Skip to content
2000
image of Key Elements Involved in Alzheimer’s Disease Progression

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease associated with memory loss and a decline in cognitive behavior. It is a progressive brain disorder where an individual’s intelligence and reasoning capabilities are highly affected. The ability to think and process any idea is impaired, which is quite common in elders aged above 60 years. However, the current era has reported an increase in Alzheimer’s disease as people gradually lose the ability to analyze things at an early age of 45 years. The main cause of AD is not known yet, due to which a particular target for drug action is not available. The main elements implicated in Alzheimer’s disease (AD) include tau protein, amyloid beta protein, and cholinergic receptors, all of which exhibit altered function and expression levels in individuals with the disease. Several studies indicate the disrupted levels of the brain’s dopamine and serotonin neurotransmitters. Mitochondrial dysfunction, calcium ions, and inflammation pathways also play a significant role in disease progression. The interplay of a number of genes and proteins is also dysregulated in Alzheimer’s disease, which affects processes related to cell signaling and cell division. The link between Alzheimer’s disease and diabetes mellitus is a new breakthrough in the research on both diseases. Transcriptomics and proteomics analyses have revealed a number of interconnected genes responsible for AD. The use of natural products as medicines can be a great hallmark in Alzheimer's research, producing promising results in the future, which may lead to amelioration of the disease and its adverse effects.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249388578250827072156
2025-09-02
2025-11-07
Loading full text...

Full text loading...

References

  1. Lashuel H.A. Hartley D. Petre B.M. Walz T. Lansbury P.T. Jr Amyloid pores from pathogenic mutations. Nature 2002 418 6895 291 10.1038/418291a 12124613
    [Google Scholar]
  2. Kandimalla R. Reddy P.H. Multiple faces of dynamin-related protein 1 and its role in Alzheimer’s disease pathogenesis. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 4 814 828 10.1016/j.bbadis.2015.12.018 26708942
    [Google Scholar]
  3. Reddy P.H. Beal M.F. Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res. Brain Res. Rev. 2005 49 3 618 632 10.1016/j.brainresrev.2005.03.004 16269322
    [Google Scholar]
  4. Reinikainen K.J. Soininen H. Riekkinen P.J. Neurotransmitter changes in alzheimer’s disease: Implications to diagnostics and therapy. J. Neurosci. Res. 1990 27 4 576 586 10.1002/jnr.490270419 1981917
    [Google Scholar]
  5. Wang S.H. Morris R.G.M. Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu. Rev. Psychol. 2010 61 1 49 79, C1-C4 10.1146/annurev.psych.093008.100523 19575620
    [Google Scholar]
  6. Neff R.A. Wang M. Vatansever S. Guo L. Ming C. Wang Q. Wang E. Horgusluoglu-Moloch E. Song W. Li A. Castranio E.L. Tcw J. Ho L. Goate A. Fossati V. Noggle S. Gandy S. Ehrlich M.E. Katsel P. Schadt E. Cai D. Brennand K.J. Haroutunian V. Zhang B. Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets. Sci. Adv. 2021 7 2 eabb5398 10.1126/sciadv.abb5398 33523961
    [Google Scholar]
  7. Lobo A. Launer L.J. Fratiglioni L. Andersen K. Di Carlo A. Breteler M.M. Copeland J.R. Dartigues J.F. Jagger C. Martinez-Lage J. Soininen H. Hofman A. Neurologic Diseases in the Elderly Research Group Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurology 2000 54 11 S4 S9.(Suppl. 5) 10854354
    [Google Scholar]
  8. Selkoe D.J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 2001 81 2 741 766 10.1152/physrev.2001.81.2.741 11274343
    [Google Scholar]
  9. Wingo T.S. Lah J.J. Levey A.I. Cutler D.J. Autosomal recessive causes likely in early-onset Alzheimer disease. Arch. Neurol. 2012 69 1 59 64 10.1001/archneurol.2011.221 21911656
    [Google Scholar]
  10. Perry G. Moreira P. Santos M. Oliveira C. Shenk J. Nunomura A. Smith M. Zhu X. Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol. Disord. Drug Targets 2008 7 1 3 10 10.2174/187152708783885156 18289026
    [Google Scholar]
  11. Sosa-Ortiz A.L. Acosta-Castillo I. Prince M.J. Epidemiology of dementias and Alzheimer’s disease. Arch. Med. Res. 2012 43 8 600 608 10.1016/j.arcmed.2012.11.003 23159715
    [Google Scholar]
  12. Burns A. Iliffe S. Alzheimer’s disease. BMJ 2009 338 feb05 1 b158 10.1136/bmj.b158 19196745
    [Google Scholar]
  13. Ballard C. Gauthier S. Corbett A. Brayne C. Aarsland D. Jones E. Alzheimer’s disease. Lancet 2011 377 9770 1019 1031 10.1016/S0140‑6736(10)61349‑9 21371747
    [Google Scholar]
  14. Kalaria R.N. Maestre G.E. Arizaga R. Friedland R.P. Galasko D. Hall K. Luchsinger J.A. Ogunniyi A. Perry E.K. Potocnik F. Prince M. Stewart R. Wimo A. Zhang Z.X. Antuono P. World Federation of Neurology Dementia Research Group Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol. 2008 7 9 812 826 10.1016/S1474‑4422(08)70169‑8 18667359
    [Google Scholar]
  15. Parihar M.S. Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J. Clin. Neurosci. 2004 11 5 456 467 10.1016/j.jocn.2003.12.007 15177383
    [Google Scholar]
  16. Small G.W. Brain-imaging surrogate markers for detection and prevention of age-related memory loss. J. Mol. Neurosci. 2002 19 1-2 17 21 10.1007/s12031‑002‑0005‑7 12212776
    [Google Scholar]
  17. Drachman D.A. The amyloid hypothesis, time to move on: Amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement. 2014 10 3 372 380 10.1016/j.jalz.2013.11.003 24589433
    [Google Scholar]
  18. Feng Y Wang X. Antioxidant therapies for Alzheimer's disease. Oxid Med Cell Longev 2012 2012 10.1155/2012/472932
    [Google Scholar]
  19. Medhi B. Misra S. Role of probiotics as memory enhancer. Indian J. Pharmacol. 2013 45 3 311 312 10.4103/0253‑7613.111917 23833385
    [Google Scholar]
  20. Jiang Q. Yin J. Chen J. Ma X. Wu M. Liu G. Yao K. Tan B. Yin Y. Mitochondria‐targeted antioxidants: A step towards disease treatment. Oxid. Med. Cell. Longev. 2020 2020 1 1 18 10.1155/2020/8837893 33354280
    [Google Scholar]
  21. Jayatunga D.P.W. Hone E. Khaira H. Lunelli T. Singh H. Guillemin G.J. Fernando B. Garg M.L. Verdile G. Martins R.N. Therapeutic potential of mitophagy-inducing microflora metabolite, urolithin A for Alzheimer’s disease. Nutrients 2021 13 11 3744 10.3390/nu13113744 34836000
    [Google Scholar]
