Skip to content
2000
image of Polysaccharides: Sources, Mechanisms Associated and Therapeutic Potential for Neuropathy

Abstract

Neuropathy is a disorder defined by injury or dysfunction of the peripheral nerves, which causes a variety of symptoms, including pain, numbness, and weakness. Diabetes, autoimmune illnesses, infections, and chemotherapy are some of the possible underlying reasons. Polysaccharides, complex carbohydrates derived from diverse natural sources such as plants, fungi, algae, and microbes, have garnered a significant role for their multifaceted biological activities that have been shown in humans, such as the ability to bind nuclear receptors, control inflammation, and scavenge radicals and antioxidants. These properties make polysaccharides a potential therapeutic option for preventing and managing neuropathy. Many polysaccharides possess strong antioxidant properties, which can help protect neurons from oxidative stress. Moreover, they have a broad variety of biological actions, including antibacterial and anticancer properties, as well as preventive effects against neurological illnesses, including neuropathy, Alzheimer’s, and Parkinson’s disease. Because of their diverse spectrum of biological functions, they have drawn a lot of attention for their potential as therapeutics, including nerve regeneration and repair, neuroprotective, antioxidants, and reducing inflammation. Several studies have emphasized the significant potential of polysaccharides for enhancing nerve regeneration. This review investigates numerous natural sources of polysaccharides, the mechanism of action, and their therapeutic potential for neuroprotective or neuropathy management, offering insights into their potential role in enhancing patient outcomes and quality of life. This review also underscores the therapeutic potential of polysaccharides as adjunct or alternative agents in neuropathy management and advocates for further clinical validation and mechanistic investigations.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249385605250902120741
2025-09-18
2025-12-04
Loading full text...

Full text loading...

References

  1. Pisciotta C. Shy M.E. Neuropathy. Handb. Clin. Neurol. 2018 148 653 665 10.1016/B978‑0‑444‑64076‑5.00042‑9 29478606
    [Google Scholar]
  2. Subramony S.H. Wilbourn A.J. Diabetic proximal neuropathy. J. Neurol. Sci. 1982 53 2 293 304 10.1016/0022‑510X(82)90014‑4 7057213
    [Google Scholar]
  3. Vinik A. Mehrabyan A. Colen L. Boulton A. Focal entrapment neuropathies in diabetes. Diabetes Care 2004 27 7 1783 1788 10.2337/diacare.27.7.1783 15220266
    [Google Scholar]
  4. Castelli G. Desai K.M. Cantone R.E. Peripheral neuropathy: Evaluation and differential diagnosis. Am. Fam. Physician 2020 102 12 732 739 33320513
    [Google Scholar]
  5. Savelieff M.G. Elafros M.A. Viswanathan V. The global and regional burden of diabetic peripheral neuropathy. Nat. Rev. Neurol. 2025 21 1 17 31 10.1038/s41582‑024‑01041‑y 39639140
    [Google Scholar]
  6. Tang F. Zhao F. Jiang Y. Zhang T. Wang B. Global hotspots and trends in diabetic peripheral neuropathy research from 2011 to 2023. Medicine 2024 103 32 39295 10.1097/MD.0000000000039295 39121272
    [Google Scholar]
  7. Rahman N. Sukumar J. Lustberg M.B. Chronic chemotherapy-induced peripheral neuropathy: Living with neuropathy during and after cancer treatments. Ann. Palliat. Med. 2025 14 2 196 216 10.21037/apm‑24‑154 40211744
    [Google Scholar]
  8. Feldman E.L. Callaghan B.C. Pop-Busui R. Zochodne D.W. Wright D.E. Bennett D.L. Bril V. Russell J.W. Viswanathan V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019 5 1 41 10.1038/s41572‑019‑0092‑1 31197153
    [Google Scholar]
  9. Harding SE Tombs M.P. Adams G.G. An introduction to polysaccharide biotechnology. CRC Press 10.1201/9781315372730
    [Google Scholar]
  10. Xie H. Chen Y. Wu W. Gastrodia elata Blume polysaccharides attenuate vincristine-evoked neuropathic pain through the inhibition of neuroinflammation. Mediators Inflamm 2021 2021 9965081 10.1155/2021/9965081 34366713
    [Google Scholar]
  11. Huang S. Mao J. Ding K. Zhou Y. Zeng X. Yang W. Wang P. Zhao C. Yao J. Xia P. Pei G. Polysaccharides from Ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer’s disease. Stem Cell Reports 2017 8 1 84 94 10.1016/j.stemcr.2016.12.007 28076758
    [Google Scholar]
