Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

The accumulation of tau-containing neurofibrillary tangles and beta-amyloid deposits has been identified as the hallmark of Alzheimer's disease. Alzheimer's disease (AD) is a hereditary and neurological condition that can result in non-amnestic cognitive decline in less common forms and amnestic memory loss in its classic form. While Alzheimer's disease is the most prevalent cause of memory loss in middle-aged and older adults, other neurodegenerative and cerebrovascular disorders can have an impact on the disease's clinical course. Designing multi-target-directed ligands (MTDLs) is a very promising modern approach. This methodology was designed specifically for treating disorders with complex pathological mechanisms. Among these disorders is Alzheimer's disease (AD), which is currently the most prevalent multifactorial neurodegenerative illness. Increased amounts of the amyloid βpeptide (Aβ) and hyperphosphorylated tau protein, together with the loss of neurons and synapses, are linked to Alzheimer's disease (AD). Additionally, there is evidence that the pathophysiology of this condition is influenced by oxidative stress, metal ion dysregulation, inflammation, and failure of the cell cycle regulatory system. Since Alzheimer's disease (AD) is a multi-factor illness, there are many attractive targets for the development of anti-AD medications. These molecules can be useful in treating AD since they are multi-target-directed. This review focuses on the discovery of dual and multi-acting anti-AD drug candidates, especially hybrids made by combining chemically active moieties that function against distinct targets. The first group of substances consists of cholinesterase inhibitors with extra properties or those that function as multiple binding site inhibitors. Natural products also provide numerous options for slowing the progression and symptoms of many diseases, including Alzheimer's Meanwhile, Natural chemical structures with the following characteristics: alkaloids, sterols, triterpenes, tannins, flavonoids, polyphenols, and antioxidants as well as anti-inflammatory and anti-amyloidogenic properties. We provide an overview of Alzheimer's disease pathophysiology and therapy targets in this study. We also show several isolated chemicals and medicinal plants that are used to treat and prevent the symptoms of Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249333381241012073557
2024-10-21
2025-10-26
Loading full text...

Full text loading...

References

  1. CastellaniR.J. RolstonR.K. SmithM.A. Alzheimer Disease.Dis. Mon.201056948454610.1016/j.disamonth.2010.06.001 20831921
    [Google Scholar]
  2. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. HymanB.T. NixonR.A. JonesD.T. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y 33986301
    [Google Scholar]
  3. ApostolovaL.G. Alzheimer Disease.Continuum (Minneap. Minn.)20162241943410.1212/CON.0000000000000307 27042902
    [Google Scholar]
  4. Serrano-PozoA. FroschM.P. MasliahE. HymanB.T. Neuropathological alterations in Alzheimer disease.Cold Spring Harb. Perspect. Med.201111a00618910.1101/cshperspect.a006189 22229116
    [Google Scholar]
  5. Calderon-GarcidueñasA.L. DuyckaertsC. Alzheimer disease.Handb. Clin. Neurol.201814532533710.1016/B978‑0‑12‑802395‑2.00023‑7 28987180
    [Google Scholar]
  6. MayeuxR. SternY. Epidemiology of Alzheimer disease.Cold Spring Harb. Perspect. Med.201228a00623910.1101/cshperspect.a006239 22908189
    [Google Scholar]
  7. ReitzC. BrayneC. MayeuxR. Epidemiology of Alzheimer disease.Nat. Rev. Neurol.20117313715210.1038/nrneurol.2011.2 21304480
    [Google Scholar]
  8. UlepM.G. SaraonS.K. McLeaS. Alzheimer Disease.J. Nurse Pract.201814312913510.1016/j.nurpra.2017.10.014
    [Google Scholar]
