Skip to content
2000
Volume 24, Issue 10
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Sitagliptin is a dipeptidyl peptidase-IV inhibitor approved for treating type 2 diabetes mellitus. It increases the active form of incretin Glucagon-like Peptide-1 (GLP-1). The GLP-1 peptide prevents damage to neurons due to its anti-inflammatory and anti-apoptotic activities. This article summarizes the studies assessing the neuroprotective properties of sitagliptin, especially through the GLP-1 pathway. The outcomes of experimental research indicate that sitagliptin has a decreasing effect on inflammation response. Sitagliptin decreases proinflammatory factors, such as Glial Fibrillary Acidic Protein (GFAP), Nuclear factor kappa B (NF-κB), Tumor Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6). It also decreases glutamate levels, the primary excitatory neurotransmitter. Furthermore, sitagliptin shows antioxidative and antiapoptotic effects. Lastly, sitagliptin may provide a novel agent for the management of neurological disease.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273367858250321124131
2025-04-14
2025-09-30
Loading full text...

Full text loading...

References

  1. YuS.J. WangY. ShenH. DPP-4 inhibitors sitagliptin and PF-00734,200 mitigate dopaminergic neurodegeneration, neuroinflammation and behavioral impairment in the rat 6-OHDA model of Parkinson’s disease.Geroscience20244654349437110.1007/s11357‑024‑01116‑0 38563864
    [Google Scholar]
  2. MathewR. ThomasB. Deciphering the topology of sitagliptin using an integrated approach.ACS Omega20251022289229510.1021/acsomega.4c09930 39866596
    [Google Scholar]
  3. MitaT. KatakamiN. YoshiiH. Long-term efficacy and safety of early sitagliptin initiation in individuals with type 2 diabetes: An extension of the SPIKE study.Diabetol. Int.202516227228410.1007/s13340‑024‑00786‑7
    [Google Scholar]
  4. MakdissiA. GhanimH. VoraM. Sitagliptin exerts an antinflammatory action.J. Clin. Endocrinol. Metab.20129793333334110.1210/jc.2012‑1544 22745245
    [Google Scholar]
  5. ZhaoX. WangM. WenZ. GLP-1 receptor agonists: Beyond their pancreatic effects.Front. Endocrinol. (Lausanne)20211272113510.3389/fendo.2021.721135 34497589
    [Google Scholar]
  6. QiJ-H. ChenP-Y. CaiD-Y. Exploring novel targets of sitagliptin for type 2 diabetes mellitus: Network pharmacology, molecular docking, molecular dynamics simulation, and SPR approaches.Front. Endocrinol.202313109665510.3389/fendo.2022.1096655 36699034
    [Google Scholar]
  7. BertilssonG. PatroneC. ZachrissonO. Peptide hormone exendin‐4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of parkinson’s disease.J. Neurosci. Res.200886232633810.1002/jnr.21483 17803225
    [Google Scholar]
  8. HamiltonA. PattersonS. PorterD. GaultV.A. HolscherC. Novel GLP‐1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain.J. Neurosci. Res.201189448148910.1002/jnr.22565 21312223
    [Google Scholar]
  9. AsgharzadeS. TalaeiA. FarkhondehT. ForouzanfarF. Combining growth factor and stem cell therapy for stroke rehabilitation, a review.Curr. Drug Targets202021878179110.2174/1389450121666200107100747 31914912
    [Google Scholar]
  10. AzamiS. ForouzanfarF. Potential role of Nigella sativa and its constituent (thymoquinone) in ischemic stroke.Curr. Mol. Med.202424332733410.2174/1566524023666230410101724 37038292
    [Google Scholar]
