Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

The complex etiology and limited therapy options of neurodegenerative illnesses pose daunting challenges to modern medicine. Nonetheless, novel treatment approaches have exciting new possibilities because of developments in nanotechnology. Liposomes have garnered a lot of interest as a potential treatment for neurological illnesses due to the fact that they are able to adapt to their role as nanocarriers. This review article discusses various uses of liposomes, including their ability to help treat neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease, as well as their diagnostic and neuroprotective uses. Liposomes allow for the targeted delivery of medicines to specific brain areas with minimal systemic side effects since they encapsulate and carry therapeutic molecules across the blood-brain barrier. Due to the fact that they are biocompatible, have surface features that can be adjusted, and have the ability to co-deliver many drugs, liposomes are excellent candidates for combination therapy and personalized medicine procedures. In spite of this, there is a growing body of research that suggests liposomes could serve as a versatile platform for the improvement of neurodegenerative disease treatment. This is a positive sign for the future results of patients and their quality of life.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249342585241230065557
2025-01-29
2025-10-26
Loading full text...

Full text loading...

References

  1. BongioanniP. Del CarratoreR. CorbiancoS. DianaA. CavalliniG. MasciandaroS.M. DiniM. BuizzaR. Climate change and neurodegenerative diseases.Environ. Res.202120111151110.1016/j.envres.2021.11151134126048
    [Google Scholar]
  2. BehlT. KaurG. SehgalA. BhardwajS. SinghS. BuhasC. Judea-PustaC. UivarosanD. MunteanuM.A. BungauS. Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: Pathophysiological and therapeutic perspectives.Int. J. Mol. Sci.2021223141310.3390/ijms2203141333573368
    [Google Scholar]
  3. HouY. DanX. BabbarM. WeiY. HasselbalchS.G. CroteauD.L. BohrV.A. Ageing as a risk factor for neurodegenerative disease.Nat. Rev. Neurol.2019151056558110.1038/s41582‑019‑0244‑731501588
    [Google Scholar]
  4. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials202215380410.3390/ma1503080435160749
    [Google Scholar]
  5. PoddarM.K. ChakrabortyA. BanerjeeS. Neurodegeneration: Diagnosis, prevention, and therapy.UKIntechOpen London2021
    [Google Scholar]
  6. KciukM. GargN. DhankharS. SainiM. MujwarS. DeviS. ChauhanS. SinghT.G. SinghR. MarciniakB. GielecińskaA. KontekR. Exploring the comprehensive neuroprotective and anticancer potential of afzelin.Pharmaceuticals202417670110.3390/ph1706070138931368
    [Google Scholar]
  7. GitlerA.D. DhillonP. ShorterJ. Neurodegenerative disease: models, mechanisms, and a new hope.Dis. Model. Mech.201710549950210.1242/dmm.03020528468935
    [Google Scholar]
  8. BuckleyC. AlcockL. McArdleR. RehmanR. Del DinS. MazzàC. YarnallA. RochesterL. The role of movement analysis in diagnosing and monitoring neurodegenerative conditions: Insights from gait and postural control.Brain Sci.2019923410.3390/brainsci902003430736374
    [Google Scholar]
  9. GarbayoE. AnsorenaE. Blanco-PrietoM.J. Brain drug delivery systems for neurodegenerative disorders.Curr. Pharm. Biotechnol.201213122388240210.2174/13892011280334176123016644
    [Google Scholar]
  10. CunnaneS.C. TrushinaE. MorlandC. PrigioneA. CasadesusG. AndrewsZ.B. BealM.F. BergersenL.H. BrintonR.D. de la MonteS. EckertA. HarveyJ. JeggoR. JhamandasJ.H. KannO. la CourC.M. MartinW.F. MithieuxG. MoreiraP.I. MurphyM.P. NaveK.A. NurielT. OlietS.H.R. SaudouF. MattsonM.P. SwerdlowR.H. MillanM.J. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing.Nat. Rev. Drug Discov.202019960963310.1038/s41573‑020‑0072‑x32709961
    [Google Scholar]
  11. ZylberbergC. MatosevicS. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape.Drug Deliv.20162393319332910.1080/10717544.2016.117713627145899
    [Google Scholar]
  12. Cohen-PfefferJ.L. GururanganS. LesterT. LimD.A. ShaywitzA.J. WestphalM. SlavcI. Intracerebroventricular delivery as a safe, long-term route of drug administration.Pediatr. Neurol.201767233510.1016/j.pediatrneurol.2016.10.02228089765
    [Google Scholar]
  13. WyseR. DunbarG. RossignolJ. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases.Int. J. Mol. Sci.20141521719174510.3390/ijms1502171924463293