  12. Ramirez A.I. de Hoz R. Salobrar-Garcia E. Salazar J.J. Rojas B. Ajoy D. López-Cuenca I. Rojas P. Triviño A. Ramírez J.M. The role of microglia in retinal neurodegeneration: Alzheimer’s disease, Parkinson, and glaucoma. Front. Aging Neurosci. 2017 9 214 10.3389/fnagi.2017.00214 28729832
    [Google Scholar]
  13. Wang Y. Chen R. Yang Z. Wen Q. Cao X. Zhao N. Yan J. Protective effects of polysaccharides in neurodegenerative diseases. Front. Aging Neurosci. 2022 14 917629 10.3389/fnagi.2022.917629 35860666
    [Google Scholar]
  14. Ewing D.J. Clarke B.F. Autonomic neuropathy: Its diagnosis and prognosis. Clin. Endocrinol. Metab. 1986 15 4 855 888 10.1016/S0300‑595X(86)80078‑0 3536203
    [Google Scholar]
  15. Nelson E.D. Ramberg J.E. Best T. Sinnott R.A. Neurologic effects of exogenous saccharides: A review of controlled human, animal, and in vitro studies. Nutr. Neurosci. 2012 15 4 149 162 10.1179/1476830512Y.0000000004 22417773
    [Google Scholar]
  16. Dash S.K. Ginkgo biloba in Alzheimer’s disease. Austin J Clin Neurol 2015 2 3 1028
    [Google Scholar]
  17. Han L. Ji L. Chang J. Wen J. Zhao W. Shi H. Zhou L. Li Y. Hu R. Hu J. Lu B. Peripheral neuropathy is associated with insulin resistance independent of metabolic syndrome. Diabetol. Metab. Syndr. 2015 7 1 14 10.1186/s13098‑015‑0010‑y 25774226
    [Google Scholar]
  18. Hu W. Song M. Wang C. Guo Z. Li Y. Wang D. Structural characterization of polysaccharide purified from Hericium erinaceus fermented mycelium and its pharmacological basis for application in Alzheimer’s disease: Oxidative stress related calcium homeostasis. Int. J. Biol. Macromol. 2021 193 Pt A 358 369 10.1016/j.ijbiomac.2021.10.117 34688684
    [Google Scholar]
  19. Rivera E. Cianfrocca M. Overview of neuropathy associated with taxanes for the treatment of metastatic breast cancer. Cancer Chemother. Pharmacol. 2015 75 4 659 670 10.1007/s00280‑014‑2607‑5 25596818
    [Google Scholar]
  20. Przedborski S. Jackson-Lewis V. Yokoyama R. Shibata T. Dawson V.L. Dawson T.M. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. USA 1996 93 10 4565 4571 10.1073/pnas.93.10.4565 8643444
    [Google Scholar]
  21. Jiang X. Li S. Feng X. Li L. Hao J. Wang D. Wang Q. Mushroom polysaccharides as potential candidates for alleviating neurodegenerative diseases. Nutrients 2022 14 22 4833 10.3390/nu14224833 36432520
    [Google Scholar]
  22. Riediger C. Schuster T. Barlinn K. Maier S. Weitz J. Siepmann T. Adverse effects of antidepressants for chronic pain: A systematic review and meta-analysis. Front. Neurol. 2017 8 307 10.3389/fneur.2017.00307 28769859
    [Google Scholar]
  23. Greer D. Liu M.T. Maroney M. Side effects of antiseizure medications. Side Effects of Drugs Annual Elsevier 2023 45 pp 61 92 10.1016/bs.seda.2023.07.001
    [Google Scholar]
  24. Coluzzi F. Di Stefano G. Scerpa M.S. Rocco M. Di Nardo G. Innocenti A. Vittori A. Ferretti A. Truini A. The challenge of managing neuropathic pain in children and adolescents with cancer. Cancers 2025 17 3 460 10.3390/cancers17030460 39941827
    [Google Scholar]
  25. Rudiger J. Stasiowska M. Tameem A. Essential Notes in Pain Medicine Oxford University Press 2022 229
    [Google Scholar]
  26. Sohail R. Mathew M. Patel K.K. Reddy S.A. Haider Z. Naria M. Habib A. Abdin Z.U. Razzaq Chaudhry W. Akbar A. Effects of non-steroidal anti-inflammatory drugs (NSAIDs) and gastroprotective NSAIDs on the gastrointestinal tract: A narrative review. Cureus 2023 15 4 37080 10.7759/cureus.37080 37153279
    [Google Scholar]
  27. Mohammed A.S.A. Naveed M. Jost N. Polysaccharides; Classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (A review of current applications and upcoming potentialities). J. Polym. Environ. 2021 29 8 2359 2371 10.1007/s10924‑021‑02052‑2 33526994
    [Google Scholar]
  28. Wang H. Liu Y. Qi Z. Wang S. Liu S. Li X. Wang H. Xia X. An overview on natural polysaccharides with antioxidant properties. Curr. Med. Chem. 2013 20 23 2899 2913 10.2174/0929867311320230006 23627941
    [Google Scholar]
  29. Chaudhary S. Jain V.P. Jaiswar G. The composition of polysaccharides: Monosaccharides and binding, group decorating, polysaccharides chains. Innovation in Nano-Polysaccharides for Eco-sustainability From Science to Industrial Applications Elsevier 2022 83 118 10.1016/B978‑0‑12‑823439‑6.00005‑2
    [Google Scholar]
  30. Varghese S. Awana M. Mondal D. Amylose–Amylopectin Ratio: Comprehensive Understanding of Structure, Physicochemical Attributes, and Applications of Starch. Handbook of Biopolymers Springer Singapore 2022 pp 1 30 10.1007/978‑981‑16‑6603‑2_48‑1