  9. CummingsJ.L. ColeG. Alzheimer disease.JAMA2002287182335233810.1001/jama.287.18.2335 11988038
    [Google Scholar]
  10. SmithM.A. Alzheimer disease.Int. Rev. Neurobiol.19984215410.1016/S0074‑7742(08)60607‑8 9476170
    [Google Scholar]
  11. HoltzmanD.M. MandelkowE. SelkoeD.J. Alzheimer Disease in 2020.Cold Spring Harb. Perspect. Med.2012211a01158510.1101/cshperspect.a011585 23125202
    [Google Scholar]
  12. DuyckaertsC. BraakH. BrionJ.P. BuéeL. Del TrediciK. GoedertM. HallidayG. NeumannM. SpillantiniM.G. TolnayM. UchiharaT. PART is part of Alzheimer disease.Acta Neuropathol.2015129574975610.1007/s00401‑015‑1390‑7 25628035
    [Google Scholar]
  13. GeulaC. MesulamM.M. Cholinesterases and the pathology of Alzheimer disease.Alzheimer Dis. Assoc. Disord.19959Suppl. 2232810.1097/00002093‑199501002‑00005 8534419
    [Google Scholar]
  14. KumarA. SidhuJ. GoyalA. TsaoJ.W. Alzheimer disease.StatPearls.In: Treasure Island, FLStatPearls Publishing2018 29763097
    [Google Scholar]
  15. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.001 31564456
    [Google Scholar]
  16. GeldmacherD.S. Alzheimer disease.In: The American Psychiatric Publishing textbook of Alzheimer disease and other dementias. WeinerM.F. LiptonA.M. American Psychiatric Publishing, Inc.2009155172
    [Google Scholar]
  17. FriedlandR.P. KossE. HaxbyJ.V. GradyC.L. LuxenbergJ. SchapiroM.B. KayeJ. NIH conference. Alzheimer disease: Clinical and biological heterogeneity.Ann. Intern. Med.1988109429831110.7326/0003‑4819‑109‑4‑298 2969203
    [Google Scholar]
  18. AlhazmiH.A. AlbrattyM. An update on the novel and approved drugs for Alzheimer disease.Saudi Pharm. J.202230121755176410.1016/j.jsps.2022.10.004 36601504
    [Google Scholar]
  19. CaseyD.A. AntimisiarisD. O’BrienJ. Drugs for Alzheimer’s disease: Are they effective?P&T2010354208211 20498822
    [Google Scholar]
  20. GhezziL. ScarpiniE. GalimbertiD. Disease-modifying drugs in Alzheimer’s disease.Drug Des. Devel. Ther.,201371471147810.2147/DDDT.S41431 24353405
    [Google Scholar]
  21. GiacobiniE. Pharmacotherapy of Alzheimer disease: New drugs and novel strategies. Prog. Brain Res.,19939844745410.1016/S0079‑6123(08)62431‑0 8248535
    [Google Scholar]
  22. BolognesiM. RosiniM. AndrisanoV. BartoliniM. MinariniA. TumiattiV. MelchiorreC. MTDL design strategy in the context of Alzheimer’s disease: From lipocrine to memoquin and beyond.Curr. Pharm. Des.200915660161310.2174/138161209787315585 19199985
    [Google Scholar]
  23. UnzetaM. EstebanG. BoleaI. FogelW.A. RamsayR.R. YoudimM.B.H. TiptonK.F. Marco-ContellesJ. Multi-target directed donepezil-like ligands for Alzheimer’s disease.Front. Neurosci.20161020510.3389/fnins.2016.00205 27252617
    [Google Scholar]
  24. WrightJ.W. HardingJ.W. The development of multi-target-directed ligands (MTDL) to treat Alzheimer’s disease.Front. Clin. Drug Res. Alzheimer Disord201318610810.2174/9781608057221113010004
    [Google Scholar]
  25. BartolićM. MatoševićA. BosakA. Evaluation of 4- aminoquinolines as potential MTDL ligands for the treatment of Alzheimer's disease. In: Book of Abstracts of Joint IUBMB/FEBS Advanced Lecture Course "Molecular targets for anti-aging interventions"; FEBS/IUBMB,202222
    [Google Scholar]
  26. BolognesiM.L. MinariniA. MelchiorreC. Chapter 25: Discovery of memoquin, a multitarget-Directed Ligand (MTDL) for the treatment of Alzheimer's disease. In: Emerging Drugs and Targets for Alzheimer's Disease; Martinez, A., Ed.; RSC Publishing,2010221322710.1039/9781849731072‑00213
    [Google Scholar]
  27. LamieP.F. Abdel-FattahM.M. PhiloppesJ.N. Design and synthesis of new indole drug candidates to treat Alzheimer’s disease and targeting neuro-inflammation using a multi-target-directed ligand (MTDL) strategy.J. Enzyme Inhib. Med. Chem.20223712660267810.1080/14756366.2022.2126464 36146947