  22. Butterfield D.A. Lauderback C.M. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress 1,2 1Guest Editors: Mark A. Smith and George Perry 2This article is part of a series of reviews on “Causes and Consequences of Oxidative Stress in Alzheimer’s Disease.” The full list of papers may be found on the homepage of the journal. Free Radic. Biol. Med. 2002 32 11 1050 1060 10.1016/S0891‑5849(02)00794‑3 12031889
    [Google Scholar]
  23. Nunomura A. Castellani R.J. Zhu X. Moreira P.I. Perry G. Smith M.A. Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2006 65 7 631 641 10.1097/01.jnen.0000228136.58062.bf 16825950
    [Google Scholar]
  24. Shahwar D. Raza M.A. Antioxidant potential of phenolic extracts of Mimusops elengi. Asian Pac. J. Trop. Biomed. 2012 2 7 547 550 10.1016/S2221‑1691(12)60094‑X 23569968
    [Google Scholar]
  25. Jung H.A. Min B.S. Yokozawa T. Lee J.H. Kim Y.S. Choi J.S. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull. 2009 32 8 1433 1438 10.1248/bpb.32.1433 19652386
    [Google Scholar]
  26. Hossain M.S. Reza A.S.M.A. Rahaman M.M. Nasrin M.S. Rahat M.R.U. Islam M.R. Uddin M.J. Rahman M.A. Evaluation of morning glory ( Jacquemontia tamnifolia (L.) Griseb) leaves for antioxidant, antinociceptive, anticoagulant and cytotoxic activities. J. Basic Clin. Physiol. Pharmacol. 2018 29 3 291 299 10.1515/jbcpp‑2017‑0042 29303776
    [Google Scholar]
  27. Braca A. Sortino C. Politi M. Morelli I. Mendez J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol. 2002 79 3 379 381 10.1016/S0378‑8741(01)00413‑5 11849846
    [Google Scholar]
  28. Keller J.N. Hanni K.B. Markesbery W.R. Impaired proteasome function in Alzheimer’s disease. J. Neurochem. 2000 75 1 436 439 10.1046/j.1471‑4159.2000.0750436.x 10854289
    [Google Scholar]
  29. López V. Martín S. Gómez-Serranillos M.P. Carretero M.E. Jäger A.K. Calvo M.I. Neuroprotective and neurological properties of Melissa officinalis. Neurochem. Res. 2009 34 11 1955 1961 10.1007/s11064‑009‑9981‑0 19760174
    [Google Scholar]
  30. Mamelona J. Pelletier É. Girard-Lalancette K. Legault J. Karboune S. Kermasha S. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chem. 2007 104 3 1040 1047 10.1016/j.foodchem.2007.01.016
    [Google Scholar]
  31. Gutzmann H. Hadler D. Sustained efficacy and safety of idebenone in the treatment of Alzheimer’s disease: Update on a 2-year double-blind multicentre study. Alzheimer’s Disease—From Basic Research to Clinical Applications. Springer 1998 301 310
    [Google Scholar]
  32. Moosmann B. Behl C. Antioxidants as treatment for neurodegenerative disorders. Expert Opin. Investig. Drugs 2002 11 10 1407 1435 10.1517/13543784.11.10.1407 12387703
    [Google Scholar]
  33. Zandi P.P. Anthony J.C. Khachaturian A.S. Stone S.V. Gustafson D. Tschanz J.T. Norton M.C. Welsh-Bohmer K.A. Breitner J.C. Cache County Study Group Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: The Cache County Study. Arch. Neurol. 2004 61 1 82 88 10.1001/archneur.61.1.82 14732624
    [Google Scholar]
  34. Ott C. Jacobs K. Haucke E. Navarrete Santos A. Grune T. Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014 2 411 429 10.1016/j.redox.2013.12.016 24624331
    [Google Scholar]
  35. Cole S.L. Vassar R. The role of amyloid precursor protein processing by BACE1, the β-secretase, in Alzheimer disease pathophysiology. J. Biol. Chem. 2008 283 44 29621 29625 10.1074/jbc.R800015200 18650431
    [Google Scholar]
  36. Steiner H. Winkler E. Haass C. Chemical cross-linking provides a model of the γ-secretase complex subunit architecture and evidence for close proximity of the C-terminal fragment of presenilin with APH-1. J. Biol. Chem. 2008 283 50 34677 34686 10.1074/jbc.M709067200 18801744
    [Google Scholar]
  37. Fahrenholz F. Alpha-secretase as a therapeutic target. Curr. Alzheimer Res. 2007 4 4 412 417 10.2174/156720507781788837 17908044
    [Google Scholar]
  38. Bitan G. Kirkitadze M.D. Lomakin A. Vollers S.S. Benedek G.B. Teplow D.B. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA 2003 100 1 330 335 10.1073/pnas.222681699 12506200
    [Google Scholar]
  39. Schenk D. Barbour R. Dunn W. Gordon G. Grajeda H. Guido T. Hu K. Huang J. Johnson-Wood K. Khan K. Kholodenko D. Lee M. Liao Z. Lieberburg I. Motter R. Mutter L. Soriano F. Shopp G. Vasquez N. Vandevert C. Walker S. Wogulis M. Yednock T. Games D. Seubert P. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999 400 6740 173 177 10.1038/22124 10408445
    [Google Scholar]
  40. Moechars D. Dewachter I. Lorent K. Reversé D. Baekelandt V. Naidu A. Tesseur I. Spittaels K. Haute C.V.D. Checler F. Godaux E. Cordell B. Van Leuven F. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem. 1999 274 10 6483 6492 10.1074/jbc.274.10.6483 10037741
    [Google Scholar]
  41. Muralidar S. Ambi S.V. Sekaran S. Thirumalai D. Palaniappan B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol. 2020 163 1599 1617 10.1016/j.ijbiomac.2020.07.327 32784025
    [Google Scholar]
  42. Andreadis A. Tau gene alternative splicing: Expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2005 1739 2-3 91 103 10.1016/j.bbadis.2004.08.010 15615629
    [Google Scholar]
  43. Buée L. Bussière T. Buée-Scherrer V. Delacourte A. Hof P.R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders11These authors contributed equally to this work. Brain Res. Brain Res. Rev. 2000 33 1 95 130 10.1016/S0165‑0173(00)00019‑9 10967355
    [Google Scholar]
  44. Di Lorenzo D. Tau protein and tauopathies: Exploring tau protein–protein and microtubule interactions, cross‐interactions and therapeutic strategies. ChemMedChem 2024 19 21 202400180 10.1002/cmdc.202400180 39031682
    [Google Scholar]
  45. Toral-Rios D. Pichardo-Rojas P.S. Alonso-Vanegas M. Campos-Peña V. GSK3β and tau protein in Alzheimer’s Disease and epilepsy. Front. Cell. Neurosci. 2020 14 19 10.3389/fncel.2020.00019 32256316
    [Google Scholar]
  46. Jebarupa B. Muralidharan M. Arun A. Mandal A.K. Mitra G. Conformational heterogeneity of tau: Implication on intrinsic disorder, acid stability and fibrillation in Alzheimer’s disease. Biophys. Chem. 2018 241 27 37 10.1016/j.bpc.2018.07.005 30081240
    [Google Scholar]
  47. Jeganathan S. von Bergen M. Mandelkow E.M. Mandelkow E. The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry 2008 47 40 10526 10539 10.1021/bi800783d 18783251
    [Google Scholar]
  48. Wegmann S. Biernat J. Mandelkow E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol. 2021 69 131 138 10.1016/j.conb.2021.03.003 33892381
    [Google Scholar]