    [Google Scholar]
  31. Englyst H.N. Anderson V. Cummings J.H. Starch and non‐starch polysaccharides in some cereal foods. J. Sci. Food Agric. 1983 34 12 1434 1440 10.1002/jsfa.2740341219 6319817
    [Google Scholar]
  32. Bakri M.K. Environmental sustainability of biopolymers. Academia Letters 2021 8 2924 1 7 10.20935/AL2924
    [Google Scholar]
  33. Kalidas C. Sangaranarayanan M.V. Carbohydrates, their Reactions, Thermochemistry and Energetics. Biophysical Chemistry Springer Cham 2023 59 85 10.1007/978‑3‑031‑37682‑5_3
    [Google Scholar]
  34. Gopinath V. Saravanan S. Al-Maleki A.R. Ramesh M. Vadivelu J. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother. 2018 107 96 108 10.1016/j.biopha.2018.07.136 30086465
    [Google Scholar]
  35. Rao J. Lv Z. Chen G. Peng F. Hemicellulose: Structure, chemical modification, and application. Prog. Polym. Sci. 2023 140 101675 10.1016/j.progpolymsci.2023.101675
    [Google Scholar]
  36. Ordaz-Ortiz J.J. Marcus S.E. Paul Knox J. Cell wall microstructure analysis implicates hemicellulose polysaccharides in cell adhesion in tomato fruit pericarp parenchyma. Mol. Plant 2009 2 5 910 921 10.1093/mp/ssp049 19825668
    [Google Scholar]
  37. Venkatesan J. Lowe B. Anil S. Manivasagan P. Kheraif A.A.A. Kang K-H. Kim S-K. Seaweed polysaccharides and their potential biomedical applications. Stärke 2015 67 5-6 381 390 10.1002/star.201400127
    [Google Scholar]
  38. Cosenza V.A. Navarro D.A. Ponce N.M.A. Seaweed Polysaccharides: Structure and Applications. Industrial Applications of Renewable Biomass Products Springer Cham 2017 pp 75 116 10.1007/978‑3‑319‑61288‑1_3
    [Google Scholar]
  39. Pandya Y.H. Bakshi M. Sharma A. Agar-agar extraction, structural properties and applications: A review. J. Pharm. Innov. 2022 6 1151 1157
    [Google Scholar]
  40. Liao Y.C. Chang C.C. Nagarajan D. Chen C.Y. Chang J.S. Algae-derived hydrocolloids in foods: Applications and health-related issues. Bioengineered 2021 12 1 3787 3801 10.1080/21655979.2021.1946359 34281484
    [Google Scholar]
  41. Shafie M.H. Kamal M.L. Zulkiflee F.F. Hasan S. Uyup N.H. Abdullah S. Mohamed Hussin N.A. Tan Y.C. Zafarina Z. Application of Carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. J. Indian Chem. Soc. 2022 99 9 100613 10.1016/j.jics.2022.100613
    [Google Scholar]
  42. Anggraini J. Lo D. Health impact of carrageenan and its application in food industry: A review. IOP Conf. Ser.: Earth Environ. Sci. 2023 1169 012098 10.1088/1755‑1315/1169/1/012098
    [Google Scholar]
  43. Rahman M.M. Shahid M.A. Hossain M.T. Sheikh M.S. Rahman M.S. Uddin N. Rahim A. Khan R.A. Hossain I. Sources, extractions, and applications of alginate: A review. Discover Applied Sciences 2024 6 8 443 10.1007/s42452‑024‑06151‑2
    [Google Scholar]
  44. Tagliapietra B.L. Clerici M.T.P.S. Brown algae and their multiple applications as functional ingredient in food production. Food Res. Int. 2023 167 112655 10.1016/j.foodres.2023.112655 37087243
    [Google Scholar]
  45. Zhang T. Guo Q. Xin Y. Liu Y. Comprehensive review in moisture retention mechanism of polysaccharides from algae, plants, bacteria and fungus. Arab. J. Chem. 2022 15 10 104163 10.1016/j.arabjc.2022.104163
    [Google Scholar]
  46. Bhat I.M. Wani S.M. Mir S.A. Masoodi F.A. Advances in xanthan gum production, modifications and its applications. Biocatal. Agric. Biotechnol. 2022 42 102328 10.1016/j.bcab.2022.102328
    [Google Scholar]
  47. Ramos de Souza E. Rodrigues P.D. Sampaio I.C.F. Bacic E. Crugeira P.J.L. Vasconcelos A.C. dos Santos Silva M. dos Santos J.N. Quintella C.M. Pinheiro A.L.B. Almeida P.F. Xanthan gum produced by Xanthomonas campestris using produced water and crude glycerin as an environmentally friendlier agent to enhance oil recovery. Fuel 2022 310 122421 10.1016/j.fuel.2021.122421
    [Google Scholar]
  48. West T.P. Production of the polysaccharide pullulan by Aureobasidium pullulans cell immobilization. Polysaccharides 2022 3 3 544 555 10.3390/polysaccharides3030032
    [Google Scholar]
  49. Pandey S. Shreshtha I. Sachan S.G. Pullulan: Biosynthesis, production and applications. Microbial Exopolysaccharides as Novel and Significant Biomaterials Springer Cham 2021 121 141 10.1007/978‑3‑030‑75289‑7_6
    [Google Scholar]