    [Google Scholar]
  28. BolognesiM.L. MateraR. MinariniA. RosiniM. MelchiorreC. Alzheimer’s disease: New approaches to drug discovery.Curr. Opin. Chem. Biol.200913330330810.1016/j.cbpa.2009.04.619 19467915
    [Google Scholar]
  29. Simone Tranches DiasK. ViegasC. Jr Multi-target directed drugs: A modern approach for design of new drugs for the treatment of Alzheimer’s disease.Curr. Neuropharmacol.201412323925510.2174/1570159X1203140511153200 24851088
    [Google Scholar]
  30. WenzelT.J. KlegerisA. Novel multi-target directed ligand-based strategies for reducing neuroinflammation in Alzheimer’s disease.Life Sci.201820731432210.1016/j.lfs.2018.06.025 29940242
    [Google Scholar]
  31. GeorgeN. KhanS. BalushiK. AbukhaderM. SabahiB. Synthesis, molecular docking, antioxidant and cholinesterase inhibitory activity of coumarin based tri-hybridized molecules: An MTDL approach for the development of anti-Alzheimer drugs. Proceedings of the 7th International Electronic Conference on Medicinal Chemistry, Basel, Switzerland1–30 Nov, 20212021.10.3390/ECMC2021‑11373
    [Google Scholar]
  32. Agatonovic-KustrinS. KettleC. MortonD.W. A molecular approach in drug development for Alzheimer’s disease.Biomed. Pharmacother.201810655356510.1016/j.biopha.2018.06.147 29990843
    [Google Scholar]
  33. CarreirasM. MendesE. PerryM. FranciscoA. Marco-ContellesJ. The multifactorial nature of Alzheimer’s disease for developing potential therapeutics.Curr. Top. Med. Chem.201313151745177010.2174/15680266113139990135 23931435
    [Google Scholar]
  34. Habibpour GharachehR. EslamiM. AmaniP. Bagheri NovirS. Tacrine-flavonoid quercetin hybride as a MTDL ligand against alzheimer’s disease with metal chelating and AChE, BChE, AChE-induced Aβ aggregation inhibition properties: A computational study.Phys. Chem. Res.201973561579
    [Google Scholar]
  35. JiangX. ZhouJ. WangY. ChenL. DuanY. HuangJ. LiuC. ChenY. LiuW. SunH. FengF. QuW. Rational design and biological evaluation of a new class of thiazolopyridyl tetrahydroacridines as cholinesterase and GSK-3 dual inhibitors for Alzheimer’s disease.Eur. J. Med. Chem.202020711275110.1016/j.ejmech.2020.112751 32950908
    [Google Scholar]
  36. LiuW. TianL. WuL. ChenH. WangN. LiuX. ZhaoC. WuZ. JiangX. WuQ. XuZ. LiuW. ZhaoQ. Discovery of novel β-carboline-1,2,3-triazole hybrids as AChE/GSK-3β dual inhibitors for Alzheimer’s disease treatment.Bioorg. Chem.202212910616810.1016/j.bioorg.2022.106168 36191431
    [Google Scholar]
  37. LiuW. LiuX. TianL. GaoY. LiuW. ChenH. JiangX. XuZ. DingH. ZhaoQ. Design, synthesis and biological evaluation of harmine derivatives as potent GSK-3β/DYRK1A dual inhibitors for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202122211355410.1016/j.ejmech.2021.113554 34098466
    [Google Scholar]
  38. ZhangP. XuS. ZhuZ. XuJ. Multi-target design strategies for the improved treatment of Alzheimer’s disease.Eur. J. Med. Chem.201917622824710.1016/j.ejmech.2019.05.020 31103902
    [Google Scholar]
  39. KumarA. SrivastavaG. SharmaA. A physicochemical descriptor based method for effective and rapid screening of dual inhibitors against BACE-1 and GSK-3β as targets for Alzheimer’s disease.Comput. Biol. Chem.2017711910.1016/j.compbiolchem.2017.09.001 28950235
    [Google Scholar]
  40. SerenóL. ComaM. RodríguezM. Sánchez-FerrerP. SánchezM.B. GichI. AgullóJ.M. PérezM. AvilaJ. Guardia-LaguartaC. ClarimónJ. LleóA. Gómez-IslaT. A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo.Neurobiol. Dis.200935335936710.1016/j.nbd.2009.05.025 19523516
    [Google Scholar]
  41. AvilaJ. HernándezF. GSK-3 inhibitors for Alzheimer’s disease.Expert Rev. Neurother.20077111527153310.1586/14737175.7.11.1527 17997701
    [Google Scholar]