  11. ForouzanfarF. ShojapourM. AsgharzadeS. AminiE. Causes and consequences of microRNA dysregulation following cerebral ischemia-reperfusion injury.CNS Neurol. Disord. Drug Targ.201918321222110.2174/1871527318666190204104629 30714533
    [Google Scholar]
  12. El-SaharA.E. SafarM.M. ZakiH.F. AttiaA.S. Ain-ShokaA.A. Sitagliptin attenuates transient cerebral ischemia/reperfusion injury in diabetic rats: Implication of the oxidative–inflammatory–apoptotic pathway.Life Sci.2015126818610.1016/j.lfs.2015.01.030 25721294
    [Google Scholar]
  13. DongQ. TengS.W. WangY. Sitagliptin protects the cognition function of the Alzheimer’s disease mice through activating glucagon-like peptide-1 and BDNF-TrkB signalings.Neurosci. Lett.201969618419010.1016/j.neulet.2018.12.041 30597232
    [Google Scholar]
  14. OhiraK. HayashiM. A new aspect of the TrkB signaling pathway in neural plasticity.Curr. Neuropharmacol.20097427628510.2174/157015909790031210 20514207
    [Google Scholar]
  15. YoshiiA. Constantine-PatonM. Postsynaptic BDNF‐TrkB signaling in synapse maturation, plasticity, and disease.Dev. Neurobiol.201070530432210.1002/dneu.20765 20186705
    [Google Scholar]
  16. HuaZ. GuX. DongY. PI3K and MAPK pathways mediate the BDNF/TrkB-increased metastasis in neuroblastoma.Tumour Biol.20163712162271623610.1007/s13277‑016‑5433‑z 27752996
    [Google Scholar]
  17. GoldmanJ.G. VolpeD. EllisT.D. Delivering multidisciplinary rehabilitation care in Parkinson’s disease: An international consensus statement.J. Parkinsons Dis.202414113516610.3233/JPD‑230117 38277303
    [Google Scholar]
  18. LiJ. ZhangS. LiC. LiM. MaL. Sitagliptin rescues memory deficits in Parkinsonian rats via upregulating BDNF to prevent neuron and dendritic spine loss.Neurol. Res.201840973674310.1080/01616412.2018.1474840 29781786
    [Google Scholar]
  19. LiY. ZhengM. SahS.K. MishraA. SinghY. Neuroprotective influence of sitagliptin against cisplatin-induced neurotoxicity, biochemical and behavioral alterations in Wistar rats.Mol. Cell. Biochem.20194551-2919710.1007/s11010‑018‑3472‑z 30446906
    [Google Scholar]
  20. KorolS.V. JinZ. BabateenO. BirnirB. GLP-1 and exendin-4 transiently enhance GABAA receptor-mediated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons.Diabetes2015641798910.2337/db14‑0668 25114295
    [Google Scholar]
  21. MontanerM. DenomJ. SimonV. A neuronal circuit driven by GLP-1 in the olfactory bulb regulates insulin secretion.Nat. Commun.2024151694110.1038/s41467‑024‑51076‑4 39138162
    [Google Scholar]
  22. ZhaoX. WangM. WenZ. LuZ. CuiL. FuC. GLP-1 receptor agonists: Beyond their pancreatic effects.Front. Endocrinol.20211272113510.3389/fendo.2021.721135 34497589
    [Google Scholar]
  23. NaderM.A. AteyyaH. El-ShafeyM. El-SherbeenyN.A. Sitagliptin enhances the neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in mice: Implication of oxidative, inflammatory, apoptotic and autophagy pathways.Neurochem. Int.2018115112310.1016/j.neuint.2017.10.006 29032011
    [Google Scholar]
  24. KelanyM.E. HakamiT.M. OmarA.H. AbdallahM.A. Combination of sitagliptin and insulin against type 2 diabetes mellitus with neuropathy in rats: Neuroprotection and role of oxidative and inflammation stress.Pharmacology2016985-624225010.1159/000448043 27449930
    [Google Scholar]
  25. MoradiH.R. HajaliV. KhaksarZ. VafaeeF. ForouzanfarF. NegahS.S. The next step of neurogenesis in the context of Alzheimer’s disease.Mol. Biol. Rep.20214875647566010.1007/s11033‑021‑06520‑9 34232464
    [Google Scholar]
