/joim.12168 24605809
    [Google Scholar]
  19. BaldacciF. ListaS. VergalloA. PalermoG. GiorgiF.S. HampelH. A frontline defense against neurodegenerative diseases: The development of early disease detection methods.Expert Rev. Mol. Diagn.201919755956310.1080/14737159.2019.1627202 31159600
    [Google Scholar]
  20. MacherH. Egea-GuerreroJ.J. Revuelto-ReyJ. Role of early cell-free DNA levels decrease as a predictive marker of fatal outcome after severe traumatic brain injury.Clin. Chim. Acta2012414121710.1016/j.cca.2012.08.001 22902808
    [Google Scholar]
  21. DuggerB.N. DicksonD.W. Pathology of neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.201797a02803510.1101/cshperspect.a028035 28062563
    [Google Scholar]
  22. KovacsG.G. Current concepts of neurodegenerative diseases.EMJ Neurology20141101110.33590/emjneurol/10314777
    [Google Scholar]
  23. EmeritJ. EdeasM. BricaireF. Neurodegenerative diseases and oxidative stress.Biomed. Pharmacother.2004581394610.1016/j.biopha.2003.11.004 14739060
    [Google Scholar]
  24. Ovaska-StaffordN. MaltbyJ. DaleM. Literature review: Psychological resilience factors in people with neurodegenerative diseases.Arch. Clin. Neuropsychol.202136228330610.1093/arclin/acz063 31768521
    [Google Scholar]
  25. ErkkinenM.G. KimM.O. GeschwindM.D. Clinical neurology and epidemiology of the major neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.2018104a03311810.1101/cshperspect.a033118 28716886
    [Google Scholar]
  26. KujawskaM. DomanskyiA. KreinerG. common pathways linking neurodegenerative diseases—the role of inflammation.Front. Cell. Neurosci.20211575405110.3389/fncel.2021.754051 34588959
    [Google Scholar]
  27. WarehamL.K. LiddelowS.A. TempleS. Solving neurodegeneration: Common mechanisms and strategies for new treatments.Mol. Neurodegener.20221712310.1186/s13024‑022‑00524‑0 35313950
    [Google Scholar]
  28. ChenK.S. KoubekE.J. SakowskiS.A. FeldmanE.L. Stem cell therapeutics and gene therapy for neurologic disorders.Neurotherapeutics2024214e0042710.1016/j.neurot.2024.e00427 39096590
    [Google Scholar]
  29. LowesH. Kurzawa-AkanbiM. PyleA. HudsonG. Post-mortem ventricular cerebrospinal fluid cell-free-mtDNA in neurodegenerative disease.Scientific Report20201011010.1038/s41598‑020‑72190‑5
    [Google Scholar]
  30. SheppardO. ColemanM. Alzheimer’s disease: Etiology, neuropathology and pathogenesis.In: Alzheimer’s Disease: Drug DiscoveryExon citations202012110.36255/exoncitations
    [Google Scholar]
  31. GaoY. TanL. YuJ.T. TanL. Tau in Alzheimer’s disease: Mechanisms and therapeutic strategies.Curr. Alzheimer Res.201815328330010.2174/1567205014666170417111859 28413986
    [Google Scholar]
  32. ArnstenA.F.T. DattaD. Del TrediciK. BraakH. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease.Alzheimers Dement.202117111512410.1002/alz.12192 33075193
    [Google Scholar]
  33. AkyuzE. ArulsamyA. AslanF.S. An expanded narrative review of neurotransmitters on Alzheimer’s Disease: The role of therapeutic interventions on neurotransmission.Mol. Neurobiol.20242024144 39012443
    [Google Scholar]
  34. PlutaR. OuyangL. JanuszewskiS. LiY. CzuczwarS.J. Participation of amyloid and tau protein in post-ischemic neurodegeneration of the hippocampus of a nature identical to Alzheimer’s disease.Int. J. Mol. Sci.2021225246010.3390/ijms22052460 33671097
    [Google Scholar]
  35. WallinÅ.K. BlennowK. AndreasenN. MinthonL. CSF biomarkers for Alzheimer’s Disease: Levels of β-amyloid, tau, phosphorylated tau relate to clinical symptoms and survival.Dement. Geriatr. Cogn. Disord.200621313113810.1159/000090631 16391474
    [Google Scholar]