  42. del SerT. SteinwachsK.C. GertzH.J. AndrésM.V. Gómez-CarrilloB. MedinaM. VericatJ.A. RedondoP. FleetD. LeónT. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: A pilot study.J. Alzheimers Dis.201233120521510.3233/JAD‑2012‑120805 22936007
    [Google Scholar]
  43. PratiF. De SimoneA. BisignanoP. ArmirottiA. SummaM. PizziraniD. ScarpelliR. PerezD.I. AndrisanoV. Perez-CastilloA. MontiB. MassenzioF. PolitoL. RacchiM. FaviaA.D. BottegoniG. MartinezA. BolognesiM.L. CavalliA. Multitarget drug discovery for Alzheimer’s disease: Triazinones as BACE-1 and GSK-3β inhibitors.Angew. Chem. Int. Ed.20155451578158210.1002/anie.201410456 25504761
    [Google Scholar]
  44. Llorens-MartínM. JuradoJ. HernándezF. ÁvilaJ. GSK-3β, a pivotal kinase in Alzheimer disease.Front. Mol. Neurosci.2014746 24904272
    [Google Scholar]
  45. GameiroI. MichalskaP. TentiG. CoresÁ. BuendiaI. RojoA.I. GeorgakopoulosN.D. Hernández-GuijoJ.M. Teresa RamosM. WellsG. LópezM.G. CuadradoA. MenéndezJ.C. LeónR. Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer’s disease.Sci. Rep.2017714570110.1038/srep45701 28361919
    [Google Scholar]
  46. VenterJ. Design, synthesis and biological activity studies of 1- aryl-3-(4-methoxybenzyl)ureas as proposed irreversible GSK-3 inhibitors in Alzheimer’s disease therapeutic development.. Thesis, Stellenbosch University,2019
    [Google Scholar]
  47. Abd El-KarimS.S. AnwarM.M. AhmedN.S. SyamY.M. ElseginyS.A. AlyH.F. YounisE.A. KhalilW.K.B. AhmedK.A. MohammedF.F. RizkM. Discovery of novel benzofuran-based derivatives as acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease: Design, synthesis, biological evaluation, molecular docking and 3D-QSAR investigation.Eur. J. Med. Chem.202326011576610.1016/j.ejmech.2023.115766 37678141
    [Google Scholar]
  48. Licht-MuravaA. PazR. VaksL. AvrahamiL. PlotkinB. EisensteinM. Eldar-FinkelmanH. A unique type of GSK-3 inhibitor brings new opportunities to the clinic.Sci. Signal.20169454ra110ra11010.1126/scisignal.aah7102 27902447
    [Google Scholar]
  49. GannonM. CheP. ChenY. JiaoK. RobersonE.D. WangQ. Noradrenergic dysfunction in Alzheimer’s disease.Front. Neurosci.2015922010.3389/fnins.2015.00220 26136654
    [Google Scholar]
  50. AnandP. SinghB. A review on cholinesterase inhibitors for Alzheimer’s disease.Arch. Pharm. Res.201336437539910.1007/s12272‑013‑0036‑3 23435942
    [Google Scholar]
  51. GinsbergS.D. CheS. WuuJ. CountsS.E. MufsonE.J. Down regulation of trk but not p75 NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease.J. Neurochem.200697247548710.1111/j.1471‑4159.2006.03764.x 16539663
    [Google Scholar]
  52. InestrosaN.C. SagalJ.P. ColombresM. Acetylcholinesterase interaction with Alzheimer amyloid β.Alzheimer’s Disease.Boston, MASpringer200529931710.1007/0‑387‑23226‑5_15
    [Google Scholar]
  53. LaneR.M. KivipeltoM. GreigN.H. Acetylcholinesterase and its inhibition in Alzheimer disease.Clin. Neuropharmacol.200427314114910.1097/00002826‑200405000‑00011 15190239
    [Google Scholar]
  54. MangoniA. GrassiM.P. FrattolaL. PioltiR. BassiS. MottaA. MarconeA. SmirneS. Effects of a MAO-B inhibitor in the treatment of Alzheimer disease.Eur. Neurol.199131210010710.1159/000116655 1904354
    [Google Scholar]
  55. KennedyB.P. ZieglerM.G. AlfordM. HansenL.A. ThalL.J. MasliahE. Early and persistent alterations in prefrontal cortex MAO A and B in Alzheimer’s disease.J. Neural Transm. (Vienna)2003110778980110.1007/s00702‑003‑0828‑6 12811639
    [Google Scholar]
  56. Gökhan-KelekçiN. YabanoğluS. KüpeliE. SalgınU. ÖzgenÖ. UçarG. YeşiladaE. KendiE. YeşiladaA. BilginA.A. A new therapeutic approach in Alzheimer disease: Some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics.Bioorg. Med. Chem.200715175775578610.1016/j.bmc.2007.06.004 17611112
    [Google Scholar]
