Skip to content
2000
image of Artificial Intelligence Approaches for Early Prediction of Parkinson’s Disease

Abstract

: Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects both motor and non-motor functions, primarily due to the gradual loss of dopaminergic neurons in the substantia nigra. Traditional diagnostic methods largely depend on clinical symptom evaluation, which often leads to delays in detection and treatment. However, in recent years, artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), have emerged as groundbreaking techniques for the diagnosis and management of PD. This review explores the emergent role of AI-driven techniques in early disease detection, continuous monitoring, and the development of personalized treatment strategies. Advanced AI applications, including medical imaging analysis, speech pattern recognition, gait assessment, and the identification of digital biomarkers, have shown remarkable potential in improving diagnostic accuracy and patient care. Additionally, AI-driven telemedicine solutions enable remote and real-time disease monitoring, addressing challenges related to accessibility and early intervention. Despite these promising advancements, several hurdles remain, such as concerns over data privacy, the interpretability of AI models, and the need for rigorous validation before clinical implementation. With PD cases expected to rise significantly by 2030, further research and interdisciplinary collaboration are crucial to refining AI technologies and ensuring their reliability in medical practice. By bridging the gap between technology and neurology, AI has the potential to revolutionize PD management, paving the way for precision medicine and better patient outcomes.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249377789250724111141
2025-08-18
2025-09-27
Loading full text...

Full text loading...

References

  1. Marvanova M. Introduction to Parkinson disease (PD) and its complications. Ment. Health Clin. 2016 6 5 229 235 10.9740/mhc.2016.09.229 29955475
    [Google Scholar]
  2. Wu T. Hallett M. The cerebellum in Parkinson’s disease. Brain 2013 136 3 696 709 10.1093/brain/aws360 23404337
    [Google Scholar]
  3. Kaczyńska K. Orłowska M.E. Andrzejewski K. Respiratory abnormalities in Parkinson’s disease: What do we know from studies in humans and animal models? Int. J. Mol. Sci. 2022 23 7 3499 10.3390/ijms23073499 35408858
    [Google Scholar]
  4. DeMaagd G. Philip A. Parkinson’s Disease and its management: Part 1: Disease Entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T 2015 40 8 504 532 26236139
    [Google Scholar]
  5. Magrinelli F. Picelli A. Tocco P. Federico A. Roncari L. Smania N. Zanette G. Tamburin S. Pathophysiology of motor dysfunction in parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis. 2016 2016 1 18 10.1155/2016/9832839 27366343
    [Google Scholar]
  6. Kouli A. Torsney K.M. Kuan W-L. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Codon citations 2018 3 26 10.15586/codoncitations.parkinsonsdisease.2018.ch1
    [Google Scholar]
  7. Kline E.M. Houser M.C. Herrick M.K. Seibler P. Klein C. West A. Tansey M.G. Genetic and environmental factors in P arkinson’s disease converge on immune function and inflammation. Mov. Disord. 2021 36 1 25 36 10.1002/mds.28411 33314312
    [Google Scholar]
  8. Radad K. Moldzio R. Krewenka C. Kranner B. Rausch W.D. Pathophysiology of non-motor signs in Parkinson’s disease: some recent updating with brief presentation. Explor. Neuroprotective Ther. 2023 Feb 24 46 10.37349/ent.2023.00036
    [Google Scholar]
  9. Wenning G.K. Stankovic I. Vignatelli L. Fanciulli A. Calandra-Buonaura G. Seppi K. Palma J.A. Meissner W.G. Krismer F. Berg D. Cortelli P. Freeman R. Halliday G. Höglinger G. Lang A. Ling H. Litvan I. Low P. Miki Y. Panicker J. Pellecchia M.T. Quinn N. Sakakibara R. Stamelou M. Tolosa E. Tsuji S. Warner T. Poewe W. Kaufmann H. The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov. Disord. 2022 37 6 1131 1148 10.1002/mds.29005 35445419