    [Google Scholar]
  14. TiwariC. KhanH. GrewalA.K. DhankharS. ChauhanS. DuaK. GuptaG. SinghT.G. Opiorphin: An endogenous human peptide with intriguing application in diverse range of pathologies.Inflammopharmacology20243253037305610.1007/s10787‑024‑01526‑839164607
    [Google Scholar]
  15. VieiraD. GamarraL. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood–brain barrier.Int. J. Nanomedicine2016115381541410.2147/IJN.S11721027799765
    [Google Scholar]
  16. MonteiroN. MartinsA. ReisR.L. NevesN.M. Liposomes in tissue engineering and regenerative medicine.J. R. Soc. Interface2014111012014045910.1098/rsif.2014.045925401172
    [Google Scholar]
  17. Islam ShishirM.R. KarimN. GowdV. ZhengX. ChenW. Liposomal delivery of natural product: A promising approach in health research.Trends Food Sci. Technol.20198517720010.1016/j.tifs.2019.01.013
    [Google Scholar]
  18. PasarinD. GhizdareanuA.I. EnascutaC.E. MateiC.B. BilbieC. Paraschiv-PaladaL. VeresP.A. Coating materials to increase the stability of liposomes.Polymers202315378210.3390/polym1503078236772080
    [Google Scholar]
  19. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  20. McClementsD.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review.Adv. Colloid Interface Sci.201825312210.1016/j.cis.2018.02.00229478671
    [Google Scholar]
  21. JoyR. GeorgeJ. JohnF. Brief outlook on polymeric nanoparticles, micelles, niosomes, hydrogels and liposomes: Preparative methods and action.ChemistrySelect202276e20210404510.1002/slct.202104045
    [Google Scholar]
  22. LiM. DuC. GuoN. TengY. MengX. SunH. LiS. YuP. GalonsH. Composition design and medical application of liposomes.Eur. J. Med. Chem.201916464065310.1016/j.ejmech.2019.01.00730640028
    [Google Scholar]
  23. YusafR. Structural components of liposomes and characterization tools.American Journal of Pharm Research2014408
    [Google Scholar]
  24. HatziantonioyS. DemetzosC. Lipids of membranes: Chemistry, biological role and applications as drug carriers.Studies in natural products chemistry200813417320210.1016/S1572‑5995(08)80027‑0
    [Google Scholar]
  25. van HoogevestP. WendelA. The use of natural and synthetic phospholipids as pharmaceutical excipients.Eur. J. Lipid Sci. Technol.201411691088110710.1002/ejlt.20140021925400504
    [Google Scholar]
  26. SoodR. TomarD. KaushikP. SharmaP. RaniN. GuarveK. DhankharS. GargN. Enhanced solubility and increased bioavailability with engineered nanocrystals.Curr. Drug Ther.202419663864710.2174/0115748855269071231113070552
    [Google Scholar]
  27. DrescherS. van HoogevestP. The phospholipid research center: Current research in phospholipids and their use in drug delivery.Pharmaceutics20201212123510.3390/pharmaceutics1212123533353254
    [Google Scholar]
  28. RobertsJ.R. The nutritional and physiological functions of egg yolk components Yasumi Horimoto, University of Guelph, Canada and Hajime Hatta, Kyoto Women’s University, JapanAchieving sustainable production of eggs Volume 11st2017Burleigh Dodds Science Publishing6911610.19103/AS.2016.0012.03
    [Google Scholar]
  29. KalraJ. BallyM.B. Liposomes.Fundamentals of pharmaceutical nanoscience.2013Springer New YorkNew York, NY2763
    [Google Scholar]
  30. NakhaeiP. MargianaR. BokovD.O. AbdelbassetW.K. Jadidi KouhbananiM.A. VarmaR.S. MarofiF. JarahianM. BeheshtkhooN. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol.Front. Bioeng. Biotechnol.2021970588610.3389/fbioe.2021.70588634568298
    [Google Scholar]
  31. LiuR.R. CannonJ.B. PaspalS.Y. Liposomes in solubilization.Water-Insoluble Drug Formulation.CRC Press2018405449
    [Google Scholar]
  32. MollinedoF. GajateC. Mitochondrial targeting involving cholesterol-rich lipid rafts in the mechanism of action of the antitumor ether lipid and alkylphospholipid analog edelfosine.Pharmaceutics202113576310.3390/pharmaceutics1305076334065546
    [Google Scholar]
  33. MoL. HouL. GuoD. XiaoX. MaoP. YangX. Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells.Int. J. Pharm.20124361-281582410.1016/j.ijpharm.2012.07.05022846410
    [Google Scholar]
  34. HolsæterA.M. WizgirdK. KarlsenI. HemmingsenJ.F. BrandlM. Škalko-BasnetN. How docetaxel entrapment, vesicle size, zeta potential and stability change with liposome composition–A formulation screening study.Eur. J. Pharm. Sci.202217710626710.1016/j.ejps.2022.10626735872073