  57. GulyásB. PavlovaE. KásaP. GulyaK. BakotaL. VárszegiS. KellerÉ. HorváthM.C. NagS. HermeczI. MagyarK. HalldinC. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-l-deprenyl using whole hemisphere autoradiography.Neurochem. Int.2011581606810.1016/j.neuint.2010.10.013 21075154
    [Google Scholar]
  58. AdolfssonR. GottfriesC-G. OrelandL. WibergÅ. WinbladB. Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type.Life Sci.198027121029103410.1016/0024‑3205(80)90025‑9 7421397
    [Google Scholar]
  59. ManzoorS. HodaN. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review.Eur. J. Med. Chem.202020611278710.1016/j.ejmech.2020.112787 32942081
    [Google Scholar]
  60. BalázsN. BereczkiD. KovácsT. Cholinesterase inhibitors and memantine for the treatment of Alzheimer and non-Alzheimer dementias.Ideggyogy. Sz.20217411-1237938710.18071/isz.74.0379 34856086
    [Google Scholar]
  61. RampaA. BartoliniM. BisiA. BellutiF. GobbiS. AndrisanoV. LigrestiA. Di MarzoV. The First Dual ChE/FAAH Inhibitors: New Perspectives for Alzheimer’s Disease?ACS Med. Chem. Lett.20123318218610.1021/ml200313p 24900454
    [Google Scholar]
  62. HeQ. LiuJ. LanJ.S. DingJ. SunY. FangY. JiangN. YangZ. SunL. JinY. XieS.S. Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer’s disease: Design, synthesis and biological evaluation.Bioorg. Chem.20188151252810.1016/j.bioorg.2018.09.010 30245233
    [Google Scholar]
  63. YáñezM. ViñaD. Dual inhibitors of monoamine oxidase and cholinesterase for the treatment of Alzheimer disease.Curr. Top. Med. Chem.201313141692170610.2174/15680266113139990120 23889051
    [Google Scholar]
  64. LiuW. LangM. YoudimM.B.H. AmitT. SunY. ZhangZ. WangY. WeinrebO. Design, synthesis and evaluation of novel dual monoamine-cholinesterase inhibitors as potential treatment for Alzheimer’s disease.Neuropharmacology201610937638510.1016/j.neuropharm.2016.06.013 27318273
    [Google Scholar]
  65. XuY. ZhangJ. WangH. MaoF. BaoK. LiuW. ZhuJ. LiX. ZhangH. LiJ. Rational design of novel selective dual-target inhibitors of acetylcholinesterase and monoamine oxidase B as potential anti-Alzheimer’s disease agents.ACS Chem. Neurosci.201910148249610.1021/acschemneuro.8b00357 30110536
    [Google Scholar]
  66. WangL. EstebanG. OjimaM. Bautista-AguileraO.M. InokuchiT. MoraledaI. IriepaI. SamadiA. YoudimM.B.H. RomeroA. SorianoE. HerreroR. Fernández FernándezA.P. Martínez-MurilloR. Marco-ContellesJ. UnzetaM. Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer’s disease.Eur. J. Med. Chem.20148054356110.1016/j.ejmech.2014.04.078 24813882
    [Google Scholar]
  67. WangX.B. YinF.C. HuangM. JiangN. LanJ.S. KongL.Y. Chromone and donepezil hybrids as new multipotent cholinesterase and monoamine oxidase inhibitors for the potential treatment of Alzheimer’s disease.RSC Med. Chem.202011222523310.1039/C9MD00441F 33479629
    [Google Scholar]
  68. OrhanI.E. Cholinesterase inhibitory potential of quercetin towards Alzheimer’s disease - A promising natural molecule or fashion of the day? - A narrowed review.Curr. Neuropharmacol.202119122205221310.2174/1570159X18666201119153807 33213346
    [Google Scholar]
  69. BelinskaiaD.A. VoroninaP.A. KrivorotovD.V. JenkinsR.O. GoncharovN.V. Anticholinesterase and serotoninergic evaluation of benzimidazole–carboxamides as potential multifunctional agents for the treatment of Alzheimer’s disease.Pharmaceutics2023158215910.3390/pharmaceutics15082159 37631373
    [Google Scholar]
  70. KorábečnýJ. NepovimováE. CikánkováT. ŠpilovskáK. VaškováL. MezeiováE. KučaK. HroudováJ. Newly developed drugs for Alzheimer’s disease in relation to energy metabolism, cholinergic and monoaminergic neurotransmission.Neuroscience201837019120610.1016/j.neuroscience.2017.06.034 28673719
    [Google Scholar]
  71. FerreiraJ.P.S. AlbuquerqueH.M.T. CardosoS.M. SilvaA.M.S. SilvaV.L.M. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR).Eur. J. Med. Chem.202122111349210.1016/j.ejmech.2021.113492 33984802