  50. Pacheco-Gómez V. Caballero-Zamora A. Martínez-González S. Biochemistry and metabolic pathways of polysaccharides, lipids, and proteins. Abanico Veterinario 2021 11 10.21929/abavet2021.47
    [Google Scholar]
  51. Barrett B.J. Molecular and rheological characterization of hyaluronic acid: Determination of its role in thrombin-catalyzed fibrin clotting and viscosupplementation of joints. 2002
    [Google Scholar]
  52. Jin M. Shi J. Zhu W. Yao H. Wang D.A. Polysaccharide-based biomaterials in tissue engineering: A review. Tissue Eng. Part B Rev. 2021 27 6 604 626 10.1089/ten.teb.2020.0208 33267648
    [Google Scholar]
  53. Su C. Chen Y. Tian S. Lu C. Lv Q. Research progress on emerging polysaccharide materials applied in tissue engineering. Polymers 2022 14 16 3268 10.3390/polym14163268 36015525
    [Google Scholar]
  54. Duran J. Hervera A. Markussen K.H. Varea O. López-Soldado I. Sun R.C. del Río J.A. Gentry M.S. Guinovart J.J. Astrocytic glycogen accumulation drives the pathophysiology of neurodegeneration in Lafora disease. Brain 2021 144 8 2349 2360 10.1093/brain/awab110 33822008
    [Google Scholar]
  55. Medras Z.J.H. Mostafa Y.M. Ahmed A.A.M. El-Sayed N.M. Arctigenin improves neuropathy via ameliorating apoptosis and modulating autophagy in streptozotocin-induced diabetic mice. CNS Neurosci. Ther. 2023 29 10 3068 3080 10.1111/cns.14249 37170684
    [Google Scholar]
  56. Sun Q. Cheng L. Zeng X. Zhang X. Wu Z. Weng P. The modulatory effect of plant polysaccharides on gut flora and the implication for neurodegenerative diseases from the perspective of the microbiota-gut-brain axis. Int. J. Biol. Macromol. 2020 164 1484 1492 10.1016/j.ijbiomac.2020.07.208 32735929
    [Google Scholar]
  57. Du C. Zuo F. Cao Y. Zang Y. Anti-diabetic effects of natural and modified ‘Ganzhou’ navel orange peel pectin on type 2 diabetic mice via gut microbiota. Food Funct. 2023 14 24 10977 10990 10.1039/D3FO04118B 38014521
    [Google Scholar]
  58. Kurowska A. Ziemichód W. Herbet M. Piątkowska-Chmiel I. The role of diet as a modulator of the inflammatory process in the neurological diseases. Nutrients 2023 15 6 1436 10.3390/nu15061436 36986165
    [Google Scholar]
  59. Hu M. Zhang P. Wang R. Zhou M. Pang N. Cui X. Ge X. Liu X. Huang X.F. Yu Y. Three different types of β-glucans enhance cognition: The role of the gut-brain axis. Front. Nutr. 2022 9 848930 10.3389/fnut.2022.848930 35308288
    [Google Scholar]
  60. Xu Z. Liu G. Liu P. Hu Y. Chen Y. Fang Y. Sun G. Huang H. Wu J. Hyaluronic acid-based glucose-responsive antioxidant hydrogel platform for enhanced diabetic wound repair. Acta Biomater. 2022 147 147 157 10.1016/j.actbio.2022.05.047 35649507
    [Google Scholar]
  61. Ocak U. Ocak P.E. Wang A. Zhang J.H. Boling W. Wu P. Mo J. Zhang T. Huang L. Targeting mast cell as a neuroprotective strategy. Brain Inj. 2019 33 6 723 733 10.1080/02699052.2018.1556807 30554528
    [Google Scholar]
  62. Rauvala H. Paveliev M. Kuja-Panula J. Kulesskaya N. Inhibition and enhancement of neural regeneration by chondroitin sulfate proteoglycans. Neural Regen. Res. 2017 12 5 687 691 10.4103/1673‑5374.206630 28616017
    [Google Scholar]
  63. Stavely R. Sahakian L. Filippone R.T. Stojanovska V. Bornstein J.C. Sakkal S. Nurgali K. Oxidative stress-induced HMGB1 translocation in myenteric neurons contributes to neuropathy in colitis. Biomolecules 2022 12 12 1831 10.3390/biom12121831 36551259
    [Google Scholar]
  64. Groux-Degroote S. Cavdarli S. Uchimura K. Allain F. Delannoy P. Glycosylation changes in inflammatory diseases. Adv. Protein Chem. Struct. Biol. 2020 119 111 156 10.1016/bs.apcsb.2019.08.008 31997767
    [Google Scholar]
  65. You X. Niu L. Fu J. Ge S. Shi J. Zhang Y. Zhuang P. Bidirectional regulation of the brain–gut–microbiota axis following traumatic brain injury. Neural Regen. Res. 2025 20 8 2153 2168 10.4103/NRR.NRR‑D‑24‑00088 39359076
    [Google Scholar]
  66. Juhász A.E. Greff D. Teutsch B. Gede N. Hegyi P. Horváth E.M. Deák P.Á. Nyirády P. Ács N. Juhász R. Galactomannans are the most effective soluble dietary fibers in type 2 diabetes: A systematic review and network meta-analysis. Am. J. Clin. Nutr. 2023 117 2 266 277 10.1016/j.ajcnut.2022.12.015 36811560
    [Google Scholar]
  67. Komisarska P. Pinyosinwat A. Saleem M. Szczuko M. Carrageenan as a potential factor of inflammatory bowel diseases. Nutrients 2024 16 9 1367 10.3390/nu16091367 38732613
    [Google Scholar]