    [Google Scholar]
  10. Holtcamp W. The emerging science of BMAA: Do cyanobacteria contribute to neurodegenerative disease? Environ. Health Perspect. 2012 120 3 A110 A116 10.1289/ehp.120‑a110 22382274
    [Google Scholar]
  11. Doan T.T. Pham T.D. Nguyen D.D. Ngo D.H.A. Le T.B. Nguyen T.T. Multiple system atrophy-cerebellar: A case report and literature review. Radiol. Case Rep. 2023 18 3 1121 1126 10.1016/j.radcr.2022.12.046 36660581
    [Google Scholar]
  12. Swain K.P. Samal S.R. Ravi V. Nayak S.R. Alahmadi T.J. Singh P. Diwakar M. Towards early intervention: Detecting Parkinson’s disease through voice analysis with machine learning. Open Biomed. Eng. J. 2024 18 1 e18741207294056 10.2174/0118741207294056240322075602
    [Google Scholar]
  13. Singer H.S. Mink J.W. Gilbert D.L. Jankovic J. Dystonia. Movement Disorders in Childhood. Elsevier 2010 97 109 10.1016/B978‑0‑7506‑9852‑8.00010‑2
    [Google Scholar]
  14. Tambasco N. Romoli M. Calabresi P. Levodopa in Parkinson’s disease: Current status and future developments. Curr. Neuropharmacol. 2018 16 8 1239 1252 10.2174/1570159X15666170510143821 28494719
    [Google Scholar]
  15. Encarnacion E.V. Hauser R.A. COMT inhibitors in the treatment of parkinson’s disease. Encyclopedia of Movement Disorders. Elsevier 2010 246 249 10.1016/B978‑0‑12‑374105‑9.00315‑4
    [Google Scholar]
  16. Wang S. Jiang Y. Yang A. Meng F. Zhang J. Continuous subcutaneous levodopa–carbidopa infusion for Parkinson’s disease. Lancet Neurol. 2024 23 9 856 10.1016/S1474‑4422(24)00273‑4 39152018
    [Google Scholar]
  17. Ahmed M.R. Inayathullah M. Morton M. Pothineni V.R. Kim K. Ahmed M.S. Babar M.M. Rajadas J. Intranasal delivery of liposome encapsulated flavonoids ameliorates l-DOPA induced dyskinesia in hemiparkinsonian mice. Biomaterials 2024 311 122680 10.1016/j.biomaterials.2024.122680 38959534
    [Google Scholar]
  18. Massano J. Bhatia K.P. Clinical approach to Parkinson’s disease: Features, diagnosis, and principles of management. Cold Spring Harb. Perspect. Med. 2012 2 6 a008870 a008870 10.1101/cshperspect.a008870 22675666
    [Google Scholar]
  19. Mei J. Desrosiers C. Frasnelli J. Machine learning for the diagnosis of Parkinson’s disease: A review of literature. Front. Aging Neurosci. 2021 13 633752 10.3389/fnagi.2021.633752 34025389
    [Google Scholar]
  20. Nilius H. Tsouka S. Nagler M. Masoodi M. Machine learning applications in precision medicine: Overcoming challenges and unlocking potential. Trends Analyt. Chem. 2024 179 117872 10.1016/j.trac.2024.117872
    [Google Scholar]
  21. Senbekov M. Saliev T. Bukeyeva Z. Almabayeva A. Zhanaliyeva M. Aitenova N. Toishibekov Y. Fakhradiyev I. The recent progress and applications of digital technologies in healthcare: A review. Int. J. Telemed. Appl. 2020 2020 1 18 10.1155/2020/8830200 33343657
    [Google Scholar]
  22. Salinari A. Machì M. Armas Diaz Y. Cianciosi D. Qi Z. Yang B. Ferreiro Cotorruelo M.S. Villar S.G. Dzul Lopez L.A. Battino M. Giampieri F. The application of digital technologies and artificial intelligence in healthcare: An overview on nutrition assessment. Diseases 2023 11 3 97 10.3390/diseases11030097 37489449
    [Google Scholar]
  23. Templeton J.M. Poellabauer C. Schneider S. Classification of Parkinson’s disease and its stages using machine learning. Sci. Rep. 2022 12 1 14036 10.1038/s41598‑022‑18015‑z 35982070
    [Google Scholar]
  24. Javaid M. Haleem A. Pratap Singh R. Suman R. Rab S. Significance of machine learning in healthcare: Features, pillars and applications. Int. J. Intell. Network. 2022 3 58 73 10.1016/j.ijin.2022.05.002
    [Google Scholar]
  25. Habehh H. Gohel S. Machine learning in healthcare. Curr. Genomics 2021 22 4 291 300 10.2174/1389202922666210705124359 35273459
    [Google Scholar]