  36. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  37. AscherioA. SchwarzschildM.A. The epidemiology of Parkinson’s disease: Risk factors and prevention.Lancet Neurol.201615121257127210.1016/S1474‑4422(16)30230‑7 27751556
    [Google Scholar]
  38. Vázquez-VélezG.E. ZoghbiH.Y. Parkinson’s disease genetics and pathophysiology.Annu. Rev. Neurosci.20214418710810.1146/annurev‑neuro‑100720‑034518 34236893
    [Google Scholar]
  39. ZamanV. ShieldsD.C. ShamsR. Cellular and molecular pathophysiology in the progression of Parkinson’s disease.Metab. Brain Dis.202136581582710.1007/s11011‑021‑00689‑5 33599945
    [Google Scholar]
  40. MarinoB.L.B. de SouzaL.R. SousaK.P.A. Parkinson’s disease: A review from pathophysiology to treatment.Mini Rev. Med. Chem.202020975476710.2174/1389557519666191104110908 31686637
    [Google Scholar]
  41. ZhaoX. HeH. XiongX. Lewy body-associated proteins A-synuclein (a-syn) as a plasma-based biomarker for Parkinson’s disease.Front. Aging Neurosci.20221486979710.3389/fnagi.2022.869797 35645787
    [Google Scholar]
  42. PiccaA. GuerraF. CalvaniR. Mitochondrial dysfunction, protein misfolding and neuroinflammation in Parkinson’s disease: Roads to biomarker discovery.Biomolecules20211110150810.3390/biom11101508 34680141
    [Google Scholar]
  43. HanJ. FanY. WuP. Parkinson’s disease dementia: Synergistic effects of alpha-synuclein, tau, beta-amyloid, and iron.Front. Aging Neurosci.20211374375410.3389/fnagi.2021.743754 34707492
    [Google Scholar]
  44. MeadR.J. ShanN. ReiserH.J. MarshallF. ShawP.J. Amyotrophic lateral sclerosis: A neurodegenerative disorder poised for successful therapeutic translation.Nat. Rev. Drug Discov.202322318521210.1038/s41573‑022‑00612‑2 36543887
    [Google Scholar]
  45. SeguraT. MedranoI.H. CollazoS. Symptoms timeline and outcomes in amyotrophic lateral sclerosis using artificial intelligence.Sci. Rep.202313170210.1038/s41598‑023‑27863‑2 36639403
    [Google Scholar]
  46. GoutmanS.A. GoyalN.A. PayneK. ALS Identified: Two-year findings from a sponsored ALS genetic testing program.Ann. Clin. Transl. Neurol.20241182201221110.1002/acn3.52140 39044379
    [Google Scholar]
  47. AkçimenF. LopezE.R. LandersJ.E. Amyotrophic lateral sclerosis: Translating genetic discoveries into therapies.Nat. Rev. Genet.202324964265810.1038/s41576‑023‑00592‑y 37024676
    [Google Scholar]
  48. CataneseA. RajkumarS. SommerD. Multiomics and machine-learning identify novel transcriptional and mutational signatures in amyotrophic lateral sclerosis.Brain202314693770378210.1093/brain/awad075 36883643
    [Google Scholar]
  49. GambinoC.M. CiaccioA.M. Lo SassoB. The role of TAR DNA binding protein 43 (TDP-43) as a CandiDate biomarker of amyotrophic lateral sclerosis: A Systematic review and meta-analysis.Diagnostics202313341610.3390/diagnostics13030416 36766521
    [Google Scholar]
  50. DobsonR. GiovannoniG. Multiple sclerosis: A review.Eur. J. Neurol.2019261274010.1111/ene.13819 30300457
    [Google Scholar]
  51. NocitiV. RomozziM. Multiple sclerosis and autoimmune comorbidities.J. Pers. Med.20221211182810.3390/jpm12111828 36579555
    [Google Scholar]
  52. FreemanL. LongbrakeE.E. CoyleP.K. HendinB. VollmerT. High-efficacy therapies for treatment-naïve individuals with relapsing-remitting multiple sclerosis.CNS Drugs202236121285129910.1007/s40263‑022‑00965‑7 36350491
    [Google Scholar]
  53. Gil-JardinéC. PayenJ.F. BernardR. Management of patients suffering from mild traumatic brain injury 2023.Anaesth. Crit. Care Pain Med.202342410126010.1016/j.accpm.2023.101260 37285919
    [Google Scholar]
  54. McAllisterT.W. Neurobiological consequences of traumatic brain injury.Dialogues Clin. Neurosci.201113328730010.31887/DCNS.2011.13.2/tmcallister 22033563