  26. ZhongM.Z. PengT. DuarteM.L. WangM. CaiD. Updates on mouse models of Alzheimer’s disease.Mol. Neurodegener.20241912310.1186/s13024‑024‑00712‑0 38462606
    [Google Scholar]
  27. HanW. LiY. ChengJ. Sitagliptin improves functional recovery via GLP‐1R‐induced anti‐apoptosis and facilitation of axonal regeneration after spinal cord injury.J. Cell. Mol. Med.202024158687870210.1111/jcmm.15501 32573108
    [Google Scholar]
  28. PerryT. HaugheyN.J. MattsonM.P. EganJ.M. GreigN.H. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4.J. Pharmacol. Exp. Ther.2002302388188810.1124/jpet.102.037481 12183643
    [Google Scholar]
  29. ParthsarathyV. HölscherC. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model.PLoS One201383e5878410.1371/journal.pone.0058784 23536825
    [Google Scholar]
  30. SharmaM.K. JalewaJ. HölscherC. Neuroprotective and anti‐apoptotic effects of liraglutide on SH‐SY 5Y cells exposed to methylglyoxal stress.J. Neurochem.2014128345947110.1111/jnc.12469 24112036
    [Google Scholar]
  31. KiefferT.J. McIntoshC.H. PedersonR.A. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV.Endocrinology199513683585359610.1210/endo.136.8.7628397 7628397
    [Google Scholar]
  32. ChangM. ChenC. ChenY. Sitagliptin protects rat kidneys from acute ischemia-reperfusion injury via upregulation of GLP-1 and GLP-1 receptors.Acta Pharmacol. Sin.201536111913010.1038/aps.2014.98 25500876
    [Google Scholar]
  33. KarasikA. AschnerP. KatzeffH. DaviesM.J. SteinP.P. Sitagliptin, a DPP-4 inhibitor for the treatment of patients with type 2 diabetes: A review of recent clinical trials.Curr. Med. Res. Opin.200824248949610.1185/030079908X261069 18182122
    [Google Scholar]
  34. SiddeequeN. HusseinM.H. AbdelmaksoudA. Neuroprotective effects of GLP-1 receptor agonists in neurodegenerative Disorders: A Large-Scale Propensity-Matched cohort study.Int. Immunopharmacol.2024143Pt 311353710.1016/j.intimp.2024.113537 39486172
    [Google Scholar]
  35. ZhaoY. LiQ. NiuJ. Neutrophil membrane‐camouflaged polyprodrug nanomedicine for inflammation suppression in ischemic stroke therapy.Adv. Mater.20243621231180310.1002/adma.202311803 38519052
    [Google Scholar]
  36. WangR. CaoS. BashirM.E.H. Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles.Nat. Biomed. Eng.202271385510.1038/s41551‑022‑00972‑5 36550307
    [Google Scholar]
  37. ChenS.D. ChuangY.C. LinT.K. YangJ.L. Alternative role of glucagon-like Peptide-1 receptor agonists in neurodegenerative diseases.Eur. J. Pharmacol.202393817543910.1016/j.ejphar.2022.175439 36470445
    [Google Scholar]
  38. YangJ.L. ChenW.Y. ChenY.P. KuoC.Y. ChenS.D. Activation of GLP-1 receptor enhances neuronal base excision repair via PI3K-AKT-induced expression of apurinic/apyrimidinic endonuclease 1.Theranostics20166122015202710.7150/thno.15993 27698937
    [Google Scholar]
  39. RevestJ-M. Le RouxA. Roullot-LacarrièreV. BDNF-TrkB signaling through Erk1/2MAPK phosphorylation mediates the enhancement of fear memory induced by glucocorticoids.Mol. Psychiatry20141991001100910.1038/mp.2013.134 24126929
    [Google Scholar]
  40. AthaudaD. FoltynieT. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: Mechanisms of action.Drug Discov. Today201621580281810.1016/j.drudis.2016.01.013 26851597
    [Google Scholar]
  41. DuringM.J. CaoL. ZuzgaD.S. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection.Nat. Med.2003991173117910.1038/nm919 12925848
    [Google Scholar]