  26. Dixit S. Bohre K. Singh Y. Himeur Y. Mansoor W. Atalla S. Srinivasan K. A comprehensive review on AI-enabled models for parkinson’s disease diagnosis. Electronics 2023 12 4 783 10.3390/electronics12040783
    [Google Scholar]
  27. Islam M.A. Hasan Majumder M.Z. Hussein M.A. Hossain K.M. Miah M.S. A review of machine learning and deep learning algorithms for Parkinson’s disease detection using handwriting and voice datasets. Heliyon 2024 10 3 e25469 10.1016/j.heliyon.2024.e25469 38356538
    [Google Scholar]
  28. Alshammri R. Alharbi G. Alharbi E. Almubark I. Machine learning approaches to identify Parkinson’s disease using voice signal features. Front. Artif. Intell. 2023 6 1084001 10.3389/frai.2023.1084001 37056913
    [Google Scholar]
  29. Sarker I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021 2 3 160 10.1007/s42979‑021‑00592‑x 33778771
    [Google Scholar]
  30. Zhao Z. Zhao J. Song K. Hussain A. Du Q. Dong Y. Liu J. Yang X. Joint DBN and Fuzzy C-means unsupervised deep clustering for lung cancer patient stratification. Eng. Appl. Artif. Intell. 2020 91 103571 10.1016/j.engappai.2020.103571
    [Google Scholar]
  31. Shaban M. Deep learning for Parkinson’s disease diagnosis: A short survey. Computers 2023 12 3 58 10.3390/computers12030058
    [Google Scholar]
  32. Somvanshi M. Chavan P. Tambade S. Shinde S.V. A review of machine learning techniques using decision tree and support vector machine. 2016 International Conference on Computing Communication Control and automation (ICCUBEA) Pune, India, 12-13 August 2016, pp. 1-7 10.1109/ICCUBEA.2016.7860040
    [Google Scholar]
  33. Guido R. Ferrisi S. Lofaro D. Conforti D. An overview on the advancements of support vector machine models in healthcare Applications: A review. Information 2024 15 4 235 10.3390/info15040235
    [Google Scholar]
  34. Giotta M. Trerotoli P. Palmieri V.O. Passerini F. Portincasa P. Dargenio I. Mokhtari J. Montagna M.T. De Vito D. Application of a decision tree model to predict the outcome of non-intensive inpatients hospitalized for COVID-19. Int. J. Environ. Res. Public Health 2022 19 20 13016 10.3390/ijerph192013016 36293594
    [Google Scholar]
  35. Nopour R. Shanbehzadeh M. Kazemi-Arpanahi H. Using logistic regression to develop a diagnostic model for COVID-19. J. Educ. Health Promot. 2022 11 1 153 10.4103/jehp.jehp_1017_21 35847143
    [Google Scholar]
  36. Feshki M.G. Shijani O.S. Improving the heart disease diagnosis by evolutionary algorithm of PSO and feed forward neural network. 2016 Artificial Intelligence and Robotics (IRANOPEN) Qazvin, Iran, 9 April 2016, pp. 48-53 10.1109/RIOS.2016.7529489
    [Google Scholar]
  37. Samir A.A. Rashwan A.R. Sallam K.M. Chakrabortty R.K. Ryan M.J. Abohany A.A. Evolutionary algorithm-based convolutional neural network for predicting heart diseases. Comput. Ind. Eng. 2021 161 107651 10.1016/j.cie.2021.107651
    [Google Scholar]
  38. Kumar R.L. Khan F. Din S. Band S.S. Mosavi A. Ibeke E. Recurrent neural network and reinforcement learning model for COVID-19 prediction. Front. Public Health 2021 9 744100 10.3389/fpubh.2021.744100 34671588
    [Google Scholar]
  39. Azeez Joodi M. Hadi Saleh M. Jasim Kadhim D. A new proposed hybrid learning approach with features for extraction of image classification. J. Robot. 2023 2023 1 13 10.1155/2023/9961421
    [Google Scholar]
  40. Hussain S.F. A novel robust kernel for classifying high-dimensional data using Support Vector Machines. Expert Syst. Appl. 2019 131 116 131 10.1016/j.eswa.2019.04.037
    [Google Scholar]
  41. Lai H. Li X.Y. Xu F. Zhu J. Li X. Song Y. Wang X. Wang Z. Wang C. Applications of machine learning to diagnosis of Parkinson’s disease. Brain Sci. 2023 13 11 1546 10.3390/brainsci13111546 38002506
    [Google Scholar]
  42. Paganelli A.I. Mondéjar A.G. da Silva A.C. Silva-Calpa G. Teixeira M.F. Carvalho F. Raposo A. Endler M. Real-time data analysis in health monitoring systems: A comprehensive systematic literature review. J. Biomed. Inform. 2022 127 104009 10.1016/j.jbi.2022.104009 35196579