    [Google Scholar]
  35. MittalP. SharmaH. KapoorR. GautamR.K. GargN. DhankharS. Biobased Nanomaterials in Biomedical Applications.Biobased Nanomaterials: Applications in Biomedicine, Food Industry, Agriculture, and Environmental Sustainability2024Springer Nature SingaporeSingapore14117110.1007/978‑981‑97‑0542‑9_6
    [Google Scholar]
  36. RathodS. AryaS. ShuklaR. RayD. AswalV.K. BahadurP. TiwariS. Investigations on the role of edge activator upon structural transitions in Span vesicles.Colloids Surf. A Physicochem. Eng. Asp.202162712724610.1016/j.colsurfa.2021.127246
    [Google Scholar]
  37. MudgilM. PawarP.K. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application.Sci. Pharm.201381259160610.3797/scipharm.1204‑1623833723
    [Google Scholar]
  38. WelderfaelT. YadavO.P. TaddesseA.M. KaushalJ. Synthesis, characterization and photocatalytic activities of Ag-N-codoped ZnO nanoparticles for degradation of methyl red.Bull. Chem. Soc. Ethiop.201327222123210.4314/bcse.v27i2.7
    [Google Scholar]
  39. KumarA. BehlT. ChadhaS. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects.Int. J. Biol. Macromol.20201491262127410.1016/j.ijbiomac.2020.02.04832044364
    [Google Scholar]
  40. LaiF. FaddaA.M. SinicoC. Liposomes for brain delivery.Expert Opin. Drug Deliv.20131071003102210.1517/17425247.2013.76671423373728
    [Google Scholar]
  41. SharmaS. KumariN. GargD. ChauhanS. A Compendium of Bioavailability Enhancement via Niosome Technology.Pharm. Nanotechnol.202311432433810.2174/221173851166623030910432336892113
    [Google Scholar]
  42. NaahidiS. JafariM. EdalatF. RaymondK. KhademhosseiniA. ChenP. Biocompatibility of engineered nanoparticles for drug delivery.J. Control. Release2013166218219410.1016/j.jconrel.2012.12.01323262199
    [Google Scholar]
  43. SilindirM. ErdoğanS. ÖzerA.Y. MaiaS. Liposomes and their applications in molecular imaging.J. Drug Target.201220540141510.3109/1061186X.2012.68547722553977
    [Google Scholar]
  44. AgrawalM. Ajazuddin TripathiD.K. SarafS. SarafS. AntimisiarisS.G. MourtasS. Hammarlund-UdenaesM. AlexanderA. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease.J. Control. Release2017260617710.1016/j.jconrel.2017.05.01928549949
    [Google Scholar]
  45. FormicolaB. CoxA. dal MagroR. MasseriniM. ReF. Nanomedicine for the Treatment of Alzheimer’s Disease.J. Biomed. Nanotechnol.201915101997202410.1166/jbn.2019.283731462368
    [Google Scholar]
  46. NazirisN. DemetzosC. Production methods and application in Alzheimer’s disease.Genet. Neurodegen. Dise.2021133938539410.1007/978‑3‑030‑78787‑5_48
    [Google Scholar]
  47. TaliyanR. KakotyV. SarathlalK.C. KharavtekarS.S. KarennanavarC.R. ChoudharyY.K. SinghviG. RiadiY. DubeyS.K. KesharwaniP. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease.J. Control. Release202234352855010.1016/j.jconrel.2022.01.04435114208
    [Google Scholar]
  48. AgrawalM. SinghS. AlexanderA. AntimisiarisS.G. Liposomes for drug delivery to the brain.Liposomes in Drug Delivery.Elsevier202424326210.1016/B978‑0‑443‑15491‑1.00006‑7
    [Google Scholar]
  49. TosiG. PederzoliF. BellettiD. VandelliM.A. ForniF. DuskeyJ.T. RuoziB. Nanomedicine in Alzheimer’s disease: Amyloid beta targeting strategy.Prog. Brain Res.201924513210.1016/bs.pbr.2019.03.00130961872
    [Google Scholar]
  50. MourtasS. CanoviM. ZonaC. AuriliaD. NiarakisA. La FerlaB. SalmonaM. NicotraF. GobbiM. AntimisiarisS.G. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide.Biomaterials20113261635164510.1016/j.biomaterials.2010.10.02721131044
    [Google Scholar]
  51. NunesD.S.S. The use of natural compounds loaded into solid lipid nanoparticles for the alzheimer´ s disease therapy: A new therapeutic approach.University of Porto2020
    [Google Scholar]
  52. CanoviM. MarkoutsaE. LazarA.N. PampalakisG. ClementeC. ReF. SesanaS. MasseriniM. SalmonaM. DuyckaertsC. FloresO. GobbiM. AntimisiarisS.G. The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue.Biomaterials201132235489549710.1016/j.biomaterials.2011.04.02021529932
    [Google Scholar]
  53. Moradi-SardarehH. MoradiM. BordbarE. MalekpourM. BagheriS. NakhodazadehN. RahbarS. Farhadian AsgarabadiJ. The use of monoclonal antibodies in the treatment of alzheimer disease.Asian Pacific Journal of Cancer Biology201613596610.31557/apjcb.2016.1.3.59‑66
    [Google Scholar]