  49. Bjørklund G. Aaseth J. Dadar M. Chirumbolo S. Molecular targets in Alzheimer’s disease. Mol. Neurobiol. 2019 56 10 7032 7044 10.1007/s12035‑019‑1563‑9 30968345
    [Google Scholar]
  50. Kent S.A. Spires-Jones T.L. Durrant C.S. The physiological roles of tau and Aβ: Implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 2020 140 4 417 447 10.1007/s00401‑020‑02196‑w 32728795
    [Google Scholar]
  51. Gómez-Isla T. Hollister R. West H. Mui S. Growdon J.H. Petersen R.C. Parisi J.E. Hyman B.T. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann. Neurol. 1997 41 1 17 24 10.1002/ana.410410106 9005861
    [Google Scholar]
  52. Brion J.P. Neurofibrillary tangles and Alzheimer’s disease. Eur. Neurol. 1998 40 3 130 140 10.1159/000007969 9748670
    [Google Scholar]
  53. Braak H. Braak E. On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer’s disease. Acta Neuropathol. 1985 68 4 325 332 10.1007/BF00690836 4090943
    [Google Scholar]
  54. Guillozet A.L. Weintraub S. Mash D.C. Mesulam M.M. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch. Neurol. 2003 60 5 729 736 10.1001/archneur.60.5.729 12756137
    [Google Scholar]
  55. Laurent C. Buée L. Blum D. Tau and neuroinflammation: What impact for Alzheimer’s Disease and Tauopathies? Biomed. J. 2018 41 1 21 33 10.1016/j.bj.2018.01.003 29673549
    [Google Scholar]
  56. Siddappaji K.K. Gopal S. Molecular mechanisms in Alzheimer’s disease and the impact of physical exercise with advancements in therapeutic approaches. AIMS Neurosci. 2021 8 3 357 389 10.3934/Neuroscience.2021020 34183987
    [Google Scholar]
  57. Dregni A.J. Duan P. Xu H. Changolkar L. El Mammeri N. Lee V.M.Y. Hong M. Fluent molecular mixing of Tau isoforms in Alzheimer’s disease neurofibrillary tangles. Nat. Commun. 2022 13 1 2967 10.1038/s41467‑022‑30585‑0 35624093
    [Google Scholar]
  58. Pietrzik C. Behl C. Concepts for the treatment of Alzheimer’s disease: Molecular mechanisms and clinical application. Int. J. Exp. Pathol. 2005 86 3 173 185 10.1111/j.0959‑9673.2005.00435.x 15910551
    [Google Scholar]
  59. Shinohara M. Kanekiyo T. Yang L. Linthicum D. Shinohara M. Fu Y. Price L. Frisch-Daiello J.L. Han X. Fryer J.D. Bu G. APOE2 eases cognitive decline during Aging: Clinical and preclinical evaluations. Ann. Neurol. 2016 79 5 758 774 10.1002/ana.24628 26933942
    [Google Scholar]
  60. Bailey J.A. Lahiri D.K. A novel effect of rivastigmine on pre‐synaptic proteins and neuronal viability in a neurodegeneration model of fetal rat primary cortical cultures and its implication in Alzheimer’s disease. J. Neurochem. 2010 112 4 843 853 10.1111/j.1471‑4159.2009.06490.x 19912467
    [Google Scholar]
  61. Schuster D. Spetea M. Music M. Rief S. Fink M. Kirchmair J. Schütz J. Wolber G. Langer T. Stuppner H. Schmidhammer H. Rollinger J.M. Morphinans and isoquinolines: Acetylcholinesterase inhibition, pharmacophore modeling, and interaction with opioid receptors. Bioorg. Med. Chem. 2010 18 14 5071 5080 10.1016/j.bmc.2010.05.071 20580236
    [Google Scholar]
  62. Loizzo M. Tundis R. Menichini F. Menichini F. Natural products and their derivatives as cholinesterase inhibitors in the treatment of neurodegenerative disorders: An update. Curr. Med. Chem. 2008 15 12 1209 1228 10.2174/092986708784310422 18473814
    [Google Scholar]
  63. Giacobini E. Drugs that target cholinesterases. Cognitive Enhancing Drugs. Springer 2004 11 36 10.1007/978‑3‑0348‑7867‑8_2
    [Google Scholar]
  64. Seltzer B. Cholinesterase inhibitors in the clinical management of Alzheimer’s disease: Importance of early and persistent treatment. J. Int. Med. Res. 2006 34 4 339 347 10.1177/147323000603400401 16989488
    [Google Scholar]
  65. Taylor P. Radić Z. The cholinesterases: From genes to proteins. Annu. Rev. Pharmacol. Toxicol. 1994 34 1 281 320 10.1146/annurev.pa.34.040194.001433 8042853
    [Google Scholar]
  66. Soreq H. Seidman S. Acetylcholinesterase — new roles for an old actor. Nat. Rev. Neurosci. 2001 2 4 294 302 10.1038/35067589 11283752
    [Google Scholar]
  67. Darvesh S. Hopkins D.A. Geula C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 2003 4 2 131 138 10.1038/nrn1035 12563284
    [Google Scholar]
  68. Camp S. Zhang L. Krejci E. Dobbertin A. Bernard V. Girard E. Duysen E.G. Lockridge O. De Jaco A. Taylor P. Contributions of selective knockout studies to understanding cholinesterase disposition and function. Chem. Biol. Interact. 2010 187 1-3 72 77 10.1016/j.cbi.2010.02.008 20153304
    [Google Scholar]
  69. Ballard C. Greig N. Guillozet-Bongaarts A. Enz A. Darvesh S. Cholinesterases: Roles in the brain during health and disease. Curr. Alzheimer Res. 2005 2 3 307 318 10.2174/1567205054367838 15974896
    [Google Scholar]
  70. Scacchi R. Ruggeri M. Corbo R.M. Variation of the butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) genes in coronary artery disease. Clin. Chim. Acta 2011 412 15-16 1341 1344 10.1016/j.cca.2011.03.033 21473860
    [Google Scholar]
  71. Darreh-Shori T. Hellström-Lindahl E. Flores-Flores C. Guan Z.Z. Soreq H. Nordberg A. Long‐lasting acetylcholinesterase splice variations in anticholinesterase‐treated Alzheimer’s disease patients. J. Neurochem. 2004 88 5 1102 1113 10.1046/j.1471‑4159.2003.02230.x 15009666
    [Google Scholar]
  72. Darreh-Shori T. Siawesh M. Mousavi M. Andreasen N. Nordberg A. Apolipoprotein ε4 modulates phenotype of butyrylcholinesterase in CSF of patients with Alzheimer’s disease. J. Alzheimers Dis. 2012 28 2 443 458 10.3233/JAD‑2011‑111088 22012848
    [Google Scholar]
  73. Lando G. Mosca A. Bonora R. Azzario F. Penco S. Marocchi A. Panteghini M. Patrosso M.C. Frequency of butyrylcholinesterase gene mutations in individuals with abnormal inhibition numbers. Pharmacogenetics 2003 13 5 265 270 10.1097/00008571‑200305000‑00005 12724618
    [Google Scholar]
  74. Bartels C.F. Jensen F.S. Lockridge O. van der Spek A.F. Rubinstein H.M. Lubrano T. La Du B.N. DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites. Am. J. Hum. Genet. 1992 50 5 1086 1103 1570838
    [Google Scholar]
  75. Lopez O.L. Becker J.T. Wisniewski S. Saxton J. Kaufer D.I. DeKosky S.T. Cholinesterase inhibitor treatment alters the natural history of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2002 72 3 310 314 10.1136/jnnp.72.3.310 11861686
    [Google Scholar]
  76. Sberna G. Sáez-Valero J. Beyreuther K. Masters C.L. Small D.H. The amyloid β-protein of Alzheimer’s disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J. Neurochem. 1997 69 3 1177 1184 10.1046/j.1471‑4159.1997.69031177.x 9282941