    [Google Scholar]
  43. Majumder S. Deen M.J. Smartphone sensors for health monitoring and diagnosis. Sensors 2019 19 9 2164 10.3390/s19092164 31075985
    [Google Scholar]
  44. Abbas A. Yadav V. Smith E. Ramjas E. Rutter S.B. Benavidez C. Koesmahargyo V. Zhang L. Guan L. Rosenfield P. Perez-Rodriguez M. Galatzer-Levy I.R. Computer vision-based assessment of motor functioning in schizophrenia: Use of smartphones for remote measurement of schizophrenia symptomatology. Digit. Biomark. 2021 5 1 29 36 10.1159/000512383 33615120
    [Google Scholar]
  45. Yang Y. Yuan Y. Zhang G. Wang H. Chen Y.C. Liu Y. Tarolli C.G. Crepeau D. Bukartyk J. Junna M.R. Videnovic A. Ellis T.D. Lipford M.C. Dorsey R. Katabi D. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 2022 28 10 2207 2215 10.1038/s41591‑022‑01932‑x 35995955
    [Google Scholar]
  46. McClure K. Erdreich B. Bates J.H.T. McGinnis R.S. Masquelin A. Wshah S. Classification and detection of breathing patterns with wearable sensors and deep learning. Sensors 2020 20 22 6481 10.3390/s20226481 33202857
    [Google Scholar]
  47. Pretegiani E. Optican L.M. Eye movements in Parkinson’s disease and inherited parkinsonian syndromes. Front. Neurol. 2017 8 592 10.3389/fneur.2017.00592 29170650
    [Google Scholar]
  48. Wong O.W.H. Chan A.Y.Y. Wong A. Lau C.K.Y. Yeung J.H.M. Mok V.C.T. Lam L.C.W. Chan S. Eye movement parameters and cognitive functions in Parkinson’s disease patients without dementia. Parkinsonism Relat. Disord. 2018 52 43 48 10.1016/j.parkreldis.2018.03.013 29571955
    [Google Scholar]
  49. Islam M.S. Rahman W. Abdelkader A. Lee S. Yang P.T. Purks J.L. Adams J.L. Schneider R.B. Dorsey E.R. Hoque E. Using AI to measure Parkinson’s disease severity at home. NPJ Digit. Med. 2023 6 1 156 10.1038/s41746‑023‑00905‑9 37608206
    [Google Scholar]
  50. Yu B. Kaku A. Liu K. Parnandi A. Fokas E. Venkatesan A. Pandit N. Ranganath R. Schambra H. Fernandez-Granda C. Quantifying impairment and disease severity using AI models trained on healthy subjects. NPJ Digit. Med. 2024 7 1 180 10.1038/s41746‑024‑01173‑x 38969786
    [Google Scholar]
  51. Kamini S. Artificial intelligence based diagnosis of Parkinson’s disorders. Intelligent cyber physical systems and internet of things Singapore Springer 2023 225 238 10.1007/978‑981‑99‑2154‑6_13
    [Google Scholar]
  52. Saravanan S. Ramkumar K. Adalarasu K. Sivanandam V. Kumar S.R. Stalin S. Amirtharajan R. A systematic review of Artificial Intelligence (AI) based approaches for the diagnosis of parkinson’s disease. Arch. Comput. Methods Eng. 2022 29 6 3639 3653 10.1007/s11831‑022‑09710‑1
    [Google Scholar]
  53. Rabie H. Akhloufi M.A. A review of machine learning and deep learning for Parkinson’s disease detection. Discover Artificial Intell. 2025 5 1 24 10.1007/s44163‑025‑00241‑9 40092968
    [Google Scholar]
  54. Fu W. Xu L. Yu Q. Fang J. Zhao G. Li Y. Pan C. Dong H. Wang D. Ren H. Guo Y. Liu Q. Liu J. Chen X. Artificial intelligent olfactory system for the diagnosis of Parkinson’s Disease. ACS Omega 2022 7 5 4001 4010 10.1021/acsomega.1c05060 35155895
    [Google Scholar]
  55. Vasudevan S. Saha A. Tarver M.E. Patel B. Digital biomarkers: Convergence of digital health technologies and biomarkers. NPJ Digit. Med. 2022 5 1 36 10.1038/s41746‑022‑00583‑z 35338234
    [Google Scholar]
  56. Motahari-Nezhad H. Fgaier M. Mahdi Abid M. Péntek M. Gulácsi L. Zrubka Z. Digital biomarker–based studies: Scoping review of systematic reviews. JMIR Mhealth Uhealth 2022 10 10 e35722 10.2196/35722 36279171
    [Google Scholar]
  57. Shah V.V. McNames J. Mancini M. Carlson-Kuhta P. Nutt J.G. El-Gohary M. Lapidus J.A. Horak F.B. Curtze C. Digital biomarkers of mobility in parkinson’s disease during daily living. J. Parkinsons Dis. 2020 10 3 1099 1111 10.3233/JPD‑201914 32417795
    [Google Scholar]