    [Google Scholar]
  55. YueJ. DengH. Traumatic brain injury: Contemporary challenges and the path to progress.J. Clin. Med.2023129328310.3390/jcm12093283 37176723
    [Google Scholar]
  56. CurrieS. SaleemN. StraitonJ.A. Macmullen-PriceJ. WarrenD.J. CravenI.J. Imaging assessment of traumatic brain injury.Postgrad. Med. J.2016921083415010.1136/postgradmedj‑2014‑133211 26621823
    [Google Scholar]
  57. MandelP. MetaisP. Nucleic acids from blood plasma in 1 man.C R Sessions Soc Biol Thread19481423-4241243 18875018
    [Google Scholar]
  58. HeG. ChenY. ZhuC. Application of plasma circulating cell-free DNA detection to the molecular diagnosis of hepatocellular carcinoma.Am. J. Transl. Res.201911314281445 30972172
    [Google Scholar]
  59. StewartC.M. KothariP.D. MouliereF. The value of cell-free DNA for molecular pathology.J. Pathol.2018244561662710.1002/path.5048 29380875
    [Google Scholar]
  60. DuvvuriB. LoodC. Cell-free DNA as a biomarker in autoimmune rheumatic diseases.Front. Immunol.20191050210.3389/fimmu.2019.00502 30941136
    [Google Scholar]
  61. RanucciR. Cell-free DNA: Applications in different diseases. Cell-Free DNA as Diagnostic Markers.Methods Protoc.20191909312
    [Google Scholar]
  62. VolikS. AlcaideM. MorinR.D. CollinsC. Cell-free DNA (cfDNA): Clinical significance and utility in cancer shaped by emerging technologies.Mol. Cancer Res.2016141089890810.1158/1541‑7786.MCR‑16‑0044 27422709
    [Google Scholar]
  63. MartuszewskiA. PaluszkiewiczP. KrólM. BanasikM. KepinskaM. Donor-derived cell-free DNA in kidney transplantation as a potential rejection biomarker: A systematic literature review.J. Clin. Med.202110219310.3390/jcm10020193 33430458
    [Google Scholar]
  64. HanD. LiR. ShiJ. TanP. ZhangR. LiJ. Liquid biopsy for infectious diseases: A focus on microbial cell-free DNA sequencing.Theranostics202010125501551310.7150/thno.45554 32373224
    [Google Scholar]
  65. PalomakiG.E. BestR.G. Sequencing cell-free DNA in the maternal circulation to screen for down syndrome, other common trisomies, and selected genetic disorders. Genomic Applications in Pathology.Springer201956158210.1007/978‑3‑319‑96830‑8_36
    [Google Scholar]
  66. ProdanN.C. WiechersC. GeipelA. Universal cell free DNA or contingent screening for trisomy 21: Does it make a difference? A comparative study with real data.Fetal Diagn. Ther.2022493859410.1159/000523738 35339997
    [Google Scholar]
  67. WhiteM.D. KleinR.H. ShawB. Detection of leptomeningeal disease using cell-free DNA from cerebrospinal fluid.JAMA Netw. Open202148e212004010.1001/jamanetworkopen.2021.20040 34369989
    [Google Scholar]
  68. TakousisP. DevonshireA.S. RedshawN. A standardised methodology for the extraction and quantification of cell-free DNA in cerebrospinal fluid and application to evaluation of Alzheimer’s disease and brain cancers.N. Biotechnol.2022729710610.1016/j.nbt.2022.10.001 36202346
    [Google Scholar]
  69. ChenL. ShenQ. XuS. 5-hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for late-onset Alzheimer’s disease.J. Alzheimers Dis.202285257358510.3233/JAD‑215217 34864677
    [Google Scholar]
  70. Bahado-SinghR.O. RadhakrishnaU. GordevičiusJ. Artificial intelligence and circulating cell-free DNA methylation profiling: Mechanism and detection of Alzheimer’s disease.Cells20221111174410.3390/cells11111744 35681440
    [Google Scholar]
  71. AveiT. KauweD.J. Cell free single stranded DNA concentration in CSF as biomarker to diagnose Alzheimer’s Disease.J. Undergrad. Res. (Gainesv.)20192019109
    [Google Scholar]
  72. DingB. ZhangX. WanZ. Characterization of mitochondrial DNA methylation of alzheimer’s disease in plasma cell-free DNA.Diagnostics20231314235110.3390/diagnostics13142351 37510095