  68. Kwiecien J.M. Zhang L. Yaron J.R. Schutz L.N. Kwiecien-Delaney C.J. Awo E.A. Burgin M. Dabrowski W. Lucas A.R. Local serpin treatment via chitosan-collagen hydrogel after spinal cord injury reduces tissue damage and improves neurologic function. J. Clin. Med. 2020 9 4 1221 10.3390/jcm9041221 32340262
    [Google Scholar]
  69. Badalyan S.M. Rapior S. The neurotrophic and neuroprotective potential of macrofungi. In: Medicinal Herbs and Fungi 2021 pp 37 77 10.1007/978‑981‑33‑4141‑8_2
    [Google Scholar]
  70. Dodoala S. Kanyadhara S. Sampathi S. Punuru P. Chinta G. Ethanolic extract of Aloe vera ameliorates sciatic nerve ligation induced neuropathic pain. Anc. Sci. Life 2014 33 4 208 215 10.4103/0257‑7941.147425 25593400
    [Google Scholar]
  71. Lo H.C. Wasser S.P. Medicinal mushrooms for glycemic control in diabetes mellitus: History, current status, future perspectives, and unsolved problems (review). Int. J. Med. Mushrooms 2011 13 5 401 426 10.1615/IntJMedMushr.v13.i5.10 22324407
    [Google Scholar]
  72. Hasan M. Maheshwari C. Meena N.L. Health Benefits and Medicinal Properties of Oats. In: Molecular Mechanisms and Disease Management CRC Press Boca Raton, FL 2024 189 232
    [Google Scholar]
  73. El-Nashar H.A.S. Taleb M. EL-Shazly M. Zhao C. Farag M.A. Polysaccharides (pectin, mucilage, and fructan inulin) and their fermented products: A critical analysis of their biochemical, gut interactions, and biological functions as antidiabetic agents. Phytother. Res. 2024 38 2 662 693 10.1002/ptr.8067 37966040
    [Google Scholar]
  74. Jha M.K. Morrison B.M. Glia-neuron energy metabolism in health and diseases: New insights into the role of nervous system metabolic transporters. Exp. Neurol. 2018 309 23 31 10.1016/j.expneurol.2018.07.009 30044944
    [Google Scholar]
  75. Sutthasupha P. Lungkaphin A. The potential roles of chitosan oligosaccharide in prevention of kidney injury in obese and diabetic conditions. Food Funct. 2020 11 9 7371 7388 10.1039/D0FO00302F 32839793
    [Google Scholar]
  76. Soomro M.A. Khan S. Majid A. Bhatti S. Perveen S. Phull A.R. Pectin as a biofunctional food: Comprehensive overview of its therapeutic effects and antidiabetic-associated mechanisms. Discover Applied Sciences 2024 6 6 298 10.1007/s42452‑024‑05968‑1
    [Google Scholar]
  77. Yang J. Xu Y. Functional carbohydrate polymers: Prebiotics. In: Polymers for Food Applications Springer Cham 2018 651 691 10.1007/978‑3‑319‑94625‑2_24
    [Google Scholar]
  78. Wang W. Fan Z. Yan Q. Pan T. Luo J. Wei Y. Li B. Fang Z. Lu W. Gut microbiota determines the fate of dietary fiber-targeted interventions in host health. Gut Microbes 2024 16 1 2416915 10.1080/19490976.2024.2416915 39418223
    [Google Scholar]
  79. Rahman M.M. Rahaman M.S. Islam M.R. Rahman F. Mithi F.M. Alqahtani T. Almikhlafi M.A. Alghamdi S.Q. Alruwaili A.S. Hossain M.S. Ahmed M. Das R. Emran T.B. Uddin M.S. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021 27 1 233 10.3390/molecules27010233 35011465
    [Google Scholar]
  80. Martins B. Vieira M. Delerue-Matos C. Grosso C. Soares C. Biological potential, gastrointestinal digestion, absorption, and bioavailability of algae-derived compounds with neuroprotective activity: A comprehensive review. Mar. Drugs 2022 20 6 362 10.3390/md20060362 35736165
    [Google Scholar]
  81. Gao Y. Guo M. Wang D. Zhao D. Wang M. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review. Int. J. Biol. Macromol. 2023 225 467 483 10.1016/j.ijbiomac.2022.11.099 36379281
    [Google Scholar]
  82. Pierson J. Modulation of gut inflammation by whole wheat bread consumption in people with prediabetes: An interim analysis of a randomized, controlled, crossover clinical trial. 2023
    [Google Scholar]
  83. de Sousa F.D. Vasconselos P.D. da Silva A.F.B. Mota E.F. da Rocha Tomé A. Mendes F.R.S. Gomes A.M.M. Abraham D.J. Shiwen X. Owen J.S. Lourenzoni M.R. Campos A.R. Moreira R.A. Monteiro-Moreira A.C.O. RETRACTED: Hydrogel and membrane scaffold formulations of Frutalin (breadfruit lectin) within a polysaccharide galactomannan matrix have potential for wound healing. Int. J. Biol. Macromol. 2019 121 429 442 10.1016/j.ijbiomac.2018.10.050 30326222
    [Google Scholar]
  84. Olsthoorn S.E.M. Wang X. Tillema B. Vanmierlo T. Kraan S. Leenen P.J.M. Mulder M.T. Brown seaweed food supplementation: Effects on allergy and inflammation and its consequences. Nutrients 2021 13 8 2613 10.3390/nu13082613 34444774
    [Google Scholar]