  58. Kalali A. Richerson S. Ouzunova E. Westphal R. Miller B. Digital biomarkers in clinical drug development. Comprehensive precision medicine Oxford, United Kingdom Elsevier 2019 229 238 10.1016/B978‑0‑12‑803161‑2.00016‑3
    [Google Scholar]
  59. Sun Y. Wang Z. Liang Y. Hao C. Shi C. Digital biomarkers for precision diagnosis and monitoring in Parkinson’s disease. NPJ Digit. Med. 2024 7 1 218 10.1038/s41746‑024‑01217‑2 39169258
    [Google Scholar]
  60. Janssen Daalen J.M. van den Bergh R. Prins E.M. Moghadam M.S.C. van den Heuvel R. Veen J. Mathur S. Meijerink H. Mirelman A. Darweesh S.K.L. Evers L.J.W. Bloem B.R. Digital biomarkers for non-motor symptoms in Parkinson’s disease: The state of the art. NPJ Digit. Med. 2024 7 1 186 10.1038/s41746‑024‑01144‑2 38992186
    [Google Scholar]
  61. Alzubaidi L. Zhang J. Humaidi A.J. Al-Dujaili A. Duan Y. Al-Shamma O. Santamaría J. Fadhel M.A. Al-Amidie M. Farhan L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021 8 1 53 10.1186/s40537‑021‑00444‑8 33816053
    [Google Scholar]
  62. Mienye I.D. Swart T.G. Obaido G. Recurrent neural networks: A comprehensive review of architectures, variants, and applications. Information 2024 15 9 517 10.3390/info15090517
    [Google Scholar]
  63. Nalepa J. Kawulok M. Selecting training sets for support vector machines: A review. Artif. Intell. Rev. 2019 52 2 857 900 10.1007/s10462‑017‑9611‑1
    [Google Scholar]
  64. Das P. Nanda S. Panda G. Dash S. Ksibi A. Alsenan S. Bouchelligua W. Mallik S. A robust Parkinson’s disease detection model based on time-varying synaptic efficacy function in spiking neural network. BMC Neurol. 2024 24 1 492 10.1186/s12883‑024‑04001‑7 39734199
    [Google Scholar]
  65. Islam N.U. Khanam R. Kumar A. Using 3D CNN for classification of Parkinson’s disease from resting-state fMRI data. J. Eng. Appl. Sci. (Asian Res. Publ. Netw.) 2023 70 1 89 10.1186/s44147‑023‑00236‑2
    [Google Scholar]
  66. Sahu B. Mohanty S.N. CMBA-SVM: A clinical approach for Parkinson disease diagnosis. Int. J. Inf. Technol. 2021 13 2 647 655 10.1007/s41870‑020‑00569‑8
    [Google Scholar]
  67. Mishra Shubham Maheshwari Tushar Jha Saurabh SVM-based approach for Parkinson’s detection using vocal data. Int Res J Mod Eng Technol Sci 2023 5 5 37926 10.56726/IRJMETS37926
    [Google Scholar]
  68. Kumar K. Ghosh R. Parkinson’s disease diagnosis using recurrent neural network based deep learning model by analyzing online handwriting. Multimedia Tools Appl. 2024 83 4 11687 11715 10.1007/s11042‑023‑15811‑1
    [Google Scholar]
  69. Alissa M. Parkinson’s disease diagnosis using Deep Learning. 2021
    [Google Scholar]
  70. Yousif N.R. Balaha H.M. Haikal A.Y. El-Gendy E.M. A generic optimization and learning framework for Parkinson disease via speech and handwritten records. J. Ambient Intell. Humaniz. Comput. 2023 14 8 10673 10693 10.1007/s12652‑022‑04342‑6 36042792
    [Google Scholar]
  71. Oluwasakin E. Torku T. Tingting S. Yinusa A. Hamdan S. Poudel S. Hasan N. Vargas J. Poudel K. Minimization of high computational cost in data preprocessing and modeling using MPI4Py. Mach. Learn. Appl. 2023 13 100483 10.1016/j.mlwa.2023.100483
    [Google Scholar]
  72. Faragó P. Ștefănigă S.A. Cordoș C.G. Mihăilă L.I. Hintea S. Peștean A.S. Beyer M. Perju-Dumbravă L. Ileșan R.R. CNN-based identification of parkinson’s disease from continuous speech in noisy environments. Bioengineering 2023 10 5 531 10.3390/bioengineering10050531 37237601
    [Google Scholar]
  73. Dennis A.G.P. Strafella A.P. The role of AI and machine learning in the diagnosis of Parkinson’s disease and atypical parkinsonisms. Parkinsonism Relat. Disord. 2024 126 106986 10.1016/j.parkreldis.2024.106986 38724317
    [Google Scholar]
  74. Gupta R. Kumari S. Senapati A. Ambasta R.K. Kumar P. New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson’s disease. Ageing Res. Rev. 2023 90 102013 10.1016/j.arr.2023.102013 37429545
    [Google Scholar]