    [Google Scholar]
  72. PratiF. BottegoniG. BolognesiM.L. CavalliA. BACE-1 inhibitors: From recent single-target molecules to multitarget compounds for Alzheimer’s disease.Miniperspective. J. Med. Chem.201861361963710.1021/acs.jmedchem.7b00393 28749667
    [Google Scholar]
  73. GabrM.T. Abdel-RaziqM.S. Design and synthesis of donepezil analogues as dual AChE and BACE-1 inhibitors.Bioorg. Chem.20188024525210.1016/j.bioorg.2018.06.031 29966870
    [Google Scholar]
  74. IrajiA. KhoshneviszadehM. FiruziO. KhoshneviszadehM. EdrakiN. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands.Bioorg. Chem.20209710364910.1016/j.bioorg.2020.103649 32101780
    [Google Scholar]
  75. YuZ. JiH. ShenJ. KanR. ZhaoW. LiJ. DingL. LiuJ. Identification and molecular docking study of fish roe-derived peptides as potent BACE 1, AChE, and BChE inhibitors.Food Funct.20201176643665110.1039/D0FO00971G 32656560
    [Google Scholar]
  76. HanJ. JiY. YounK. LimG. LeeJ. KimD.H. JunM. Baicalein as a potential inhibitor against BACE1 and AChE: Mechanistic comprehension through in vitro and computational approaches.Nutrients20191111269410.3390/nu11112694 31703329
    [Google Scholar]
  77. IvanovaL. KarelsonM. DobchevD.A. Multitarget approach to drug candidates against Alzheimer’s disease related to AChE, SERT, BACE1 and GSK3β protein targets.Molecules2020258184610.3390/molecules25081846 32316402
    [Google Scholar]
  78. WaikerD.K. VermaA. SarafP.; T A, G.; Krishnamurthy, S.; Chaurasia, R.N.; Shrivastava, S.K. Development and evaluation of some molecular hybrids of N-(1-Benzylpiperidin-4-yl)-2-((5-phenyl-1,3,4-oxadiazol-2-yl)thio) as multifunctional agents to combat Alzheimer’s disease.ACS Omega20238109394941410.1021/acsomega.2c08061 36936338
    [Google Scholar]
  79. GreenK.D. FossoM.Y. Garneau-TsodikovaS. Multifunctional donepezil analogues as cholinesterase and BACE1 inhibitors.Molecules20182312325210.3390/molecules23123252 30544832
    [Google Scholar]
  80. González-NaranjoP. PérezC. González-SánchezM. Gironda-MartínezA. UlzurrunE. BartoloméF. Rubio-FernándezM. Martin-RequeroA. CampilloN.E. PáezJ.A. Multitarget drugs as potential therapeutic agents for alzheimer’s disease. A new family of 5-substituted indazole derivatives as cholinergic and BACE1 inhibitors.J. Enzyme Inhib. Med. Chem.20223712348235610.1080/14756366.2022.2117315 36050834
    [Google Scholar]
  81. García MarínI.D. Camarillo LópezR.H. MartínezO.A. Padilla-MartínezI.I. Correa-BasurtoJ. Rosales-HernándezM.C. New compounds from heterocyclic amines scaffold with multitarget inhibitory activity on Aβ aggregation, AChE, and BACE1 in the Alzheimer disease.PLoS One2022176e026912910.1371/journal.pone.0269129 35657793
    [Google Scholar]
  82. MathewB. OhJ.M. BatyR.S. BatihaG.E.S. ParambiD.G.T. GambacortaN. NicolottiO. KimH. Piperazine-substituted chalcones: A new class of MAO-B, AChE, and BACE-1 inhibitors for the treatment of neurological disorders.Environ. Sci. Pollut. Res. Int.20212829388553886610.1007/s11356‑021‑13320‑y 33743158
    [Google Scholar]
  83. MaiaM.A. SousaE. BACE-1 and γ-secretase as therapeutic targets for Alzheimer’s disease.Pharmaceuticals (Basel)20191214110.3390/ph12010041 30893882
    [Google Scholar]
  84. PanzaF. LozuponeM. SolfrizziV. SardoneR. PiccininniC. DibelloV. StalloneR. GiannelliG. BellomoA. GrecoA. DanieleA. SeripaD. LogroscinoG. ImbimboB.P. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease.Expert Rev. Neurother.2018181184785710.1080/14737175.2018.1531706 30277096
    [Google Scholar]
  85. BuiT.T. NguyenT.H. Natural product for the treatment of Alzheimer’s disease.J. Basic Clin. Physiol. Pharmacol.201728541342310.1515/jbcpp‑2016‑0147 28708573
    [Google Scholar]
  86. PandaS.S. JhanjiN. Natural products as potential anti-Alzheimer agents.Curr. Med. Chem.202027355887591710.2174/0929867326666190618113613 31215372