    [Google Scholar]
  77. Storga D. Vrecko K. Birkmayer J.G.D. Reibnegger G. Monoaminergic neurotransmitters, their precursors and metabolites in brains of Alzheimer patients. Neurosci. Lett. 1996 203 1 29 32 10.1016/0304‑3940(95)12256‑7 8742039
    [Google Scholar]
  78. McNamara C.G. Tejero-Cantero Á. Trouche S. Campo-Urriza N. Dupret D. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci. 2014 17 12 1658 1660 10.1038/nn.3843 25326690
    [Google Scholar]
  79. Russo S.J. Nestler E.J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 2013 14 9 609 625 10.1038/nrn3381 23942470
    [Google Scholar]
  80. Rodríguez J.J. Noristani H.N. Verkhratsky A. The serotonergic system in ageing and Alzheimer’s disease. Prog. Neurobiol. 2012 99 1 15 41 10.1016/j.pneurobio.2012.06.010 22766041
    [Google Scholar]
  81. Cifariello A. Pompili A. Gasbarri A. 5-HT7 receptors in the modulation of cognitive processes. Behav. Brain Res. 2008 195 1 171 179 10.1016/j.bbr.2007.12.012 18243350
    [Google Scholar]
  82. Reynolds G.P. Mason S.L. Meldrum A. De Keczer S. Parties H. Eglen R.M. Wong E.H.F. 5‐Hydroxytryptamine (5‐HT) 4 receptors in post mortem human brain tissue: Distribution, pharmacology and effects of neurodegenerative diseases. Br. J. Pharmacol. 1995 114 5 993 998 10.1111/j.1476‑5381.1995.tb13303.x 7780656
    [Google Scholar]
  83. Nyth A.L. Gottfries C.G. The clinical efficacy of citalopram in treatment of emotional disturbances in dementia disorders. A Nordic multicentre study. Br. J. Psychiatry 1990 157 6 894 901 10.1192/bjp.157.6.894 1705151
    [Google Scholar]
  84. Roth M. Mountjoy C.Q. Amrein R. Group I.C.S. Moclobemide in elderly patients with cognitive decline and depression: An international double-blind, placebo-controlled trial. Br. J. Psychiatry 1996 168 2 149 157 10.1192/bjp.168.2.149 8837903
    [Google Scholar]
  85. Watabe-Uchida M. Zhu L. Ogawa S.K. Vamanrao A. Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 2012 74 5 858 873 10.1016/j.neuron.2012.03.017 22681690
    [Google Scholar]
  86. Missale C. Nash S.R. Robinson S.W. Jaber M. Caron M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998 78 1 189 225 10.1152/physrev.1998.78.1.189 9457173
    [Google Scholar]
  87. Weissbourd B. Ren J. DeLoach K.E. Guenthner C.J. Miyamichi K. Luo L. Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron 2014 83 3 645 662 10.1016/j.neuron.2014.06.024 25102560
    [Google Scholar]
  88. Ogawa S.K. Cohen J.Y. Hwang D. Uchida N. Watabe-Uchida M. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep. 2014 8 4 1105 1118 10.1016/j.celrep.2014.06.042 25108805
    [Google Scholar]
  89. Bouwknecht J.A. Hijzen T.H. van der Gugten J. Maes R.A.A. Hen R. Olivier B. Absence of 5-HT1B receptors is associated with impaired impulse control in male 5-HT1B knockout mice. Biol. Psychiatry 2001 49 7 557 568 10.1016/S0006‑3223(00)01018‑0 11297712
    [Google Scholar]
  90. Nautiyal K.M. Tanaka K.F. Barr M.M. Tritschler L. Le Dantec Y. David D.J. Gardier A.M. Blanco C. Hen R. Ahmari S.E. Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity. Neuron 2015 86 3 813 826 10.1016/j.neuron.2015.03.041 25892302
    [Google Scholar]
  91. Tecott L.H. Sun L.M. Akana S.F. Strack A.M. Lowenstein D.H. Dallman M.F. Julius D. Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature 1995 374 6522 542 546 10.1038/374542a0 7700379
    [Google Scholar]
  92. Ramboz S. Oosting R. Amara D.A. Kung H.F. Blier P. Mendelsohn M. Mann J.J. Brunner D. Hen R. Serotonin receptor 1A knockout: An animal model of anxiety-related disorder. Proc. Natl. Acad. Sci. USA 1998 95 24 14476 14481 10.1073/pnas.95.24.14476 9826725
    [Google Scholar]
  93. De Marco M. Venneri A. Volume and connectivity of the ventral tegmental area are linked to neurocognitive signatures of Alzheimer’s disease in humans. J. Alzheimers Dis. 2018 63 1 167 180 10.3233/JAD‑171018 29578486
    [Google Scholar]
  94. Daw N.D. Kakade S. Dayan P. Opponent interactions between serotonin and dopamine. Neural Netw. 2002 15 4-6 603 616 10.1016/S0893‑6080(02)00052‑7 12371515
    [Google Scholar]
  95. Wise R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 2004 5 6 483 494 10.1038/nrn1406 15152198
    [Google Scholar]
  96. Husain M. Roiser J.P. Neuroscience of apathy and anhedonia: A transdiagnostic approach. Nat. Rev. Neurosci. 2018 19 8 470 484 10.1038/s41583‑018‑0029‑9 29946157
    [Google Scholar]
  97. Chong T.T.J. Updating the role of dopamine in human motivation and apathy. Curr. Opin. Behav. Sci. 2018 22 35 41 10.1016/j.cobeha.2017.12.010
    [Google Scholar]
  98. Nestler E.J. Carlezon W.A. Jr The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 2006 59 12 1151 1159 10.1016/j.biopsych.2005.09.018 16566899
    [Google Scholar]
  99. Vos T. Abajobir A.A. Abate K.H. Abbafati C. Abbas K.M. Abd-Allah F. Abdulkader R.S. Abdulle A.M. Abebo T.A. Abera S.F. Aboyans V. Abu-Raddad L.J. Ackerman I.N. Adamu A.A. Adetokunboh O. Afarideh M. Afshin A. Agarwal S.K. Aggarwal R. Agrawal A. Agrawal S. Ahmadieh H. Ahmed M.B. Aichour M.T.E. Aichour A.N. Aichour I. Aiyar S. Akinyemi R.O. Akseer N. Al Lami F.H. Alahdab F. Al-Aly Z. Alam K. Alam N. Alam T. Alasfoor D. Alene K.A. Ali R. Alizadeh-Navaei R. Alkerwi A. Alla F. Allebeck P. Allen C. Al-Maskari F. Al-Raddadi R. Alsharif U. Alsowaidi S. Altirkawi K.A. Amare A.T. Amini E. Ammar W. Amoako Y.A. Andersen H.H. Antonio C.A.T. Anwari P. Ärnlöv J. Artaman A. Aryal K.K. Asayesh H. Asgedom S.W. Assadi R. Atey T.M. Atnafu N.T. Atre S.R. Avila-Burgos L. Avokphako E.F.G.A. Awasthi A. Bacha U. Badawi A. Balakrishnan K. Banerjee A. Bannick M.S. Barac A. Barber R.M. Barker-Collo S.L. Bärnighausen T. Barquera S. Barregard L. Barrero L.H. Basu S. Battista B. Battle K.E. Baune B.T. Bazargan-Hejazi S. Beardsley J. Bedi N. Beghi E. Béjot Y. Bekele B.B. Bell M.L. Bennett D.A. Bensenor I.M. Benson J. Berhane A. Berhe D.F. Bernabé E. Betsu B.D. Beuran M. Beyene A.S. Bhala N. Bhansali A. Bhatt S. Bhutta Z.A. Biadgilign S. Bicer B.K. Bienhoff K. Bikbov B. Birungi C. Biryukov S. Bisanzio D. Bizuayehu H.M. Boneya D.J. Boufous S. Bourne R.R.A. Brazinova A. Brugha T.S. Buchbinder R. Bulto L.N.B. Bumgarner B.R. Butt Z.A. Cahuana-Hurtado L. Cameron E. Car M. Carabin H. Carapetis J.R. Cárdenas R. Carpenter D.O. Carrero J.J. Carter A. Carvalho F. Casey D.C. Caso V. Castañeda-Orjuela C.A. Castle C.D. Catalá-López F. Chang H-Y. Chang J-C. Charlson F.J. Chen H. Chibalabala M. Chibueze