  54. AndradeS. LoureiroJ.A. PereiraM.C. The role of amyloid β‐biomembrane interactions in the pathogenesis of alzheimer’s disease: Insights from liposomes as membrane models.ChemPhysChem202122151547156510.1002/cphc.20210012434086399
    [Google Scholar]
  55. VlamosP. KotsireasI.S. TarnanasI. Applications of nanotechnology in alzheimer’s disease.Front Bioeng. Biotechnol.202210104298610.3389/fbioe.2022.1042986
    [Google Scholar]
  56. PathakK. MishraS.K. PorwalA. BahadurS. Nanocarriers for Alzheimer’s disease: Research and patent update.Journal of Applied Pharmaceutical Science202111300121
    [Google Scholar]
  57. BhattT. PatelB.M. PatelM.M. Parkinson’s disease.Drug Delivery Devices and Therapeutic Systems.Elsevier202149151310.1016/B978‑0‑12‑819838‑4.00028‑6
    [Google Scholar]
  58. MittalP. DhankharS. ChauhanS. GargN. BhattacharyaT. AliM. ChaudharyA.A. RudayniH.A. Al-ZharaniM. AhmadW. KhanS.U.D. SinghT.G. MujwarS. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson’s Disease.Pharmaceuticals202316790810.3390/ph1607090837513820
    [Google Scholar]
  59. NarwalS. DhandaT. SharmaP. SharmaV. DhankharS. GargN. GhoshN.S. RaniN. Current therapeutic strategies for chagas disease.Anti-infect. Agents2024222e23082322025610.2174/2211352521666230823122601
    [Google Scholar]
  60. SinghA. MaharanaS.K. ShuklaR. KesharwaniP. Nanotherapeutics approaches for targeting alpha synuclien protein in the management of Parkinson disease.Process Biochem.202111018119410.1016/j.procbio.2021.08.008
    [Google Scholar]
  61. KahanaM. WeizmanA. GabayM. LobodaY. Segal-GavishH. GavishA. BarhumY. OffenD. FinbergJ. AllonN. GavishM. Liposome-based targeting of dopamine to the brain: a novel approach for the treatment of Parkinson’s disease.Mol. Psychiatry20212662626263210.1038/s41380‑020‑0742‑432372010
    [Google Scholar]
  62. ShankarJ. GeethaK. WilsonB. Potential applications of nanomedicine for treating Parkinson’s disease.J. Drug Deliv. Sci. Technol.20216610279310.1016/j.jddst.2021.102793
    [Google Scholar]
  63. AhmedM.S. KhanI.J. AmanS. ChauhanS. KaurN. ShriwastavS. GoelK. SainiM. DhankarS. SinghT.G. DevJ. MujwarS. Phytochemical investigationsPhytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul.J. Exp. Biol. Agric. Sci.202311238039310.18006/2023.11(2).380.393
    [Google Scholar]
  64. BhosaleA. PaulG. MazahirF. YadavA.K. Theoretical and applied concepts of nanocarriers for the treatment of Parkinson’s diseases.OpenNano2023910011110.1016/j.onano.2022.100111
    [Google Scholar]
  65. KarthivashanG. GanesanP. ParkS.Y. LeeH.W. ChoiD.K. Lipid-based nanodelivery approaches for dopamine-replacement therapies in Parkinson’s disease: From preclinical to translational studies.Biomaterials202023211970410.1016/j.biomaterials.2019.11970431901690
    [Google Scholar]
  66. PandianS.R.K. VijayakumarK.K. MurugesanS. KunjiappanS. Liposomes: An emerging carrier for targeting Alzheimer’s and Parkinson’s diseases.Heliyon202286e0957510.1016/j.heliyon.2022.e0957535706935
    [Google Scholar]
  67. SoniV. Design and fabrication of brain-targeted drug delivery.Basic Fundamentals of Drug Delivery.Elsevier201953959310.1016/B978‑0‑12‑817909‑3.00014‑5
    [Google Scholar]
  68. DhankharS. ChauhanS. MehtaD.K. Nitika SainiK. SainiM. DasR. GuptaS. GautamV. Novel targets for potential therapeutic use in Diabetes mellitus.Diabetol. Metab. Syndr.20231511710.1186/s13098‑023‑00983‑536782201
    [Google Scholar]
  69. DhankharS. GargN. ChauhanS. SainiM. Role of artificial intelligence in diabetic wound screening and early detection.Curr. Biotechnol.20241329310610.2174/0122115501303253240408072559
    [Google Scholar]
  70. RohillaM. Rishabh BansalS. GargA. DhimanS. DhankharS. SainiM. ChauhanS. AlsubaieN. BatihaG.E.S. AlbezrahN.K.A. SinghT.G. Discussing pathologic mechanisms of diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of diabetic retinopathy.Biomed. Pharmacother.202316911588110.1016/j.biopha.2023.11588137989030
    [Google Scholar]
  71. RohillaS. SharmaP. KambojS. DhankharS. GargN. ChauhanS. RaniN. Anabolic androgenic steroids: A review.Emir. Med. J.20245e0250688225370610.2174/0102506882253706240104073440
    [Google Scholar]
  72. SmeyneM. SmeyneR.J. Glutathione metabolism and Parkinson’s disease.Free Radic. Biol. Med.201362132510.1016/j.freeradbiomed.2013.05.00123665395
    [Google Scholar]
  73. ChauhanS. GuptaS. YasminS. SainiM. Antihyperglycemic and antioxidant potential of plant extract of litchi chinensis and glycine max.Int. J. Nutr. Pharmacol. Neurol. Dis.202111322523310.4103/ijnpnd.ijnpnd_13_21