  42. GaultV.A. HölscherC. GLP-1 agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid.Eur. J. Pharmacol.20085871-311211710.1016/j.ejphar.2008.03.025 18466898
    [Google Scholar]
  43. McCleanP.L. GaultV.A. HarriottP. HölscherC. Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: A link between diabetes and Alzheimer’s disease.Eur. J. Pharmacol.20106301-315816210.1016/j.ejphar.2009.12.023 20035739
    [Google Scholar]
  44. CaiH.Y. HölscherC. YueX.H. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid β protein-induced impairments in rats.Neuroscience201427761310.1016/j.neuroscience.2014.02.022 24583037
    [Google Scholar]
  45. McCleanPL HölscherC Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease.Neuropharmacology201476Pt A576710.1016/j.neuropharm.2013.08.00523973293
    [Google Scholar]
  46. QinZ. SunZ. HuangJ. HuY. WuZ. MeiB. Mutated recombinant human glucagon-like peptide-1 protects SH-SY5Y cells from apoptosis induced by amyloid-β peptide (1-42).Neurosci. Lett.2008444321722110.1016/j.neulet.2008.08.047 18760331
    [Google Scholar]
  47. LucianiP. DeleddaC. BenvenutiS. Differentiating effects of the glucagon-like peptide-1 analogue exendin-4 in a human neuronal cell model.Cell. Mol. Life Sci.201067213711372310.1007/s00018‑010‑0398‑3 20496097
    [Google Scholar]
  48. SunH. KnippenbergS. ThauN. Therapeutic potential of N-acetyl-glucagon-like peptide-1 in primary motor neuron cultures derived from non-transgenic and SOD1-G93A ALS mice.Cell. Mol. Neurobiol.201333334735710.1007/s10571‑012‑9900‑9 23271639
    [Google Scholar]
  49. LiH. JiaZ. LiG. Neuroprotective effects of exendin-4 in rat model of spinal cord injury via inhibiting mitochondrial apoptotic pathway.Int. J. Clin. Exp. Pathol.20158548374843 26191175
    [Google Scholar]
  50. AbbasT. FaivreE. HölscherC. Impairment of synaptic plasticity and memory formation in GLP-1 receptor KO mice: Interaction between type 2 diabetes and Alzheimer’s disease.Behav. Brain Res.2009205126527110.1016/j.bbr.2009.06.035 19573562
    [Google Scholar]
  51. ZhangL. ZhangW. TianX. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases.Int. J. Neurosci.2023133547349110.1080/00207454.2021.1924707 33941038
    [Google Scholar]
  52. WenY. WuK. XieY. DanW. ZhanY. ShiQ. Inhibitory effects of glucagon-like peptide-1 receptor on epilepsy.Biochem. Biophys. Res. Commun.20195111798610.1016/j.bbrc.2019.02.028 30770099
    [Google Scholar]
  53. NegahS.S. ForouzanfarF. Oxidative stress is a new avenue for treatment of neuropsychiatric disorders: Hype of hope?Curr. Mol. Med.202424121494150510.2174/1566524023666230904150907 37670697
    [Google Scholar]
  54. Neves CarvalhoA. FiruziO. Joao GamaM. van HorssenJ. SasoL. Oxidative stress and antioxidants in neurological diseases: Is there still hope?Curr. Drug Targets201718670571810.2174/1389450117666160401120514 27033198
    [Google Scholar]
  55. FarkhondehT. Pourbagher-ShahriA.M. Azimi-NezhadM. Roles of Nrf2 in gastric cancer: Targeting for therapeutic strategies.Molecules20212611315710.3390/molecules26113157 34070502
    [Google Scholar]
  56. KongL. DengJ. ZhouX. Sitagliptin activates the p62-Keap1-Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury.Cell Death Dis.2021121092810.1038/s41419‑021‑04227‑0 34635643
    [Google Scholar]
  57. FamurewaA.C. AsogwaN.T. EzeaS.C. Antidiabetic drug sitagliptin blocks cyclophosphamide cerebral neurotoxicity by activating Nrf2 and suppressing redox cycle imbalance, inflammatory iNOS/NO/NF-κB response and caspase-3/Bax activation in rats.Int. Immunopharmacol.202311610981610.1016/j.intimp.2023.109816 36774854