  75. Rehman A. Saba T. Mujahid M. Alamri F.S. ElHakim N. Parkinson’s disease detection using hybrid LSTM-GRU deep learning model. Electronics 2023 12 13 2856 10.3390/electronics12132856
    [Google Scholar]
  76. Rana A. Dumka A. Singh R. Panda M.K. Priyadarshi N. A computerized analysis with machine learning techniques for the diagnosis of parkinson’s disease: Past studies and future perspectives. Diagnostics 2022 12 11 2708 10.3390/diagnostics12112708 36359550
    [Google Scholar]
  77. Markun L.C. Sampat A. Clinician-focused overview and developments in polysomnography. Curr. Sleep Med. Rep. 2020 6 4 309 321 10.1007/s40675‑020‑00197‑5 33251088
    [Google Scholar]
  78. Voderholzer U. Guilleminault C. Sleep disorders. Handb. Clin. Neurol. 2012 106 527 540 10.1016/B978‑0‑444‑52002‑9.00031‑0 22608642
    [Google Scholar]
  79. Rundo J.V. Downey R. Polysomnography. Handb Clin Neurol. 2019 160 381 10.1016/B978‑0‑444‑64032‑1.00025‑4
    [Google Scholar]
  80. Kwon S. Kim H. Yeo W.H. Recent advances in wearable sensors and portable electronics for sleep monitoring. iScience 2021 24 5 102461 10.1016/j.isci.2021.102461 34013173
    [Google Scholar]
  81. Majumder S. Mondal T. Deen M. Wearable Sensors for Remote Health Monitoring. Sensors 2017 17 1 130 10.3390/s17010130 28085085
    [Google Scholar]
  82. Fu Y. Zhao J. Dong Y. Wang X. Dry electrodes for human bioelectrical signal monitoring. Sensors 2020 20 13 3651 10.3390/s20133651 32610658
    [Google Scholar]
  83. Hong J.Y. Gallanter E. Müller-Oehring E.M. Schulte T. Phases of procedural learning and memory: Characterisation with perceptual-motor sequence tasks. J. Cogn. Psychol. 2019 31 5-6 543 558 10.1080/20445911.2019.1642897 33868637
    [Google Scholar]
  84. Merbah S. Meulemans T. Learning a motor skill: Effects of blocked versus random practice a review. Psychol. Belg. 2011 51 1 15 10.5334/pb‑51‑1‑15
    [Google Scholar]
  85. Oudman E. Nijboer T.C.W. Postma A. Wijnia J.W. Van der Stigchel S. Procedural learning and memory rehabilitation in Korsakoff’s Syndrome: A review of the literature. Neuropsychol. Rev. 2015 25 2 134 148 10.1007/s11065‑015‑9288‑7 26047664
    [Google Scholar]
  86. Foerde K. Shohamy D. The role of the basal ganglia in learning and memory: Insight from Parkinson’s disease. Neurobiol. Learn. Mem. 2011 96 4 624 636 10.1016/j.nlm.2011.08.006 21945835
    [Google Scholar]
  87. Koziol L.F. Budding D. Andreasen N. D’Arrigo S. Bulgheroni S. Imamizu H. Ito M. Manto M. Marvel C. Parker K. Pezzulo G. Ramnani N. Riva D. Schmahmann J. Vandervert L. Yamazaki T. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 2014 13 1 151 177 10.1007/s12311‑013‑0511‑x 23996631
    [Google Scholar]
  88. Oliveira C.M. Hayiou-Thomas M.E. Henderson L.M. The reliability of the serial reaction time task: meta-analysis of test–retest correlations. R. Soc. Open Sci. 2023 10 7 221542 10.1098/rsos.221542 37476512
    [Google Scholar]
  89. Hong Y. Alvarado R.L. Jog A. Greve D.N. Salat D.H. Serial reaction time task performance in older adults with neuropsychologically defined mild cognitive impairment. J. Alzheimers Dis. 2020 74 2 491 500 10.3233/JAD‑191323 32039857
    [Google Scholar]
  90. Vékony T. Pleche C. Pesthy O. Janacsek K. Nemeth D. Speed and accuracy instructions affect two aspects of skill learning differently. NPJ Sci. Learn. 2022 7 1 27 10.1038/s41539‑022‑00144‑9 36273000
    [Google Scholar]
  91. Robertson E.M. The serial reaction time task: Implicit motor skill learning? J. Neurosci. 2007 27 38 10073 10075 10.1523/JNEUROSCI.2747‑07.2007 17881512
    [Google Scholar]
  92. Khan S.A. Oshin N.T. Nizam M. Ahmed I. Musfique M.M. Hasan M. AI-based software testing. Proceedings of World Conference on Information Systems for Business Management. Springer 2024 323 334 10.1007/978‑981‑99‑8346‑9_28
    [Google Scholar]
  93. Nemeth D. Janacsek K. Király K. Londe Z. Németh K. Fazekas K. Ádám I. Elemérné K. Csányi A. Probabilistic sequence learning in mild cognitive impairment. Front. Hum. Neurosci. 2013 7 318 10.3389/fnhum.2013.00318 23847493