C.E. Chisumpa V.H. Chitheer A.A. Christopher D.J. Ciobanu L.G. Cirillo M. Colombara D. Cooper C. Cortesi P.A. Criqui M.H. Crump J.A. Dadi A.F. Dalal K. Dandona L. Dandona R. das Neves J. Davitoiu D.V. de Courten B. De Leo D.D. Defo B.K. Degenhardt L. Deiparine S. Dellavalle R.P. Deribe K. Des Jarlais D.C. Dey S. Dharmaratne S.D. Dhillon P.K. Dicker D. Ding E.L. Djalalinia S. Do H.P. Dorsey E.R. dos Santos K.P.B. Douwes-Schultz D. Doyle K.E. Driscoll T.R. Dubey M. Duncan B.B. El-Khatib Z.Z. Ellerstrand J. Enayati A. Endries A.Y. Ermakov S.P. Erskine H.E. Eshrati B. Eskandarieh S. Esteghamati A. Estep K. Fanuel F.B.B. Farinha C.S.E.S. Faro A. Farzadfar F. Fazeli M.S. Feigin V.L. Fereshtehnejad S-M. Fernandes J.C. Ferrari A.J. Feyissa T.R. Filip I. Fischer F. Fitzmaurice C. Flaxman A.D. Flor L.S. Foigt N. Foreman K.J. Franklin R.C. Fullman N. Fürst T. Furtado J.M. Futran N.D. Gakidou E. Ganji M. Garcia-Basteiro A.L. Gebre T. Gebrehiwot T.T. Geleto A. Gemechu B.L. Gesesew H.A. Gething P.W. Ghajar A. Gibney K.B. Gill P.S. Gillum R.F. Ginawi I.A.M. Giref A.Z. Gishu M.D. Giussani G. Godwin W.W. Gold A.L. Goldberg E.M. Gona P.N. Goodridge A. Gopalani S.V. Goto A. Goulart A.C. Griswold M. Gugnani H.C. Gupta R. Gupta R. Gupta T. Gupta V. Hafezi-Nejad N. Hailu G.B. Hailu A.D. Hamadeh R.R. Hamidi S. Handal A.J. Hankey G.J. Hanson S.W. Hao Y. Harb H.L. Hareri H.A. Haro J.M. Harvey J. Hassanvand M.S. Havmoeller R. Hawley C. Hay S.I. Hay R.J. Henry N.J. Heredia-Pi I.B. Hernandez J.M. Heydarpour P. Hoek H.W. Hoffman H.J. Horita N. Hosgood H.D. Hostiuc S. Hotez P.J. Hoy D.G. Htet A.S. Hu G. Huang H. Huynh C. Iburg K.M. Igumbor E.U. Ikeda C. Irvine C.M.S. Jacobsen K.H. Jahanmehr N. Jakovljevic M.B. Jassal S.K. Javanbakht M. Jayaraman S.P. Jeemon P. Jensen P.N. Jha V. Jiang G. John D. Johnson S.C. Johnson C.O. Jonas J.B. Jürisson M. Kabir Z. Kadel R. Kahsay A. Kamal R. Kan H. Karam N.E. Karch A. Karema C.K. Kasaeian A. Kassa G.M. Kassaw N.A. Kassebaum N.J. Kastor A. Katikireddi S.V. Kaul A. Kawakami N. Keiyoro P.N. Kengne A.P. Keren A. Khader Y.S. Khalil I.A. Khan E.A. Khang Y-H. Khosravi A. Khubchandani J. Kiadaliri A.A. Kieling C. Kim Y.J. Kim D. Kim P. Kimokoti R.W. Kinfu Y. Kisa A. Kissimova-Skarbek K.A. Kivimaki M. Knudsen A.K. Kokubo Y. Kolte D. Kopec J.A. Kosen S. Koul P.A. Koyanagi A. Kravchenko M. Krishnaswami S. Krohn K.J. Kumar G.A. Kumar P. Kumar S. Kyu H.H. Lal D.K. Lalloo R. Lambert N. Lan Q. Larsson A. Lavados P.M. Leasher J.L. Lee P.H. Lee J-T. Leigh J. Leshargie C.T. Leung J. Leung R. Levi M. Li Y. Li Y. Li Kappe D. Liang X. Liben M.L. Lim S.S. Linn S. Liu P.Y. Liu A. Liu S. Liu Y. Lodha R. Logroscino G. London S.J. Looker K.J. Lopez A.D. Lorkowski S. Lotufo P.A. Low N. Lozano R. Lucas T.C.D. Macarayan E.R.K. Magdy Abd El Razek H. Magdy Abd El Razek M. Mahdavi M. Majdan M. Majdzadeh R. Majeed A. Malekzadeh R. Malhotra R. Malta D.C. Mamun A.A. Manguerra H. Manhertz T. Mantilla A. Mantovani L.G. Mapoma C.C. Marczak L.B. Martinez-Raga J. Martins-Melo F.R. Martopullo I. März W. Mathur M.R. Mazidi M. McAlinden C. McGaughey M. McGrath J.J. McKee M. McNellan C. Mehata S. Mehndiratta M.M. Mekonnen T.C. Memiah P. Memish Z.A. Mendoza W. Mengistie M.A. Mengistu D.T. Mensah G.A. Meretoja T.J. Meretoja A. Mezgebe H.B. Micha R. Millear A. Miller T.R. Mills E.J. Mirarefin M. Mirrakhimov E.M. Misganaw A. Mishra S.R. Mitchell P.B. Mohammad K.A. Mohammadi A. Mohammed K.E. Mohammed S. Mohanty S.K. Mokdad A.H. Mollenkopf S.K. Monasta L. Montico M. Moradi-Lakeh M. Moraga P. Mori R. Morozoff C. Morrison S.D. Moses M. Mountjoy-Venning C. Mruts K.B. Mueller U.O. Muller K. Murdoch M.E. Murthy G.V.S. Musa K.I. Nachega J.B. Nagel G. Naghavi M. Naheed A. Naidoo K.S. Naldi L. Nangia V. Natarajan G. Negasa D.E. Negoi R.I. Negoi I. Newton C.R. Ngunjiri J.W. Nguyen T.H. Nguyen Q.L. Nguyen C.T. Nguyen G. Nguyen M. Nichols E. Ningrum D.N.A. Nolte S. Nong V.M. Norrving B. Noubiap J.J.N. O’Donnell M.J. Ogbo F.A. Oh I-H. Okoro A. Oladimeji O. Olagunju T.O. Olagunju A.T. Olsen H.E. Olusanya B.O. Olusanya J.O. Ong K. Opio J.N. Oren E. Ortiz A. Osgood-Zimmerman A. Osman M. Owolabi M.O. Pa M. Pacella R.E. Pana A. Panda B.K. Papachristou C. Park E-K. Parry C.D. Parsaeian M. Patten S.B. Patton G.C. Paulson K. Pearce N. Pereira D.M. Perico N. Pesudovs K. Peterson C.B. Petzold M. Phillips M.R. Pigott D.M. Pillay J.D. Pinho C. Plass D. Pletcher M.A. Popova S. Poulton R.G. Pourmalek F. Prabhakaran D. Prasad N.M. Prasad N. Purcell C. Qorbani M. Quansah R. Quintanilla B.P.A. Rabiee R.H.S. Radfar A. Rafay A. Rahimi K. Rahimi-Movaghar A. Rahimi-Movaghar V. Rahman M.H.U. Rahman M. Rai R.K. Rajsic S. Ram U. Ranabhat C.L. Rankin Z. Rao P.C. Rao P.V. Rawaf S. Ray S.E. Reiner R.C. Reinig N. Reitsma M.B. Remuzzi G. Renzaho A.M.N. Resnikoff S. Rezaei S. Ribeiro A.L. Ronfani L. Roshandel G. Roth G.A. Roy A. Rubagotti E. Ruhago G.M. Saadat S. Sadat N. Safdarian M. Safi S. Safiri S. Sagar R. Sahathevan R. Salama J. Saleem H.O.B. Salomon J.A. Salvi S.S. Samy A.M. Sanabria J.R. Santomauro D. Santos I.S. Santos J.V. Santric Milicevic M.M. Sartorius B. Satpathy M. Sawhney M. Saxena S. Schmidt M.I. Schneider I.J.C. Schöttker B. Schwebel D.C. Schwendicke F. Seedat S. Sepanlou S.G. Servan-Mori E.E. Setegn T. Shackelford K.A. Shaheen A. Shaikh M.A. Shamsipour M. Shariful Islam S.M. Sharma J. Sharma R. She J. Shi P. Shields C. Shifa G.T. Shigematsu M. Shinohara Y. Shiri R. Shirkoohi R. Shirude S. Shishani K. Shrime M.G. Sibai A.M. Sigfusdottir I.D. Silva D.A.S. Silva J.P. Silveira D.G.A. Singh J.A. Singh N.P. Sinha D.N. Skiadaresi E. Skirbekk V. Slepak E.L. Sligar A. Smith D.L. Smith M. Sobaih B.H.A. Sobngwi E. Sorensen R.J.D. Sousa T.C.M. Sposato L.A. Sreeramareddy C.T. Srinivasan V. Stanaway J.D. Stathopoulou V. Steel N. Stein M.B. Stein D.J. Steiner T.J. Steiner C. Steinke S. Stokes M.A. Stovner L.J. Strub B. Subart M. Sufiyan M.B. Sunguya B.F. Sur P.J. Swaminathan S. Sykes B.L. Sylte D.O. Tabarés-Seisdedos R. Taffere G.R. Takala J.S. Tandon N. Tavakkoli M. Taveira N. Taylor H.R. Tehrani-Banihashemi A. Tekelab T. Terkawi A.S. Tesfaye D.J. Tesssema B. Thamsuwan O. Thomas K.E. Thrift A.G. Tiruye T.Y. Tobe-Gai R. Tollanes M.C. Tonelli M. Topor-Madry R. Tortajada M. Touvier M. Tran B.X. Tripathi S. Troeger C. Truelsen T. Tsoi D. Tuem K.B. Tuzcu E.M. Tyrovolas S. Ukwaja K.N. Undurraga E.A. Uneke C.J. Updike R. Uthman O.A. Uzochukwu B.S.C. van Boven J.F.M. Varughese S. Vasankari T. Venkatesh S. Venketasubramanian N. Vidavalur R. Violante F.S. Vladimirov S.K. Vlassov V.V. Vollset S.E. Wadilo F. Wakayo T. Wang Y-P. Weaver M. Weichenthal S. Weiderpass E. Weintraub R.G. Werdecker A. Westerman R. Whiteford H.A. Wijeratne T. Wiysonge C.S. Wolfe C.D.A. Woodbrook R. Woolf A.D. Workicho A. Xavier D. Xu G. Yadgir S. Yaghoubi M. Yakob B. Yan L.L. Yano Y. Ye P. Yimam H.H. Yip P. Yonemoto N. Yoon S-J. Yotebieng M. Younis M.Z. Zaidi Z. Zaki M.E.S. Zegeye E.A. Zenebe Z.M. Zhang X. Zhou M. Zipkin B. Zodpey S. Zuhlke L.J. Murray C.J.L. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017 390 10100 1211 1259 10.1016/S0140‑6736(17)32154‑2 28919117