    [Google Scholar]
  74. NguyenA. BöttgerR. LiS.D. Recent trends in bioresponsive linker technologies of prodrug-based self-assembling nanomaterials.Biomaterials202127512095510.1016/j.biomaterials.2021.12095534130143
    [Google Scholar]
  75. DhankarS. GargN. ChauhanS. SainiM. A bird view on the role of graphene oxide nanosystems in therapeutic delivery.Curr. Nanosci.20242011110.2174/0115734137299120240312044808
    [Google Scholar]
  76. BondarenkoO. SaarmaM. Neurotrophic factors in Parkinson’s disease: clinical trials, open challenges and nanoparticle-mediated delivery to the brain.Front. Cell. Neurosci.20211568259710.3389/fncel.2021.68259734149364
    [Google Scholar]
  77. DhankharS. Cognitive rehabilitation for early-stage dementia: A review.Curr. Psychiatry Res. Rev.202420114
    [Google Scholar]
  78. LalitK. Phyto-pharmacological review of Coccinia indica.World J. Pharm. Pharm. Sci.20143217341745
    [Google Scholar]
  79. KumarB. PandeyM. PottooF.H. FayazF. SharmaA. SahooP.K. Liposomes: Novel drug delivery approach for targeting Parkinson’s disease.Curr. Pharm. Des.202026374721473710.2174/138161282666620012814512432003666
    [Google Scholar]
  80. DhankharS. MujwarS. GargN. ChauhanS. SainiM. SharmaP. KumarS. Kumar SharmaS. KamalM.A. RaniN. Artificial intelligence in the management of neurodegenerative disorders.CNS Neurol. Disord. Drug Targets202423893194010.2174/011871527326609523100909260337861051
    [Google Scholar]
  81. TabriziS.J. FlowerM.D. RossC.A. WildE.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities.Nat. Rev. Neurol.2020161052954610.1038/s41582‑020‑0389‑432796930
    [Google Scholar]
  82. MustafaG. HassanD. ZeeshanM. Ruiz-PulidoG. EbrahimiN. MobasharA. PourmadadiM. RahdarA. SargaziS. Fathi-karkanS. MedinaD.I. Díez-PascualA.M. Advances in nanotechnology versus stem cell therapy for the theranostics of huntington’s disease.J. Drug Deliv. Sci. Technol.20238710477410.1016/j.jddst.2023.104774
    [Google Scholar]
  83. LataJ.M.G. The role of nanotechnology to overcome the natural compounds limitations in the treatment of Alzheimer's and Huntington's diseases.Laboratory for Process Engineering, Environment, Biotechnology and Energy2020132
    [Google Scholar]
  84. PanchalM. RanaP. GargN. DhankharS. SharmaH. ChauhanS. A Comprehensive review of alternative therapeutic approaches for nausea and vomiting relief in pregnancy.Emir. Med. J.20245e0250688228292910.2174/0102506882282929231212074538
    [Google Scholar]
  85. SaharanR. KaurJ. DhankharS. GargN. ChauhanS. BeniwalS. SharmaH. Hydrogel-based drug delivery system in diabetes management.Pharm. Nanotechnol.202412428929910.2174/012211738526627623092806423537818559
    [Google Scholar]
  86. ChauhanS. KishoreL. KaurN. SinghR. Potential anti-arthritic agents from indian medicinal plants.Res. Rev. J. Pharm. Pharm. Sci.2015431022
    [Google Scholar]
  87. BiroliniG. ValenzaM. OttonelliI. TalpoF. MinoliL. CappelleriA. BombaciM. CacciaC. CanevariC. TruccoA. LeoniV. PassoniA. FavagrossaM. NuceraM.R. ColomboL. PaltrinieriS. BagnatiR. DuskeyJ.T. CaraffiR. VandelliM.A. TaroniF. SalmonaM. ScanzianiE. BiellaG. RuoziB. TosiG. CattaneoE. Chronic cholesterol administration to the brain supports complete and long-lasting cognitive and motor amelioration in Huntington’s disease.Pharmacol. Res.202319410682310.1016/j.phrs.2023.10682337336430
    [Google Scholar]
  88. PassoniA. FavagrossaM. ColomboL. BagnatiR. GobbiM. DiomedeL. BiroliniG. Di PaoloE. ValenzaM. CattaneoE. SalmonaM. Efficacy of cholesterol nose-to-brain delivery for brain targeting in Huntington’s disease.ACS Chem. Neurosci.202011336737210.1021/acschemneuro.9b0058131860272
    [Google Scholar]
  89. SharmaH. GargN. DhankharS. MIttalP. ChauhanS. SainiM. Biobased nanomaterials: Pioneering innovations for biomedical advancements.Pharm. Nanotechnol.20241211510.2174/012211738529153024030504470338504570
    [Google Scholar]
  90. MarinoA. BattagliniM. DesiiA. LavarelloC. GenchiG. PetrettoA. CiofaniG. Liposomes loaded with polyphenol-rich grape pomace extracts protect from neurodegeneration in a rotenone-based in vitro model of Parkinson’s disease.Biomater. Sci.20219248171818810.1039/D1BM01202A34617936
    [Google Scholar]
  91. SharmaP. KaushikP. Kumar SharmaS. DhankharS. GargN. RaniN. Exploring microsponges in dermatology: Opportunities and hurdles ahead.Micro Nanosyst.2024162657410.2174/0118764029295903240328054858