  85. Gupta U.C. Gupta S.C. The important role of potatoes, an underrated vegetable food crop in human health and nutrition. Curr. Nutr. Food Sci. 2019 15 1 11 19 10.2174/1573401314666180906113417
    [Google Scholar]
  86. Muthu M. Gopal J. Chun S. Devadoss A.J.P. Hasan N. Sivanesan I. Crustacean waste-derived chitosan: Antioxidant properties and future perspective. Antioxidants 2021 10 2 228 10.3390/antiox10020228 33546282
    [Google Scholar]
  87. Jabeen N. Atif M. Polysaccharides based biopolymers for biomedical applications: A review. Polym. Adv. Technol. 2024 35 1 6203 10.1002/pat.6203
    [Google Scholar]
  88. de Sousa MBMF. Development and characterization of poly(lactic acid)/fish gelatine electrospun membranes for peripheral nerve regeneration. Master Biomed. Eng. 2016
    [Google Scholar]
  89. Wang X.J. Shu G.F. Xu X.L. Peng C.H. Lu C.Y. Cheng X.Y. Luo X.C. Li J. Qi J. Kang X.Q. Jin F.Y. Chen M.J. Ying X.Y. You J. Du Y.Z. Ji J.S. Combinational protective therapy for spinal cord injury medicated by sialic acid-driven and polyethylene glycol based micelles. Biomaterials 2019 217 119326 10.1016/j.biomaterials.2019.119326 31288173
    [Google Scholar]
  90. Jou I.M. Wu T.T. Hsu C.C. Yang C.C. Huang J.S. Tu Y.K. Lee J.S. Su F.C. Kuo Y.L. High molecular weight form of hyaluronic acid reduces neuroinflammatory response in injured sciatic nerve via the intracellular domain of CD44. J. Biomed. Mater. Res. B Appl. Biomater. 2021 109 5 673 680 10.1002/jbm.b.34731 32924257
    [Google Scholar]
  91. Santacroce L. Bottalico L. Charitos I.A. Castellaneta F. Gaxhja E. Topi S. Palmirotta R. Jirillo E. Exploitation of natural by-products for the promotion of healthy outcomes in humans: Special focus on antioxidant and anti-inflammatory mechanisms and modulation of the gut microbiota. Antioxidants 2024 13 7 796 10.3390/antiox13070796 39061865
    [Google Scholar]
  92. Chen X.Q. Zhao W. Xie S.W. Xie J.J. Zhang Z.H. Tian L.X. Liu Y.J. Niu J. Effects of dietary hydrolyzed yeast (Rhodotorula mucilaginosa) on growth performance, immune response, antioxidant capacity and histomorphology of juvenile Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2019 90 30 39 10.1016/j.fsi.2019.03.068 31004799
    [Google Scholar]
  93. Shen Y. Zhao H. Wang X. Wu S. Wang Y. Wang C. Zhang Y. Zhao H. Unraveling the web of defense: The crucial role of polysaccharides in immunity. Front. Immunol. 2024 15 1406213 10.3389/fimmu.2024.1406213 39524445
    [Google Scholar]
  94. Flórez-Fernández N. Vaamonde-García C. Torres M.D. Buján M. Muíños A. Muiños A. Lamas-Vázquez M.J. Meijide-Faílde R. Blanco F.J. Domínguez H. Relevance of the extraction stage on the anti-inflammatory action of fucoidans. Pharmaceutics 2023 15 3 808 10.3390/pharmaceutics15030808 36986669
    [Google Scholar]
  95. Kozarski M. Klaus A. van Griensven L. Jakovljevic D. Todorovic N. Wan-Mohtar W.A.A.Q.I. Vunduk J. Mushroom β-glucan and polyphenol formulations as natural immunity boosters and balancers: Nature of the application. Food Sci. Hum. Wellness 2023 12 2 378 396 10.1016/j.fshw.2022.07.040
    [Google Scholar]
  96. Abdel Moneim R.A. El Deeb M. Adel F. Evaluation of the therapeutic potential of tamarind seeds (aqueous extract) versus antidiabetic drugs on the histological structure of lingual papillae in diabetic rats. Egypt. Dent. J. 2018 64 3 2337 2354 10.21608/edj.2018.76811
    [Google Scholar]
  97. Wen Z.S. Xiang X.W. Jin H.X. Guo X.Y. Liu L.J. Huang Y.N. OuYang X.K. Qu Y.L. Composition and anti-inflammatory effect of polysaccharides from Sargassum horneri in RAW264.7 macrophages. Int. J. Biol. Macromol. 2016 88 403 413 10.1016/j.ijbiomac.2016.02.025 26879911
    [Google Scholar]
  98. Hou C. Chen L. Yang L. Ji X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020 153 248 255 10.1016/j.ijbiomac.2020.02.315 32114173
    [Google Scholar]
  99. Zhao L. Li M. Sun K. Su S. Geng T. Sun H. Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation, apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-κB signaling pathway. Int. J. Biol. Macromol. 2020 155 1202 1215 10.1016/j.ijbiomac.2019.11.088 31730993
    [Google Scholar]
  100. Xu T. Liu R. Lu X. Wu X. Heneberg P. Mao Y. Jiang Q. Loor J. Yang Z. Lycium barbarum polysaccharides alleviate LPS-induced inflammatory responses through PPARγ/MAPK/NF-κB pathway in bovine mammary epithelial cells. J. Anim. Sci. 2022 100 1 skab345 10.1093/jas/skab345 34791267
    [Google Scholar]