    [Google Scholar]
  100. Heneka M.T. Carson M.J. Khoury J.E. Landreth G.E. Brosseron F. Feinstein D.L. Jacobs A.H. Wyss-Coray T. Vitorica J. Ransohoff R.M. Herrup K. Frautschy S.A. Finsen B. Brown G.C. Verkhratsky A. Yamanaka K. Koistinaho J. Latz E. Halle A. Petzold G.C. Town T. Morgan D. Shinohara M.L. Perry V.H. Holmes C. Bazan N.G. Brooks D.J. Hunot S. Joseph B. Deigendesch N. Garaschuk O. Boddeke E. Dinarello C.A. Breitner J.C. Cole G.M. Golenbock D.T. Kummer M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015 14 4 388 405 10.1016/S1474‑4422(15)70016‑5 25792098
    [Google Scholar]
  101. Ulrich J.D. Holtzman D.M. TREM2 function in Alzheimer’s disease and neurodegeneration. ACS Chem. Neurosci. 2016 7 4 420 427 10.1021/acschemneuro.5b00313 26854967
    [Google Scholar]
  102. Liddelow S.A. Guttenplan K.A. Clarke L.E. Bennett F.C. Bohlen C.J. Schirmer L. Bennett M.L. Münch A.E. Chung W.S. Peterson T.C. Wilton D.K. Frouin A. Napier B.A. Panicker N. Kumar M. Buckwalter M.S. Rowitch D.H. Dawson V.L. Dawson T.M. Stevens B. Barres B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017 541 7638 481 487 10.1038/nature21029 28099414
    [Google Scholar]
  103. Balkhi H.M. Gul T. Banday M.Z. Haq E. Glutamate excitotoxicity: An insight into the mechanism. Int. J. Adv. Res. (Indore) 2014 2 7 361 373
    [Google Scholar]
  104. Heneka M.T. Kummer M.P. Stutz A. Delekate A. Schwartz S. Vieira-Saecker A. Griep A. Axt D. Remus A. Tzeng T.C. Gelpi E. Halle A. Korte M. Latz E. Golenbock D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013 493 7434 674 678 10.1038/nature11729 23254930
    [Google Scholar]
  105. Lonnemann N. Hosseini S. Marchetti C. Skouras D.B. Stefanoni D. D’Alessandro A. Dinarello C.A. Korte M. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2020 117 50 32145 32154 10.1073/pnas.2009680117 33257576
    [Google Scholar]
  106. Manczak M. Park B.S. Jung Y. Reddy P.H. Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: Implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med. 2004 5 2 147 162 10.1385/NMM:5:2:147 15075441
    [Google Scholar]
  107. Mosconi L. Pupi A. De Leon M.J. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2008 1147 1 180 195 10.1196/annals.1427.007 19076441
    [Google Scholar]
  108. Reddy P.H. Beal M.F. Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med. 2008 14 2 45 53 10.1016/j.molmed.2007.12.002 18218341
    [Google Scholar]
  109. Caspersen C. Wang N. Yao J. Sosunov A. Chen X. Lustbader J.W. Xu H.W. Stern D. McKhann G. Du Yan S. Mitochondrial Aβ: A potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 2005 19 14 2040 2041 10.1096/fj.05‑3735fje 16210396
    [Google Scholar]
  110. Wang X. Su B. Lee H. Li X. Perry G. Smith M.A. Zhu X. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J. Neurosci. 2009 29 28 9090 9103 10.1523/JNEUROSCI.1357‑09.2009 19605646
    [Google Scholar]
  111. Sheng Z.H. Cai Q. Mitochondrial transport in neurons: Impact on synaptic homeostasis and neurodegeneration. Nat. Rev. Neurosci. 2012 13 2 77 93 10.1038/nrn3156 22218207
    [Google Scholar]
  112. Fang E.F. Hou Y. Palikaras K. Adriaanse B.A. Kerr J.S. Yang B. Lautrup S. Hasan-Olive M.M. Caponio D. Dan X. Rocktäschel P. Croteau D.L. Akbari M. Greig N.H. Fladby T. Nilsen H. Cader M.Z. Mattson M.P. Tavernarakis N. Bohr V.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019 22 3 401 412 10.1038/s41593‑018‑0332‑9 30742114
    [Google Scholar]
  113. Swerdlow R.H. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J. Alzheimers Dis. 2018 62 3 1403 1416 10.3233/JAD‑170585 29036828
    [Google Scholar]
  114. Berridge M.J. Calcium hypothesis of Alzheimer’s disease. Pflugers Arch. 2010 459 3 441 449 10.1007/s00424‑009‑0736‑1 19795132
    [Google Scholar]
  115. Demuro A. Mina E. Kayed R. Milton S.C. Parker I. Glabe C.G. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 2005 280 17 17294 17300 10.1074/jbc.M500997200 15722360
    [Google Scholar]
  116. Sushma Mondal A.C. Role of GPCR signaling and calcium dysregulation in Alzheimer’s disease. Mol. Cell. Neurosci. 2019 101 103414 10.1016/j.mcn.2019.103414 31655116
    [Google Scholar]
  117. Lynch M.A. Long-term potentiation and memory. Physiol. Rev. 2004 84 1 87 136 10.1152/physrev.00014.2003 14715912
    [Google Scholar]
  118. Cieri D. Vicario M. Vallese F. D’Orsi B. Berto P. Grinzato A. Catoni C. De Stefani D. Rizzuto R. Brini M. Calì T. Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca2+ handling. Biochim. Biophys. Acta Mol. Basis Dis. 2018 1864 10 3247 3256 10.1016/j.bbadis.2018.07.011 30006151
    [Google Scholar]
  119. Vallese F. Barazzuol L. Maso L. Brini M. Calì T. ER-mitochondria calcium transfer, organelle contacts and neurodegenerative diseases. Adv. Exp. Med. Biol. 2020 1131 719 746 10.1007/978‑3‑030‑12457‑1_29 31646532
    [Google Scholar]
  120. Moore S.J. Murphy G.G. The role of L-type calcium channels in neuronal excitability and aging. Neurobiol. Learn. Mem. 2020 173 107230 10.1016/j.nlm.2020.107230 32407963
    [Google Scholar]
  121. Vieira M.N.N. Lima-Filho R.A.S. De Felice F.G. Connecting Alzheimer’s disease to diabetes: Underlying mechanisms and potential therapeutic targets. Neuropharmacology 2018 136 Pt B 160 171 10.1016/j.neuropharm.2017.11.014 29129775
    [Google Scholar]
  122. Boles A. Kandimalla R. Reddy P.H. Dynamics of diabetes and obesity: Epidemiological perspective. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 5 1026 1036 10.1016/j.bbadis.2017.01.016 28130199
    [Google Scholar]
  123. Woltjer R.L. Maezawa I. Ou J.J. Montine K.S. Montine T.J. Advanced glycation endproduct precursor alters intracellular amyloid- β/AβPP carboxy-terminal fragment aggregation and cytotoxicity. J. Alzheimers Dis. 2004 5 6 467 476 10.3233/JAD‑2003‑5607 14757937
    [Google Scholar]