    [Google Scholar]
  87. PreeceP. VirleyD.J. CostandiM. CoombesR. MossS.J. MudgeA.W. JazinE. CairnsN.J. β-Secretase (BACE) and GSK-3 mRNA levels in Alzheimer’s disease.Brain Res. Mol. Brain Res.20031161-215515810.1016/S0169‑328X(03)00233‑X 12941471
    [Google Scholar]
  88. RampaA. GobbiS. Concetta Di MartinoR.M. BellutiF. BisiA. Dual BACE-1/GSK-3β inhibitors to combat Alzheimer’s disease: A focused review.Curr. Top. Med. Chem.201817313361336910.2174/1568026618666180112161406 29332582
    [Google Scholar]
  89. GürbüzP. DokumacıA.H. GündüzM.G. PerezC. GögerF. PaksoyM.Y. YererM.B. Ömür DemirezerL. In vitro biological activity of Salvia fruticosa Mill. infusion against amyloid β-peptide-induced toxicity and inhibition of GSK-3β, CK-1δ, and BACE-1 enzymes relevant to Alzheimer’s disease.Saudi Pharm. J.202129323624310.1016/j.jsps.2021.01.007 33981172
    [Google Scholar]
  90. BajadN.G. SwethaR. SinghR. GaneshpurkarA. GuttiG. SinghR.B. KumarA. SinghS.K. Combined structure and ligand-based design of dual BACE-1/GSK-3β inhibitors for Alzheimer’s disease.Chem. Zvesti202276127507752410.1007/s11696‑022‑02421‑8
    [Google Scholar]
  91. Di MartinoR.M.C. De SimoneA. AndrisanoV. BisignanoP. BisiA. GobbiS. RampaA. FatoR. BergaminiC. PerezD.I. MartinezA. BottegoniG. CavalliA. BellutiF. Versatility of the Curcumin Scaffold: Discovery of Potent and Balanced Dual BACE-1 and GSK-3β Inhibitors.J. Med. Chem.201659253154410.1021/acs.jmedchem.5b00894 26696252
    [Google Scholar]
  92. KumarA. SrivastavaG. SrivastavaS. VermaS. NegiA.S. SharmaA. Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: Molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimer’s disease.J. Mol. Model.201723823910.1007/s00894‑017‑3396‑7
    [Google Scholar]
  93. ChakrabortyB. MukerjeeN. MaitraS. ZehraviM. MukherjeeD. GhoshA. MassoudE.E.S. RahmanM.H. Therapeutic potential of different natural products for the treatment of Alzheimer’s Disease.Oxid. Med. Cell. Longev.20222022111810.1155/2022/6873874 35910833
    [Google Scholar]
  94. ChenX. DrewJ. BerneyW. LeiW. Neuroprotective natural products for Alzheimer’s disease.Cells2021106130910.3390/cells10061309 34070275
    [Google Scholar]
  95. LongH.Z. ChengY. ZhouZ.W. LuoH.Y. WenD.D. GaoL.C. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease.Front. Pharmacol.20211264863610.3389/fphar.2021.648636 33935751
    [Google Scholar]
  96. AhmedS. KhanS.T. ZargahamM.K. KhanA.U. KhanS. HussainA. UddinJ. KhanA. Al-HarrasiA. Potential therapeutic natural products against Alzheimer’s disease with reference of acetylcholinesterase.Biomed. Pharmacother.202113911160910.1016/j.biopha.2021.111609 33915501
    [Google Scholar]
  97. ShalB. DingW. AliH. KimY.S. KhanS. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease.Front. Pharmacol.2018954810.3389/fphar.2018.00548 29896105
    [Google Scholar]
  98. YangA. YuQ. JuH. SongL. KouX. ShenR. Design, Synthesis and biological evaluation of xanthone derivatives for possible treatment of Alzheimer’s disease based on multi‐target strategy.Chem. Biodivers.20201710e200044210.1002/cbdv.202000442 32692899
    [Google Scholar]
  99. MalikN. DhimanP. Sobarzo-SanchezE. KhatkarA. Flavonoids and anthranquinones as xanthine oxidase and monoamine oxidase inhibitors: A new approach towards inflammation and oxidative stress.Curr. Top. Med. Chem.201918252154216410.2174/1568026619666181120143050 30465507
    [Google Scholar]
  100. Jalili-BalehL. BabaeiE. AbdpourS. Nasir Abbas BukhariS. ForoumadiA. RamazaniA. SharifzadehM. AbdollahiM. KhoobiM. A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease.Eur. J. Med. Chem.201815257058910.1016/j.ejmech.2018.05.004 29763806
    [Google Scholar]