    [Google Scholar]
  58. EltahirH.M. ElbadawyH.M. AlmikhlafiM.A. Sitagliptin ameliorates L-arginine-induced acute pancreatitis via modulating inflammatory cytokines expression and combating oxidative stress.Front. Pharmacol.202415138967010.3389/fphar.2024.1389670 38910880
    [Google Scholar]
  59. TangC. XuT. DaiM. ZhongX. ShenG. LiuL. Sitagliptin attenuates neuronal apoptosis via inhibiting the endoplasmic reticulum stress after acute spinal cord injury.Hum. Exp. Toxicol.2023420960327123116876110.1177/09603271231168761 36977492
    [Google Scholar]
  60. KizilayG. ErsoyO. CerkezkayabekirA. Topcu-TarladacalisirY. Sitagliptin and fucoidan prevent apoptosis and reducing ER stress in diabetic rat testes.Andrologia2021533e1385810.1111/and.13858 33474733
    [Google Scholar]
  61. Quadros-PereiraL. Nery-NetoJ.A.O. Da SilvaE.M. Treatment with sitagliptin exacerbates the M2 phenotype in macrophages in vitro.Int. Immunopharmacol.202514511373010.1016/j.intimp.2024.113730 39662268
    [Google Scholar]
  62. RamosH. AugustineJ. KaranB.M. Sitagliptin eye drops prevent the impairment of retinal neurovascular unit in the new Trpv2+/− rat model.J. Neuroinflammation202421131210.1186/s12974‑024‑03283‑5 39616390
    [Google Scholar]
  63. KrakauerM. SorensenP.S. SellebjergF. CD4+ memory T cells with high CD26 surface expression are enriched for Th1 markers and correlate with clinical severity of multiple sclerosis.J. Neuroimmunol.20061811-215716410.1016/j.jneuroim.2006.09.006 17081623
    [Google Scholar]
  64. AhmedJ. KhanM.A. KhaliqS. Synthesis, characterization, and enzyme inhibition evaluation of sitagliptin derivatives and their metal complexes.Future Med. Chem.202517219520710.1080/17568919.2024.2447223 39745178
    [Google Scholar]
  65. NagaoM. SasakiJ. SugiharaH. Efficacy and safety of sitagliptin treatment in older adults with moderately controlled type 2 diabetes: The STREAM study.Sci. Rep.202313113410.1038/s41598‑022‑27301‑9 36599895
    [Google Scholar]
  66. QinM. ChaoL. LiuS. Comparative efficacy and safety of sitagliptin or gliclazide combined with metformin in treatment-naive patients with type 2 diabetes: A single-center, prospective, randomized, controlled, noninferiority study with genetic polymorphism analysis.Medicine (Baltimore)20251042e4106110.1097/MD.0000000000041061 39792745
    [Google Scholar]
  67. CraddyP. PalinH.J. JohnsonK.I. Comparative effectiveness of dipeptidylpeptidase-4 inhibitors in type 2 diabetes: A systematic review and mixed treatment comparison.Diabetes Ther.20145114110.1007/s13300‑014‑0061‑3 24664619
    [Google Scholar]
  68. JananiL. BamehrH. TanhaK. MirzabeigiP. MontazeriH. TarighiP. Effects of sitagliptin as monotherapy and add-on to metformin on weight loss among overweight and obese patients with type 2 diabetes: A systematic review and meta-analysis.Drug Res. (Stuttg.)202171947748810.1055/a‑1555‑2797 34388848
    [Google Scholar]
  69. WicińskiM. WódkiewiczE. SłupskiM. Neuroprotective activity of sitagliptin via reduction of neuroinflammation beyond the incretin effect: Focus on Alzheimer’s disease.BioMed Res. Int.2018201811910.1155/2018/6091014 30186862
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273367858250321124131
Loading
/content/journals/cnsnddt/10.2174/0118715273367858250321124131
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test