  124. Kuhla B. Haase C. Flach K. Lüth H.J. Arendt T. Münch G. Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. J. Biol. Chem. 2007 282 10 6984 6991 10.1074/jbc.M609521200 17082178
    [Google Scholar]
  125. Westermark P. Andersson A. Westermark G.T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 2011 91 3 795 826 10.1152/physrev.00042.2009 21742788
    [Google Scholar]
  126. D hr S. Klingenhoff A. Maier H. Hrabé de Angelis M. Werner T. Schneider R. Linking disease-associated genes to regulatory networks via promoter organization. Nucleic Acids Res. 2005 33 3 864 872 10.1093/nar/gki230 15701758
    [Google Scholar]
  127. Augustin R Lichtenthaler SF Greeff M Hansen J Wurst W Trümbach D Bioinformatics identification of modules of transcription factor binding sites in Alzheimer's disease-related genes by in silico promoter analysis and microarrays. Int J Alzheimers Dis 2011 2011 154325 10.4061/2011/154325
    [Google Scholar]
  128. Guerreiro R. Wojtas A. Bras J. Carrasquillo M. Rogaeva E. Majounie E. Cruchaga C. Sassi C. Kauwe J.S. Younkin S. Hazrati L. Collinge J. Pocock J. Lashley T. Williams J. Lambert J.C. Amouyel P. Goate A. Rademakers R. Morgan K. Powell J. St George-Hyslop P. Singleton A. Hardy J. Alzheimer Genetic Analysis Group TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 2013 368 2 117 127 10.1056/NEJMoa1211851 23150934
    [Google Scholar]
  129. Griciuc A. Serrano-Pozo A. Parrado A.R. Lesinski A.N. Asselin C.N. Mullin K. Hooli B. Choi S.H. Hyman B.T. Tanzi R.E. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 2013 78 4 631 643 10.1016/j.neuron.2013.04.014 23623698
    [Google Scholar]
  130. Zhou Y. Song W.M. Andhey P.S. Swain A. Levy T. Miller K.R. Poliani P.L. Cominelli M. Grover S. Gilfillan S. Cella M. Ulland T.K. Zaitsev K. Miyashita A. Ikeuchi T. Sainouchi M. Kakita A. Bennett D.A. Schneider J.A. Nichols M.R. Beausoleil S.A. Ulrich J.D. Holtzman D.M. Artyomov M.N. Colonna M. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 2020 26 1 131 142 10.1038/s41591‑019‑0695‑9 31932797
    [Google Scholar]
  131. Walker D.G. Lue L.F. Immune phenotypes of microglia in human neurodegenerative disease: Challenges to detecting microglial polarization in human brains. Alzheimers Res. Ther. 2015 7 1 56 10.1186/s13195‑015‑0139‑9 26286145
    [Google Scholar]
  132. Hong S. Beja-Glasser V.F. Nfonoyim B.M. Frouin A. Li S. Ramakrishnan S. Merry K.M. Shi Q. Rosenthal A. Barres B.A. Lemere C.A. Selkoe D.J. Stevens B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016 352 6286 712 716 10.1126/science.aad8373 27033548
    [Google Scholar]
  133. Keren-Shaul H Spinrad A Weiner A Matcovitch-Natan O Dvir-Szternfeld R Ulland TK A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 2017 169 7 1276 1290 10.1016/j.cell.2017.05.018
    [Google Scholar]
  134. Caldwell A.B. Anantharaman B.G. Ramachandran S. Nguyen P. Liu Q. Trinh I. Galasko D.R. Desplats P.A. Wagner S.L. Subramaniam S. Transcriptomic profiling of sporadic Alzheimer’s disease patients. Mol. Brain 2022 15 1 83 10.1186/s13041‑022‑00963‑2 36224601
    [Google Scholar]
  135. Williams J.B. Cao Q. Yan Z. Transcriptomic analysis of human brains with Alzheimer’s disease reveals the altered expression of synaptic genes linked to cognitive deficits. Brain Commun. 2021 3 3 fcab123 10.1093/braincomms/fcab123 34423299
    [Google Scholar]
  136. Maarouf C. Andacht T. Kokjohn T. Castaño E. Sue L. Beach T. Roher A. Proteomic analysis of Alzheimer’s disease cerebrospinal fluid from neuropathologically diagnosed subjects. Curr. Alzheimer Res. 2009 6 4 399 406 10.2174/156720509788929318 19689240
    [Google Scholar]
  137. Johnson E.C.B. Dammer E.B. Duong D.M. Ping L. Zhou M. Yin L. Higginbotham L.A. Guajardo A. White B. Troncoso J.C. Thambisetty M. Montine T.J. Lee E.B. Trojanowski J.Q. Beach T.G. Reiman E.M. Haroutunian V. Wang M. Schadt E. Zhang B. Dickson D.W. Ertekin-Taner N. Golde T.E. Petyuk V.A. De Jager P.L. Bennett D.A. Wingo T.S. Rangaraju S. Hajjar I. Shulman J.M. Lah J.J. Levey A.I. Seyfried N.T. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 2020 26 5 769 780 10.1038/s41591‑020‑0815‑6 32284590
    [Google Scholar]
  138. Sathe G. Albert M. Darrow J. Saito A. Troncoso J. Pandey A. Moghekar A. Quantitative proteomic analysis of the frontal cortex in Alzheimer’s disease. J. Neurochem. 2021 156 6 988 1002 10.1111/jnc.15116 32614981
    [Google Scholar]
  139. Haytural H. Benfeitas R. Schedin-Weiss S. Bereczki E. Rezeli M. Unwin R.D. Wang X. Dammer E.B. Johnson E.C.B. Seyfried N.T. Winblad B. Tijms B.M. Visser P.J. Frykman S. Tjernberg L.O. Insights into the changes in the proteome of Alzheimer disease elucidated by a meta-analysis. Sci. Data 2021 8 1 312 10.1038/s41597‑021‑01090‑8 34862388
    [Google Scholar]
  140. Seyfried NT Dammer EB Swarup V Nandakumar D Duong DM Yin L A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease. Cell Syst 2017 4 1 60 72 10.1016/j.cels.2016.11.006
    [Google Scholar]
  141. Higginbotham L. Ping L. Dammer E.B. Duong D.M. Zhou M. Gearing M. Hurst C. Glass J.D. Factor S.A. Johnson E.C.B. Hajjar I. Lah J.J. Levey A.I. Seyfried N.T. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Sci. Adv. 2020 6 43 eaaz9360 10.1126/sciadv.aaz9360 33087358
    [Google Scholar]
  142. Connolly K. Lehoux M. O’Rourke R. Assetta B. Erdemir G.A. Elias J.A. Lee C.G. Huang Y.W.A. Potential role of chitinase‐3‐like protein 1 (CHI3L1/YKL‐40) in neurodegeneration and Alzheimer’s disease. Alzheimers Dement. 2023 19 1 9 24 10.1002/alz.12612 35234337
    [Google Scholar]
  143. Fratiglioni L. Winblad B. von Strauss E. Prevention of Alzheimer’s disease and dementia. Major findings from the Kungsholmen Project. Physiol. Behav. 2007 92 1-2 98 104 10.1016/j.physbeh.2007.05.059 17588621
    [Google Scholar]
  144. Asaduzzaman M. Uddin M.J. Kader M.A. Alam A.H.M.K. Rahman A.A. Rashid M. Kato K. Tanaka T. Takeda M. Sadik G. In vitro acetylcholinesterase inhibitory activity and the antioxidant properties of Aegle marmelos leaf extract: Implications for the treatment of Alzheimer’s disease. Psychogeriatrics 2014 14 1 1 10 10.1111/psyg.12031 24646308
    [Google Scholar]
  145. Cummings J. Lee G. Ritter A. Sabbagh M. Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. 2019 5 1 272 293 10.1016/j.trci.2019.05.008 31334330
    [Google Scholar]
  146. Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Aspects Med. 2006 27 1 1 93 10.1016/j.mam.2005.07.008 16105678
    [Google Scholar]
  147. Qadir M.I. Medicinal and cosmetological importance of Aloe vera. Int. J. Nat. Ther. 2009 2 21 26