  101. Li H. Lu X. Zhang S. Lu M. Liu H. Anti-inflammatory activity of polysaccharide from Pholiota nameko. Biochemistry 2008 73 6 669 675 10.1134/S0006297908060060 18620532
    [Google Scholar]
  102. Mohamed J. H N.N.A. H Z.A. B B.S. Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation. Sultan Qaboos Univ. Med. J. 2016 16 2 e132 e141 10.18295/squmj.2016.16.02.002 27226903
    [Google Scholar]
  103. Rodríguez-Yoldi M.J. Anti-inflammatory and antioxidant properties of plant extracts. Antioxidants 2021 10 6 921 10.3390/antiox10060921 34200199
    [Google Scholar]
  104. Bansal A.K. Bilaspuri G.S. Impacts of oxidative stress and antioxidants on semen functions. Vet. Med. Int. 2010 2010 686137 10.4061/2011/686137 20871827
    [Google Scholar]
  105. Sun S. Yang S. Dai M. Jia X. Wang Q. Zhang Z. Mao Y. The effect of Astragalus polysaccharides on attenuation of diabetic cardiomyopathy through inhibiting the extrinsic and intrinsic apoptotic pathways in high glucose -stimulated H9C2 cells. BMC Complement. Altern. Med. 2017 17 1 310 10.1186/s12906‑017‑1828‑7 28610566
    [Google Scholar]
  106. Solomevich S.O. Oranges C.M. Kalbermatten D.F. Schwendeman A. Madduri S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr. Polym. 2023 315 120934 10.1016/j.carbpol.2023.120934 37230605
    [Google Scholar]
  107. Valentino C. Vigani B. Sandri G. Ferrari F. Rossi S. Current status of polysaccharides-based drug delivery systems for nervous tissue injuries repair. Pharmaceutics 2023 15 2 400 10.3390/pharmaceutics15020400 36839722
    [Google Scholar]
  108. Wang J. Tian L. He L. Chen N. Ramakrishna S. So K.F. Mo X. Lycium barbarum polysaccharide encapsulated Poly lactic-co-glycolic acid Nanofibers: Cost effective herbal medicine for potential application in peripheral nerve tissue engineering. Sci. Rep. 2018 8 1 8669 10.1038/s41598‑018‑26837‑z 29875468
    [Google Scholar]
  109. Jiang T. James R. Kumbar S.G. Chitosan as a biomaterial: Structure, properties, and applications in tissue engineering and drug delivery. In: Natural and Synthetic Biomedical Polymers Elsevier 2014 pp 91 113
    [Google Scholar]
  110. Gnavi S. Barwig C. Freier T. Haastert-Talini K. Grothe C. Geuna S. The use of chitosan-based scaffolds to enhance regeneration in the nervous system. Int. Rev. Neurobiol. 2013 109 1 62 10.1016/B978‑0‑12‑420045‑6.00001‑8 24093605
    [Google Scholar]
  111. Nelson D.W. Gilbert R.J. Extracellular matrix-mimetic hydrogels for treating neural tissue injury: A focus on fibrin, hyaluronic acid, and elastin-like polypeptide hydrogels. Adv. Healthc. Mater. 2021 10 22 2101329 10.1002/adhm.202101329 34494398
    [Google Scholar]
  112. Srivastava N. Richa Roy Choudhury A. Recent advances in composite hydrogels prepared solely from polysaccharides. Colloids Surf. B Biointerfaces 2021 205 111891 10.1016/j.colsurfb.2021.111891 34116400
    [Google Scholar]
  113. Bauer S. Jin W. Zhang F. Linhardt R.J. The application of seaweed polysaccharides and their derived products with potential for the treatment of Alzheimer’s disease. Mar. Drugs 2021 19 2 89 10.3390/md19020089 33557077
    [Google Scholar]
  114. Gao Y. Li C. Yin J. Shen J. Wang H. Wu Y. Jin H. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of Aβ peptide in rats. Environ. Toxicol. Pharmacol. 2012 33 2 304 311 10.1016/j.etap.2011.12.022 22301160
    [Google Scholar]
  115. Le W-D. Xu X-L. Li S. Zhang R. Neuroprotective effects of naturally sourced bioactive polysaccharides: An update. Neural Regen. Res. 2022 17 9 1907 1912 10.4103/1673‑5374.335142 35142666
    [Google Scholar]
  116. Rekatsina M. Paladini A. Piroli A. Zis P. Pergolizzi J.V. Varrassi G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: A narrative review. Adv. Ther. 2020 37 1 113 139 10.1007/s12325‑019‑01148‑5 31782132
    [Google Scholar]
  117. Xiang Y. Zhang J. Li H. Wang Q. Xiao L. Weng H. Zhou X. Ma C.W. Ma F. Hu M. Huang Z. Epimedium polysaccharide alleviates polyglutamine-induced neurotoxicity in Caenorhabditis elegans by reducing oxidative stress. Rejuvenation Res. 2017 20 1 32 41 10.1089/rej.2016.1830 27222166
    [Google Scholar]
  118. Barbalace M.C. Malaguti M. Giusti L. Lucacchini A. Hrelia S. Angeloni C. Anti-inflammatory activities of marine algae in neurodegenerative diseases. Int. J. Mol. Sci. 2019 20 12 3061 10.3390/ijms20123061 31234555
    [Google Scholar]