    [Google Scholar]
  73. Bahado-SinghR.O. VishweswaraiahS. TurkogluO. GrahamS.F. RadhakrishnaU. Alzheimer’s precision neurology: Epigenetics of cytochrome P450 genes in circulating cell-free DNA for disease prediction and mechanism.Int. J. Mol. Sci.2023243287610.3390/ijms24032876 36769199
    [Google Scholar]
  74. NidadavoluL.S. FegerD. WuY. Circulating cell-free genomic DNA is associated with an increased risk of dementia and with change in cognitive and physical function.J. Alzheimers Dis.20228941233124010.3233/JAD‑220301 36031893
    [Google Scholar]
  75. PollardC. AstonK. EmeryB.R. HillJ. JenkinsT. Detection of neuron-derived cfDNA in blood plasma: A new diagnostic approach for neurodegenerative conditions.Front. Neurol.202314127296010.3389/fneur.2023.1272960 38020656
    [Google Scholar]
  76. MacíasM. AchaB. CorrozaJ. Liquid biopsy in Alzheimer’s disease patients reveals epigenetic changes in the PRLHR gene.Cells20231223267910.3390/cells12232679 38067107
    [Google Scholar]
  77. NidadavoluL.S. FegerD.M. GrossA.L. Circulating cell-free DNA of mitochondrial origin connects cognitive and physical decline in aging and is associated with increased mortality.Alzheimers Dement.202016S2e04559510.1002/alz.045595
    [Google Scholar]
  78. BeadellA.V. ZhangZ. CapuanoA.W. Genome-wide mapping implicates 5-hydroxymethylcytosines in diabetes mellitus and Alzheimer’s disease.J. Alzheimers Dis.20239331135115110.3233/JAD‑221113 37182870
    [Google Scholar]
  79. PodlesniyP. LlorensF. GolanskaE. Mitochondrial DNA differentiates Alzheimer’s disease from Creutzfeldt-Jakob disease.Alzheimers Dement.201612554655510.1016/j.jalz.2015.12.011 26806388
    [Google Scholar]
  80. PodlesniyP. Figueiro-SilvaJ. LladoA. Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease.Ann. Neurol.201374565566810.1002/ana.23955 23794434
    [Google Scholar]
  81. Cervera-CarlesL. AlcoleaD. EstangaA. Cerebrospinal fluid mitochondrial DNA in the Alzheimer’s disease continuum.Neurobiol. Aging201753192.e1192.e410.1016/j.neurobiolaging.2016.12.009 28089353
    [Google Scholar]
  82. PodlesniyP. LlorensF. PuigròsM. Cerebrospinal fluid mitochondrial DNA in rapid and slow progressive forms of Alzheimer’s disease.Int. J. Mol. Sci.20202117629810.3390/ijms21176298 32878083
    [Google Scholar]
  83. StockerH. GentiluomoM. TraresK. Mitochondrial DNA abundance in blood is associated with Alzheimer’s disease-and dementia-risk.Mol. Psychiatry2024202419 39009700
    [Google Scholar]
  84. GorhamI.K. ReidD.M. SunJ. ZhouZ. BarberR.C. PhillipsN.R. Blood-based mtDNA quantification indicates population-specific differences associated with Alzheimer’s disease-related risk.J. Alzheimers Dis.20249731407141910.3233/JAD‑230880 38250773
    [Google Scholar]
  85. SandersO.D. Virus-like cytosolic and cell-free oxidatively damaged nucleic acids likely drive inflammation, synapse degeneration, and neuron death in Alzheimer’s Disease.J. Alzheimers Dis. Rep.20237111910.3233/ADR‑220047 36761106
    [Google Scholar]
  86. LiggettT. MelnikovA. TilwalliS. Methylation patterns of cell-free plasma DNA in relapsing-remitting multiple sclerosis.J. Neurol. Sci.20102901-2162110.1016/j.jns.2009.12.018 20064646
    [Google Scholar]
  87. DunaevaM. DerksenM. PruijnG.J.M. LINE-1 hypermethylation in serum cell-free DNA of relapsing remitting multiple sclerosis patients.Mol. Neurobiol.20185564681468810.1007/s12035‑017‑0679‑z 28707075
    [Google Scholar]
  88. LowesH. PyleA. DuddyM. HudsonG. Cell-free mitochondrial DNA in progressive multiple sclerosis.Mitochondrion20194630731210.1016/j.mito.2018.07.008 30098422
    [Google Scholar]