    [Google Scholar]
  94. Wilkinson R.T. Response-stimulus interval in choice serial reaction time: Interaction with sleep deprivation, choice, and practice. Q. J. Exp. Psychol. A 1990 42 2 401 423 10.1080/14640749008401228 2367685
    [Google Scholar]
  95. Muslimovic D. Post B. Speelman J.D. Schmand B. Motor procedural learning in Parkinson’s disease. Brain 2007 130 11 2887 2897 10.1093/brain/awm211 17855374
    [Google Scholar]
  96. He M. Liu Y. Guan Z. Li C. Zhang Z. Neuroimaging insights into lung disease-related brain changes: From structure to function. Front. Aging Neurosci. 2025 17 1550319 10.3389/fnagi.2025.1550319 40051465
    [Google Scholar]
  97. Janssen Daalen J.M. Straatsma I.R. van Hees J.W.H. Weevers A. van de Wetering-van Dongen V.A. Nijkrake M.J. Meinders M.J. Bosch F.H. Kox M. Ainslie P.N. Bloem B.R. Thijssen D.H.J. Respiratory dysfunction and abnormal hypoxic ventilatory response in mild to moderate Parkinson’s disease. Mov. Disord. Clin. Pract. (Hoboken) 2024 11 12 1550 1558 10.1002/mdc3.14249 39498807
    [Google Scholar]
  98. D’Arrigo A. Floro S. Bartesaghi F. Casellato C. Sferrazza Papa G.F. Centanni S. Priori A. Bocci T. Respiratory dysfunction in Parkinson’s disease: A narrative review. ERJ Open Res. 2020 6 4 00165-2020 10.1183/23120541.00165‑2020 33043046
    [Google Scholar]
  99. Gaurav G. Anand R.S. Kumar V. EEG based cognitive task classification using multifractal detrended fluctuation analysis. Cogn. Neurodynamics 2021 15 6 999 1013 10.1007/s11571‑021‑09684‑z 34790267
    [Google Scholar]
  100. Dai Z. Liu S. Liu C. Detection of Parkinson’s disease using nocturnal breathing signals based on multifractal detrended fluctuation analysis. Chaos 2024 34 12 123151 10.1063/5.0237878 39671704
    [Google Scholar]
  101. Kumar R. Tripathy M. Kumar N. Anand R.S. Management of Parkinson’s disease dysarthria. Ann. Indian Acad. Neurol. 2022 25 5 810 816 10.4103/aian.aian_554_22 36560994
    [Google Scholar]
  102. Kwan L.C. Whitehill T.L. Perception of speech by individuals with Parkinson’s disease: A review. Parkinsons Dis. 2011 2011 1 11 10.4061/2011/389767 21961077
    [Google Scholar]
  103. Shajari S. Kuruvinashetti K. Komeili A. Sundararaj U. The emergence of AI-based wearable sensors for digital health technology: A review. Sensors 2023 23 23 9498 10.3390/s23239498 38067871
    [Google Scholar]
  104. Di Cesare M.G. Perpetuini D. Cardone D. Merla A. Machine learning-assisted speech analysis for early detection of parkinson’s Disease: A study on speaker diarization and classification techniques. Sensors 2024 24 5 1499 10.3390/s24051499 38475034
    [Google Scholar]
  105. Majeed S.A. Husain H. Samad S.A. Idbeaa T.F. Mel frequency cepstral coefficients (Mfcc) feature extraction enhancement in the application of speech recognition: A comparison study. J. Theor. Appl. Inf. Technol. 2015 79 1 38 56
    [Google Scholar]
  106. Luna-Ortiz I. Aldape-Pérez M. Uriarte-Arcia A.V. Rodríguez-Molina A. Alarcón-Paredes A. Ventura-Molina E. Parkinson’s disease detection from voice recordings using associative memories. Healthcare 2023 11 11 1601 10.3390/healthcare11111601 37297740
    [Google Scholar]
  107. Barot V. Singh Chauhan S. Patel B. Feature selection for modeling intrusion detection. Int. J. Computer Network. Inform. Security 2014 6 7 56 62 10.5815/ijcnis.2014.07.08
    [Google Scholar]
  108. Przybyszewski A.W. Śledzianowski A. Chudzik A. Szlufik S. Koziorowski D. Machine learning and eye movements give insights into neurodegenerative disease mechanisms. Sensors 2023 23 4 2145 10.3390/s23042145 36850743
    [Google Scholar]
  109. Brien D.C. Riek H.C. Yep R. Huang J. Coe B. Areshenkoff C. Grimes D. Jog M. Lang A. Marras C. Masellis M. McLaughlin P. Peltsch A. Roberts A. Tan B. Beaton D. Lou W. Swartz R. Munoz D.P. ONDRI Investigators Classification and staging of Parkinson’s disease using video-based eye tracking. Parkinsonism Relat. Disord. 2023 110 105316 10.1016/j.parkreldis.2023.105316 36822878