  119. Gomes L.E.A. Dalmarco E.M. André E.S. The brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, and induced nitric oxide synthase expressions after low-level laser therapy in an axonotmesis experimental model. Photomed. Laser Surg. 2012 30 11 642 647 10.1089/pho.2012.3242 23003120
    [Google Scholar]
  120. Zhao J. Zheng X. Fu C. Qu W. Wei G. Zhang W. FK506-loaded chitosan conduit promotes the regeneration of injured sciatic nerves in the rat through the upregulation of brain-derived neurotrophic factor and TrkB. J. Neurol. Sci. 2014 344 1-2 20 26 10.1016/j.jns.2014.06.005 24954089
    [Google Scholar]
  121. Khan H. Bangar A. Grewal A.K. Bansal P. Singh T.G. Caspase-mediated regulation of the distinct signaling pathways and mechanisms in neuronal survival. Int. Immunopharmacol. 2022 110 108951 10.1016/j.intimp.2022.108951 35717837
    [Google Scholar]
  122. Kadry H. Noorani B. Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020 17 1 69 10.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  123. Sun Y. Ho C.T. Zhang Y. Hong M. Zhang X. Plant polysaccharides utilized by gut microbiota: New players in ameliorating cognitive impairment. J. Tradit. Complement. Med. 2023 13 2 128 134 10.1016/j.jtcme.2022.01.003 36970456
    [Google Scholar]
  124. Correia A.C. Monteiro A.R. Silva R. Moreira J.N. Sousa Lobo J.M. Silva A.C. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders. Adv. Drug Deliv. Rev. 2022 189 114485 10.1016/j.addr.2022.114485 35970274
    [Google Scholar]
  125. Marasini S. Jia X. Neuroprotective approaches for brain injury after cardiac arrest: Current trends and prospective avenues. J. Stroke 2024 26 2 203 230 10.5853/jos.2023.04329 38836269
    [Google Scholar]
  126. Xu Y. Xi A. Xu Z. Liu F. Neuroprotective effects of monosialotetrahexosylganglioside. Neural Regen. Res. 2015 10 8 1343 1344 10.4103/1673‑5374.162950 26487867
    [Google Scholar]
  127. Ali S. Riaz S. Javed H.U. Khan A.S. Ali M. Naz S. Sardar H. Saleem M.S. Carrageenan based edible coating modulates oxidative stress and delays cell wall polysaccharides disassembly in harvested grapefruit. J. Stored Prod. Res. 2025 111 102514 10.1016/j.jspr.2024.102514
    [Google Scholar]
  128. Fu L. Kwok S.S. Chan Y.K. Therapeutic strategies for attenuation of retinal ganglion cell injury in optic neuropathies: Concepts in translational research and therapeutic implications. Biomed Res Int 2019 2019 8397521 10.1155/2019/8397521 31828134
    [Google Scholar]
  129. Ale M.T. Mikkelsen J.D. Meyer A.S. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 2011 9 10 2106 2130 10.3390/md9102106 22073012
    [Google Scholar]
  130. Qureshi Z. Ali M.N. Khalid M. An insight into potential pharmacotherapeutic agents for painful diabetic neuropathy. J Diabetes Res 2022 2022 9989272 10.1155/2022/9989272 35127954
    [Google Scholar]
  131. Guo M.Q. Hu X. Wang C. Polysaccharides: Structure and solubility. Solub. Polysacch. 2017 2 8 21
    [Google Scholar]
  132. Lin Q. Li K. Chen Y. Xie J. Wu C. Cui C. Deng B. Oxidative stress in diabetic peripheral neuropathy: Pathway and mechanism-based treatment. Mol. Neurobiol. 2023 60 8 4574 4594 10.1007/s12035‑023‑03342‑7 37115404
    [Google Scholar]
  133. Zhong S. Zhou Z. Liang Y. Cheng X. Li Y. Teng W. Zhao M. Liu C. Guan M. Zhao C. Targeting strategies for chemotherapy-induced peripheral neuropathy: Does gut microbiota play a role? Crit. Rev. Microbiol. 2019 45 4 369 393 10.1080/1040841X.2019.1608905 31106639
    [Google Scholar]
  134. Zhang Y. Lin X. Xia L. Xiong S. Xia B. Xie J. Lin Y. Lin L. Wu P. Progress on the anti-inflammatory activity and structure–efficacy relationship of polysaccharides from medical and edible homologous traditional chinese medicines. Molecules 2024 29 16 3852 10.3390/molecules29163852 39202931
    [Google Scholar]
  135. Yue Q. Liu Y. Li F. Hong T. Guo S. Cai M. Zhao L. Su L. Zhang S. Zhao C. Li K. Antioxidant and anticancer properties of fucoidan isolated from Saccharina Japonica brown algae. Sci. Rep. 2025 15 1 8962 10.1038/s41598‑025‑94312‑7 40089594
    [Google Scholar]
  136. Li S. Liu Y. Fan L. Zhu J. Wang L. Preparation and characterization of polysaccharide-based conductive hydrogels for nerve repair. Int. J. Biol. Macromol. 2024 282 Pt 4 136910 10.1016/j.ijbiomac.2024.136910 39476905
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249385605250902120741
Loading
/content/journals/cnsamc/10.2174/0118715249385605250902120741
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test