  89. BeckJ. UrnovitzH.B. SaresellaM. Serum DNA motifs predict disease and clinical status in multiple sclerosis.J. Mol. Diagn.201012331231910.2353/jmoldx.2010.090170 20228264
    [Google Scholar]
  90. MacKinnonH.J. KolarovaT.R. KatzR. The impact of maternal autoimmune disease on cell-free DNA test characteristics.Am. J. Obstet. Gynecol. MFM20213610046610.1016/j.ajogmf.2021.100466 34418590
    [Google Scholar]
  91. LeursC.E. PodlesniyP. TrullasR. Cerebrospinal fluid mtDNA concentration is elevated in multiple sclerosis disease and responds to treatment.Mult. Scler.201824447248010.1177/1352458517699874 28294696
    [Google Scholar]
  92. PyleA. BrennanR. Kurzawa-AkanbiM. Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for early-stage Parkinson’s disease.Ann. Neurol.20157861000100410.1002/ana.24515 26343811
    [Google Scholar]
  93. LowesH. PyleA. Santibanez-KorefM. HudsonG. Circulating cell-free mitochondrial DNA levels in Parkinson’s disease are influenced by treatment.Mol. Neurodegener.20201511010.1186/s13024‑020‑00362‑y 32070373
    [Google Scholar]
  94. WojtkowskaM. KarczewskaN. PacewiczK. Quantification of circulating cell-free DNA in idiopathic Parkinson’s Disease patients.Int. J. Mol. Sci.2024255281810.3390/ijms25052818 38474065
    [Google Scholar]
  95. ScalzoP.L. IkutaN. CardosoF. RegnerA. TeixeiraA.L. Quantitative plasma DNA analysis in Parkinson’s disease.Neurosci. Lett.200945215710.1016/j.neulet.2009.01.031 19444939
    [Google Scholar]
  96. MengJ. WangF. JiL. Comprehensive methylation profile of CSF cfDNA revealed pathogenesis and diagnostic markers for early-onset Parkinson’s disease.Epigenomics202113201637165110.2217/epi‑2021‑0176 34664993
    [Google Scholar]
  97. CaggianoC. MorselliM. QianX. CelonaB. ThompsonM. WaniS. Tissue informative cell-free DNA methylation sites in amyotrophic lateral sclerosis.MedRxiv202410.1101/2024.04.08.24305503
    [Google Scholar]
  98. YamakawaM. CaggianoC. ZaitlenN. RexachJ. Expanded reference tissue methylome for tissue-of-origin deconvolution of cell-free DNA in plasma from ALS patients (P11-8.014).Neurology202310017_supplement_2353610.1212/WNL.0000000000203338
    [Google Scholar]
  99. MendiorozM. Martínez-MerinoL. Blanco-LuquinI. UrdánozA. RoldánM. JericóI. Liquid biopsy: A new source of candidate biomarkers in amyotrophic lateral sclerosis.Ann. Clin. Transl. Neurol.20185676376810.1002/acn3.565 29928659
    [Google Scholar]
  100. KeukeleireP. MakrodimitrisS. ReindersM. Cell type deconvolution of methylated cell-free DNA at the resolution of individual reads.NAR Genom. Bioinform.202352lqad04810.1093/nargab/lqad048 37274121
    [Google Scholar]
  101. CaggianoC. CelonaB. GartonF. Comprehensive cell type decomposition of circulating cell-free DNA with CelFiE.Nat. Commun.2021121271710.1038/s41467‑021‑22901‑x 33976150
    [Google Scholar]
  102. Campello YurgelV. IkutaN. Brondani da RochaA. Role of plasma DNA as a predictive marker of fatal outcome following severe head injury in males.J. Neurotrauma20072471172118110.1089/neu.2006.0160 17610356
    [Google Scholar]
  103. OhayonS. BoykoM. SaadA. Cell-free DNA as a marker for prediction of brain damage in traumatic brain injury in rats.J. Neurotrauma201229226126710.1089/neu.2011.1938 22149927
    [Google Scholar]
  104. WangH.C. LinY.J. TsaiN.W. Serial plasma deoxyribonucleic acid levels as predictors of outcome in acute traumatic brain injury.J. Neurotrauma201431111039104510.1089/neu.2013.3070 24467366
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273366438250408120558
Loading
/content/journals/cnsnddt/10.2174/0118715273366438250408120558
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test