    [Google Scholar]
  92. DhasmanaS. DhasmanaA. NarulaA.S. JaggiM. YallapuM.M. ChauhanS.C. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder.Life Sci.202228812015610.1016/j.lfs.2021.12015634801512
    [Google Scholar]
  93. AshokA. AndrabiS.S. MansoorS. KuangY. KwonB.K. LabhasetwarV. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation.Antioxidants202211240810.3390/antiox1102040835204290
    [Google Scholar]
  94. WangZ.Y. SreenivasmurthyS.G. SongJ.X. LiuJ.Y. LiM. Strategies for brain-targeting liposomal delivery of small hydrophobic molecules in the treatment of neurodegenerative diseases.Drug Discov. Today201924259560510.1016/j.drudis.2018.11.00130414950
    [Google Scholar]
  95. WileyN.J. MadhankumarA.B. MitchellR.M. NeelyE.B. RizkE. DoudsG.L. SimmonsZ. ConnorJ.R. Lipopolysaccharide modified liposomes for amyotropic lateral sclerosis therapy: Efficacy in SOD1 mouse model.Advances in Nanoparticles2012103445310.4236/anp.2012.13007
    [Google Scholar]
  96. LeeJ.C. SeongJ. KimS.H. LeeS.J. ChoY.J. AnJ. NamD.H. JooK.M. ChaC.I. Replacement of microglial cells using Clodronate liposome and bone marrow transplantation in the central nervous system of SOD1G93A transgenic mice as an in vivo model of amyotrophic lateral sclerosis.Biochem. Biophys. Res. Commun.2012418235936510.1016/j.bbrc.2012.01.02622269142
    [Google Scholar]
  97. YangT. FerrillL. GallantL. McGillicuddyS. FernandesT. SchieldsN. BaiS. Verapamil and riluzole cocktail liposomes overcome pharmacoresistance by inhibiting P-glycoprotein in brain endothelial and astrocyte cells: A potent approach to treat amyotrophic lateral sclerosis.Eur. J. Pharm. Sci.2018120303910.1016/j.ejps.2018.04.02629704642
    [Google Scholar]
  98. Pinzón-DazaM. CampiaI. KopeckaJ. GarzónR. GhigoD. RigantC. Nanoparticle- and liposome-carried drugs: New strategies for active targeting and drug delivery across blood-brain barrier.Curr. Drug Metab.201314662564010.2174/138920021131406000123869808
    [Google Scholar]
  99. SoniD. KhanH. ChauhanS. KaurA. DhankharS. GargN. SinghT.G. Exploring therapeutic potential: Targeting TRPM7 in neurodegenerative diseases.Int. Immunopharmacol.2024142Pt B11314210.1016/j.intimp.2024.11314239298812
    [Google Scholar]
  100. YangX. LiuK. P-gp inhibition-based strategies for modulating pharmacokinetics of anticancer drugs: An update.Curr. Drug Metab.201617880682610.2174/138920021766616062911271727364832
    [Google Scholar]
  101. BulbakeU. DoppalapudiS. KommineniN. KhanW. Liposomal formulations in clinical use: An updated review.Pharmaceutics2017921210.3390/pharmaceutics902001228346375
    [Google Scholar]
  102. YadavK. Commercial aspects and market potential of novel delivery systems for bioactives and biological agents.Advances and avenues in the development of novel carriers for bioactives and biological agents.Elsevier202059562010.1016/B978‑0‑12‑819666‑3.00020‑1
    [Google Scholar]
  103. PatelM.M. PatelB.M. Crossing the blood–brain barrier: recent advances in drug delivery to the brain.CNS Drugs201731210913310.1007/s40263‑016‑0405‑928101766
    [Google Scholar]
  104. SchnyderA. HuwylerJ. Drug transport to brain with targeted liposomes.NeuroRx2005219910710.1602/neurorx.2.1.9915717061
    [Google Scholar]
  105. LiuH.J. XuP. Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor.Adv. Drug Deliv. Rev.202219111461910.1016/j.addr.2022.11461936372301
    [Google Scholar]
  106. DingS. KhanA.I. CaiX. SongY. LyuZ. DuD. DuttaP. LinY. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies.Mater. Today20203711212510.1016/j.mattod.2020.02.00133093794
    [Google Scholar]
  107. LammersT. KiesslingF. HenninkW.E. StormG. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress.J. Control. Release2012161217518710.1016/j.jconrel.2011.09.06321945285
    [Google Scholar]
  108. MiyazakiI. AsanumaM. Therapeutic strategy of targeting astrocytes for neuroprotection in Parkinson’s disease.Curr. Pharm. Des.201723334936494728699520
    [Google Scholar]
  109. GregoriadisG. Liposome research in drug delivery: The early days.J. Drug Target.2008167-852052410.1080/1061186080222835018686120
    [Google Scholar]
  110. FieblingerT. GravesS.M. SebelL.E. AlcacerC. PlotkinJ.L. GertlerT.S. ChanC.S. HeimanM. GreengardP. CenciM.A. SurmeierD.J. Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia.Nat. Commun.201451531610.1038/ncomms631625360704