    [Google Scholar]
  110. Chudzik A. Śledzianowski A. Przybyszewski A.W. Machine learning and digital biomarkers can detect early stages of neurodegenerative diseases. Sensors 2024 24 5 1572 10.3390/s24051572 38475108
    [Google Scholar]
  111. Srinivasan S. Ramadass P. Mathivanan S.K. Panneer Selvam K. Shivahare B.D. Shah M.A. Detection of Parkinson disease using multiclass machine learning approach. Sci. Rep. 2024 14 1 13813 10.1038/s41598‑024‑64004‑9 38877028
    [Google Scholar]
  112. Krishnan G. Singh S. Pathania M. Gosavi S. Abhishek S. Parchani A. Dhar M. Artificial intelligence in clinical medicine: Catalyzing a sustainable global healthcare paradigm. Front. Artif. Intell. 2023 6 1227091 10.3389/frai.2023.1227091 37705603
    [Google Scholar]
  113. Vitor D. Guerreiro1 T. Ferreira2 J. Machine-learning models for MDS-UPDRS III Prediction: A comparative study of features, models, and data sources. 2023 Available from: https://techandpeople.github.io/downloads/updrs_is22.pdf
  114. Rengasamy D. Jafari M. Rothwell B. Chen X. Figueredo G.P. Deep learning with dynamically weighted loss function for sensor-based prognostics and health management. Sensors 2020 20 3 723 10.3390/s20030723 32012944
    [Google Scholar]
  115. Helou M.A. DiazGranados D. Ryan M.S. Cyrus J.W. Uncertainty in decision making in medicine: A scoping review and thematic analysis of conceptual models. Acad. Med. 2020 95 1 157 165 10.1097/ACM.0000000000002902 31348062
    [Google Scholar]
  116. Hak F. Guimarães T. Santos M. Towards effective clinical decision support systems: A systematic review. PLoS One 2022 17 8 e0272846 10.1371/journal.pone.0272846 35969526
    [Google Scholar]
  117. Guan H. Liu M. Domain adaptation for medical image analysis: A survey. IEEE Trans. Biomed. Eng. 2022 69 3 1173 1185 10.1109/TBME.2021.3117407 34606445
    [Google Scholar]
  118. Alowais S.A. Alghamdi S.S. Alsuhebany N. Alqahtani T. Alshaya A.I. Almohareb S.N. Aldairem A. Alrashed M. Bin Saleh K. Badreldin H.A. Al Yami M.S. Al Harbi S. Albekairy A.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023 23 1 689 10.1186/s12909‑023‑04698‑z 37740191
    [Google Scholar]
  119. Soori M. Arezoo B. Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics 2023 3 54 70 10.1016/j.cogr.2023.04.001
    [Google Scholar]
  120. Davenport T. Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019 6 2 94 98 10.7861/futurehosp.6‑2‑94 31363513
    [Google Scholar]
  121. AbuAlrob M.A. Mesraoua B. Harnessing artificial intelligence for the diagnosis and treatment of neurological emergencies: A comprehensive review of recent advances and future directions. Front. Neurol. 2024 15 October 1485799 10.3389/fneur.2024.1485799 39463792
    [Google Scholar]
  122. Kiseleva A. Kotzinos D. De Hert P. Transparency of AI in healthcare as a multilayered system of accountabilities: Between legal requirements and technical limitations. Front. Artif. Intell. 2022 5 879603 10.3389/frai.2022.879603 35707765
    [Google Scholar]
  123. Johnson K.B. Wei W.Q. Weeraratne D. Frisse M.E. Misulis K. Rhee K. Zhao J. Snowdon J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 2021 14 1 86 93 10.1111/cts.12884 32961010
    [Google Scholar]
  124. Krauss J.K. Lipsman N. Aziz T. Boutet A. Brown P. Chang J.W. Davidson B. Grill W.M. Hariz M.I. Horn A. Schulder M. Mammis A. Tass P.A. Volkmann J. Lozano A.M. Technology of deep brain stimulation: current status and future directions. Nat. Rev. Neurol. 2021 17 2 75 87 10.1038/s41582‑020‑00426‑z 33244188
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249377789250724111141
Loading
/content/journals/cnsamc/10.2174/0118715249377789250724111141
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: neuron ; artificial intelligence ; machine learning ; polysomnography ; Parkinson ; neural network
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test