    [Google Scholar]
  148. Janbaz K.H. Nisar U. Ashraf M. Qadir M.I. Spasmolytic, bronchodilatory and antioxidant activities of Erythrina superosa Roxb. Acta Pol. Pharm. 2012 69 6 1111 1117 23285672
    [Google Scholar]
  149. Amel O.H. Malek B.H. Hichem B.J. Ali L. Mahjoub A. Boulbaba S. Antioxidant and anti-acetylcholinesterase activities of extracts from Rapistrum rugosum in Tunisia. Asian Pac. J. Trop. Dis. 2013 3 5 367 374 10.1016/S2222‑1808(13)60086‑9
    [Google Scholar]
  150. Hamad I. AbdElgawad H. Al Jaouni S. Zinta G. Asard H. Hassan S. Hegab M. Hagagy N. Selim S. Metabolic analysis of various date palm fruit (Phoenix dactylifera L.) cultivars from Saudi Arabia to assess their nutritional quality. Molecules 2015 20 8 13620 13641 10.3390/molecules200813620 26225946
    [Google Scholar]
  151. Ismail H Khalid D Ayub SB Ijaz MU Akram S Bhatti MZ Effects of Phoenix dactylifera against streptozotocin-aluminium chloride induced Alzheimer’s rats and their in silico study. Biomed Res Int 2023 2023 1725638 10.1155/2023/1725638
    [Google Scholar]
  152. Hashmi W.J. Ismail H. Mehmood F. Mirza B. Neuroprotective, antidiabetic and antioxidant effect of Hedera nepalensis and lupeol against STZ + AlCl3 induced rats model. Daru 2018 26 2 179 190 10.1007/s40199‑018‑0223‑3 30353379
    [Google Scholar]
  153. Ali Reza A.S.M. Hossain M.S. Akhter S. Rahman M.R. Nasrin M.S. Uddin M.J. Sadik G. Khurshid Alam A.H.M. In vitro antioxidant and cholinesterase inhibitory activities of Elatostema papillosum leaves and correlation with their phytochemical profiles: A study relevant to the treatment of Alzheimer’s disease. BMC Complement. Altern. Med. 2018 18 1 123 10.1186/s12906‑018‑2182‑0 29622019
    [Google Scholar]
  154. Thabit S. Handoussa H. Roxo M. El Sayed N.S. Cestari de Azevedo B. Wink M. Evaluation of antioxidant and neuroprotective activities of Cassia fistula (L.) using the Caenorhabditis elegans model. PeerJ 2018 6 5159 10.7717/peerj.5159 30023139
    [Google Scholar]
  155. Kuk E.B. Jo A.R. Oh S.I. Sohn H.S. Seong S.H. Roy A. Choi J.S. Jung H.A. Anti-Alzheimer’s disease activity of compounds from the root bark of Morus alba L. Arch. Pharm. Res. 2017 40 3 338 349 10.1007/s12272‑017‑0891‑4 28093699
    [Google Scholar]
  156. Imran M. Ullah F. Ayaz M. Sadiq A. Shah M.R. Jan M.S. Ullah F. Anticholinesterase and antioxidant potentials of Nonea micrantha Bioss. & Reut along with GC-MS analysis. BMC Complement. Altern. Med. 2017 17 1 499 10.1186/s12906‑017‑2004‑9 29169349
    [Google Scholar]
  157. Nwidu L.L. Elmorsy E. Thornton J. Wijamunige B. Wijesekara A. Tarbox R. Warren A. Carter W.G. Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea. Pharm. Biol. 2017 55 1 1875 1883 10.1080/13880209.2017.1339283 28629287
    [Google Scholar]
  158. Jung H.A. Ali M.Y. Jung H.J. Jeong H.O. Chung H.Y. Choi J.S. Inhibitory activities of major anthraquinones and other constituents from Cassia obtusifolia against β-secretase and cholinesterases. J. Ethnopharmacol. 2016 191 152 160 10.1016/j.jep.2016.06.037 27321278
    [Google Scholar]
  159. Bhakta H.K. Park C.H. Yokozawa T. Min B.S. Jung H.A. Choi J.S. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-d-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors. Arch. Pharm. Res. 2016 39 6 794 805 10.1007/s12272‑016‑0745‑5 27106028
    [Google Scholar]
  160. Kamal Z. Ullah F. Ayaz M. Sadiq A. Ahmad S. Zeb A. Hussain A. Imran M. Anticholinesterse and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of Atriplex laciniata L.: Potential effectiveness in Alzheimer’s and other neurological disorders. Biol. Res. 2015 48 1 21 10.1186/s40659‑015‑0011‑1 25889712
    [Google Scholar]
  161. Linardaki Z.I. Orkoula M.G. Kokkosis A.G. Lamari F.N. Margarity M. Investigation of the neuroprotective action of saffron (Crocus sativus L.) in aluminum-exposed adult mice through behavioral and neurobiochemical assessment. Food Chem. Toxicol. 2013 52 163 170 10.1016/j.fct.2012.11.016 23168242
    [Google Scholar]
  162. Bonesi M. Menichini F. Tundis R. Loizzo M.R. Conforti F. Passalacqua N.G. Statti G.A. Menichini F. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. J. Enzyme Inhib. Med. Chem. 2010 25 5 622 628 10.3109/14756360903389856 20429778
    [Google Scholar]
  163. Upadhyay A. Kumar K. Kumar A. Mishra H. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies. Int. J. Ayurveda Res. 2010 1 2 112 121 10.4103/0974‑7788.64405 20814526
    [Google Scholar]
  164. Sancheti S. Sancheti S. Um B-H. Seo S-Y. 1,2,3,4,6-penta-O-galloyl-β-d-glucose: A cholinesterase inhibitor from Terminalia chebula. S. Afr. J. Bot. 2010 76 2 285 288 10.1016/j.sajb.2009.11.006
    [Google Scholar]
  165. Nahata A. Patil U.K. Dixit V.K. Effect of Convulvulus pluricaulis Choisy. on learning behaviour and memory enhancement activity in rodents. Nat. Prod. Res. 2008 22 16 1472 1482 10.1080/14786410802214199 19023811
    [Google Scholar]
  166. Mishra S. Palanivelu K. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview. Ann. Indian Acad. Neurol. 2008 11 1 13 19 10.4103/0972‑2327.40220 19966973
    [Google Scholar]
  167. Cervenka F. Jahodár L. Plant metabolites as nootropics and cognitives. Ceska Slov. Farm. 2006 55 5 219 229 17128592
    [Google Scholar]
  168. Wang R. Yan H. Tang X. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine1. Acta Pharmacol. Sin. 2006 27 1 1 26 10.1111/j.1745‑7254.2006.00255.x 16364207
    [Google Scholar]
  169. Dhingra D. Parle M. Kulkarni S.K. Memory enhancing activity of Glycyrrhiza glabra in mice. J. Ethnopharmacol. 2004 91 2-3 361 365 10.1016/j.jep.2004.01.016 15120462
    [Google Scholar]
  170. Das A. Shanker G. Nath C. Pal R. Singh S. Singh H.K. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba. Pharmacol. Biochem. Behav. 2002 73 4 893 900 10.1016/S0091‑3057(02)00940‑1 12213536
    [Google Scholar]
  171. Rai K.S. Murthy K.D. Karanth K.S. Rao M.S. Clitoria ternatea (Linn) root extract treatment during growth spurt period enhances learning and memory in rats. Indian J. Physiol. Pharmacol. 2001 45 3 305 313 11881569
    [Google Scholar]
  172. Bhattacharya S.K. Bhattacharya A. Kumar A. Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother. Res. 2000 14 3 174 179 10.1002/(SICI)1099‑1573(200005)14:3<174::AID‑PTR624>3.0.CO;2‑O 10815010
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249388578250827072156
Loading
/content/journals/cnsamc/10.2174/0118715249388578250827072156
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test