    [Google Scholar]
  111. MendesM. SousaJ.J. PaisA. VitorinoC. Targeted theranostic nanoparticles for brain tumor treatment.Pharmaceutics201810418110.3390/pharmaceutics1004018130304861
    [Google Scholar]
  112. BorgesA. de FreitasV. MateusN. FernandesI. OliveiraJ. Solid lipid nanoparticles as carriers of natural phenolic compounds.Antioxidants202091099810.3390/antiox910099833076501
    [Google Scholar]
  113. GregoriM. TaylorM. SalvatiE. ReF. ManciniS. BalducciC. ForloniG. ZambelliV. SesanaS. MichaelM. MichailC. Tinker-MillC. KolosovO. ShererM. HarrisS. FullwoodN.J. MasseriniM. AllsopD. Retro-inverso peptide inhibitor nanoparticles as potent inhibitors of aggregation of the Alzheimer’s Aβ peptide.Nanomedicine201713272373210.1016/j.nano.2016.10.00627769888
    [Google Scholar]
  114. HuangM. HuM. SongQ. SongH. HuangJ. GuX. WangX. ChenJ. KangT. FengX. JiangD. ZhengG. ChenH. GaoX. GM1-modified lipoprotein-like nanoparticle: Multifunctional nanoplatform for the combination therapy of Alzheimer’s disease.ACS Nano2015911108011081610.1021/acsnano.5b0312426440073
    [Google Scholar]
  115. RebasE. RzajewJ. RadzikT. ZylinskaL. Neuroprotective polyphenols: A modulatory action on neurotransmitter pathways.Curr. Neuropharmacol.202018543144510.2174/1570159X1866620010615512731903883
    [Google Scholar]
  116. Di BattistaV. Hey-HawkinsE. Development of prodrugs for treatment of parkinson’s disease: New inorganic scaffolds for blood–brain barrier permeation.J. Pharm. Sci.202211151262127910.1016/j.xphs.2022.02.00535182542
    [Google Scholar]
  117. HernandoS. Santos-VizcaínoE. IgartuaM. HernandezR.M. Targeting the central nervous system: From synthetic nanoparticles to extracellular vesicles—Focus on Alzheimer’s and Parkinson’s disease.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023155e189810.1002/wnan.189837157144
    [Google Scholar]
  118. PahujaR. SethK. ShuklaA. ShuklaR.K. BhatnagarP. ChauhanL.K.S. SaxenaP.N. ArunJ. ChaudhariB.P. PatelD.K. SinghS.P. ShuklaR. KhannaV.K. KumarP. ChaturvediR.K. GuptaK.C. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.ACS Nano2015954850487110.1021/nn506408v25825926
    [Google Scholar]
  119. LopalcoA. CutrignelliA. DenoraN. LopedotaA. FrancoM. LaquintanaV. Transferrin functionalized liposomes loading dopamine HCl: Development and permeability studies across an in vitro model of human blood–brain barrier.Nanomaterials20188317810.3390/nano803017829558440
    [Google Scholar]
  120. HueyR. HawthorneS. McCarronP. The potential use of rabies virus glycoprotein-derived peptides to facilitate drug delivery into the central nervous system: A mini review.J. Drug Target.201725537938510.1080/1061186X.2016.122367627581650
    [Google Scholar]
  121. QuM. LinQ. HeS. WangL. FuY. ZhangZ. ZhangL. A brain targeting functionalized liposomes of the dopamine derivative N -3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease.J. Control. Release201827717318210.1016/j.jconrel.2018.03.01929588159
    [Google Scholar]
  122. EmreM. AarslandD. AlbaneseA. ByrneE.J. DeuschlG. De DeynP.P. DurifF. KulisevskyJ. van LaarT. LeesA. PoeweW. RobillardA. RosaM.M. WoltersE. QuargP. TekinS. LaneR. Rivastigmine for dementia associated with Parkinson’s disease.N. Engl. J. Med.2004351242509251810.1056/NEJMoa04147015590953
    [Google Scholar]
  123. Nageeb El-HelalyS. Abd ElbaryA. KassemM.A. El-NabarawiM.A. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies.Drug Deliv.201724169270010.1080/10717544.2017.130947628415883
    [Google Scholar]
  124. McEneny-KingA. Metabolism, transport, and physiologically based pharmacokinetic modelling of novel tacrine derivatives.University of Waterloo201516
    [Google Scholar]
  125. CoraceG. AngeloniC. MalagutiM. HreliaS. SteinP.C. BrandlM. GottiR. LuppiB. Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride.J. Liposome Res.201424432333510.3109/08982104.2014.89936924807822
    [Google Scholar]
  126. ColovićM.B. KrstićD.Z. Lazarević-PaštiT.D. BondžićA.M. VasićV.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology.Curr. Neuropharmacol.201311331533510.2174/1570159X1131103000624179466
    [Google Scholar]
  127. Al AsmariA.K. UllahZ. TariqM. FataniA. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil.Drug Des. Devel. Ther.20161020521526834457
    [Google Scholar]
  128. KocaadamB. ŞanlierN. Curcumin, an active component of turmeric ( Curcuma longa ), and its effects on health.Crit. Rev. Food Sci. Nutr.201757132889289510.1080/10408398.2015.107719526528921
    [Google Scholar]
  129. SmallG.W. SiddarthP. LiZ. MillerK.J. ErcoliL. EmersonN.D. MartinezJ. WongK.P. LiuJ. MerrillD.A. ChenS.T. HenningS.M. SatyamurthyN. HuangS.C. HeberD. BarrioJ.R. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial.Am. J. Geriatr. Psychiatry201826326627710.1016/j.jagp.2017.10.01029246725
    [Google Scholar]
  130. SinghS. KumarP. Neuroprotective potential of curcumin in combination with piperine against 6-hydroxy dopamine induced motor deficit and neurochemical alterations in rats.Inflammopharmacology2017251697910.1007/s10787‑016‑0297‑927853890
    [Google Scholar]
  131. du PreezR. PahlJ. AroraM. Ravi KumarM.N.V. BrownL. PanchalS.K. Low-dose curcumin nanoparticles normalise blood pressure in male wistar rats with diet-induced metabolic syndrome.Nutrients2019117154210.3390/nu1107154231288419
    [Google Scholar]
  132. LiuW. ZhaiY. HengX. CheF.Y. ChenW. SunD. ZhaiG. Oral bioavailability of curcumin: Problems and advancements.J. Drug Target.201624869470210.3109/1061186X.2016.115788326942997
    [Google Scholar]
  133. KuoY.C. NgI.W. RajeshR. Glutathione- and apolipoprotein E-grafted liposomes to regulate mitogen-activated protein kinases and rescue neurons in Alzheimer’s disease.Mater. Sci. Eng. C202112711223310.1016/j.msec.2021.11223334225874
    [Google Scholar]
  134. SokolikV. ShulgaS. Effect of curcumin on accumulation in mononuclear cells and secretion in incubation medium of Aβ40 and cytokines under local excess of Aβ42-homoaggregates.Ukr Biochem. J.2016883839110.15407/ubj88.03.08329235333
    [Google Scholar]
  135. CascioneM. De MatteisV. LeporattiS. RinaldiR. The new frontiers in neurodegenerative diseases treatment: Liposomal-based strategies.Front. Bioeng. Biotechnol.2020856676710.3389/fbioe.2020.56676733195128
    [Google Scholar]
  136. MourtasS. LazarA.N. MarkoutsaE. DuyckaertsC. AntimisiarisS.G. Multifunctional nanoliposomes with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer disease.Eur. J. Med. Chem.20148017518310.1016/j.ejmech.2014.04.05024780594
    [Google Scholar]
  137. BatihaG.E.S. BeshbishyA.M. IkramM. MullaZ.S. El-HackM.E.A. TahaA.E. AlgammalA.M. ElewaY.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin.Foods20209337410.3390/foods903037432210182
    [Google Scholar]
  138. MagalingamK.B. RadhakrishnanA. RamdasP. HaleagraharaN. Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease.J. Mol. Neurosci.201555360961710.1007/s12031‑014‑0400‑x25129099
    [Google Scholar]
  139. BonechiC. DonatiA. TamasiG. LeoneG. ConsumiM. RossiC. LamponiS. MagnaniA. Protective effect of quercetin and rutin encapsulated liposomes on induced oxidative stress.Biophys. Chem.2018233556310.1016/j.bpc.2017.11.00329174505
    [Google Scholar]
  140. DubeyS.K. RamM.S. KrishnaK.V. SahaR.N. SinghviG. AgrawalM. Ajazuddin SarafS. SarafS. AlexanderA. Recent expansions on cellular models to uncover the scientific barriers towards drug development for Alzheimer’s disease.Cell. Mol. Neurobiol.201939218120910.1007/s10571‑019‑00653‑z30671696
    [Google Scholar]
  141. MignetN. SeguinJ. ChabotG. Bioavailability of polyphenol liposomes: A challenge ahead.Pharmaceutics20135345747110.3390/pharmaceutics503045724300518
    [Google Scholar]
  142. ZafarM.N. AbuwatfaW.H. HusseiniG.A. Acoustically-activated liposomal nanocarriers to mitigate the side effects of conventional chemotherapy with a focus on emulsion-liposomes.Pharmaceutics202315242110.3390/pharmaceutics1502042136839744
    [Google Scholar]
  143. QianJ. GuoY. XuY. WangX. ChenJ. WuX. Combination of micelles and liposomes as a promising drug delivery system: a review.Drug Deliv. Transl. Res.202313112767278910.1007/s13346‑023‑01368‑x37278964
    [Google Scholar]
  144. PandeS. Liposomes for drug delivery: Review of vesicular composition, factors affecting drug release and drug loading in liposomes.Artif. Cells Nanomed. Biotechnol.202351142844010.1080/21691401.2023.224703637594208
    [Google Scholar]
  145. MajaL. ŽeljkoK. MatejaP. Sustainable technologies for liposome preparation.J. Supercrit. Fluids202016510498410.1016/j.supflu.2020.104984
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249342585241230065557
Loading
/content/journals/cnsamc/10.2174/0118715249342585241230065557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test