  101. CalderaroA. PatanèG.T. TelloneE. BarrecaD. FicarraS. MisitiF. LaganàG. The neuroprotective potentiality of flavonoids on Alzheimer’s disease.Int. J. Mol. Sci.202223231483510.3390/ijms232314835 36499159
    [Google Scholar]
  102. WangQ. DongX. ZhangR. ZhaoC. Flavonoids with potential anti-amyloidogenic effects as therapeutic drugs for treating Alzheimer’s disease.J. Alzheimers Dis.202184250553310.3233/JAD‑210735 34569961
    [Google Scholar]
  103. LiJ. SunM. CuiX. LiC. Protective effects of flavonoids against Alzheimer’s disease: Pathological hypothesis, potential targets, and structure–activity relationship.Int. J. Mol. Sci.202223171002010.3390/ijms231710020 36077418
    [Google Scholar]
  104. WongK.W. MahS.H. A review on xanthone derivatives with antiinflammatory effects and their structure–activity relationship.10.1016/B978‑0‑12‑819485‑0.00003‑7
    [Google Scholar]
  105. AyazM. SadiqA. JunaidM. UllahF. OvaisM. UllahI. AhmedJ. ShahidM. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders.Front. Aging Neurosci.20191115510.3389/fnagi.2019.00155 31293414
    [Google Scholar]
  106. BakhtiariM. PanahiY. AmeliJ. DarvishiB. Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions.Biomed. Pharmacother.20179321822910.1016/j.biopha.2017.06.010 28641164
    [Google Scholar]
  107. ZhangQ. YanY. The role of natural flavonoids on neuroinflammation as a therapeutic target for Alzheimer’s disease: A narrative review.Neural Regen. Res.202318122582259110.4103/1673‑5374.373680 37449593
    [Google Scholar]
  108. KhanH.; Marya, ; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects.Biomed. Pharmacother.201810186087010.1016/j.biopha.2018.03.007 29635895
    [Google Scholar]
  109. HungN.H. QuanP.M. SatyalP. DaiD.N. HoaV.V. HuyN.G. GiangL.D. HaN.T. HuongL.T. HienV.T. SetzerW.N. Acetylcholinesterase inhibitory activities of essential oils from vietnamese traditional medicinal plants.Molecules20222720709210.3390/molecules27207092 36296686
    [Google Scholar]
  110. PunmiyaA. PrabhuA. Structural fingerprinting of pleiotropic flavonoids for multifaceted Alzheimer’s disease.Neurochem. Int.202316310548610.1016/j.neuint.2023.105486 36641110
    [Google Scholar]
  111. CruzM.I. CidadeH. PintoM. Dual/multitargeted xanthone derivatives for Alzheimer’s disease: where do we stand?Future Med. Chem.20179141611163010.4155/fmc‑2017‑0086 28832188
    [Google Scholar]
  112. SantosT.C. GomesT.M. PintoB.A.S. CamaraA.L. PaesA.M.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy.Front. Pharmacol.20189119210.3389/fphar.2018.01192 30405413
    [Google Scholar]
  113. TamfuA.N. KucukaydinS. YeskaliyevaB. OzturkM. DinicaR.M. Non-alkaloid cholinesterase inhibitory compounds from natural sources.Molecules20212618558210.3390/molecules26185582 34577053
    [Google Scholar]
  114. JabirN.R. KhanF.R. TabrezS. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer’s disease.CNS Neurosci. Ther.201824975376210.1111/cns.12971 29770579
    [Google Scholar]
  115. VanessaV.V. MahS.H. Xanthone: Potential acetylcholinesterase inhibitor for Alzheimer’s disease treatment.Mini Rev. Med. Chem.202121172507252910.2174/1389557521666210212152514 33583373
    [Google Scholar]
  116. Walczak-NowickaŁ.J. HerbetM. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis.Int. J. Mol. Sci.20212217929010.3390/ijms22179290 34502198
    [Google Scholar]
  117. PrasastyV. RadifarM. IstyastonoE. Natural peptides in drug discovery targeting acetylcholinesterase.Molecules2018239234410.3390/molecules23092344 30217053
    [Google Scholar]
  118. PatilP. ThakurA. SharmaA. FloraS.J.S. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease.Drug Dev. Res.202081216518310.1002/ddr.21587 31820476
    [Google Scholar]
  119. MirR.H. ShahA.J. Mohi-Ud-DinR. PottooF.H. DarM.A. JachakS.M. MasoodiM.H. Natural anti-inflammatory compounds as drug candidates in Alzheimer’s disease.Curr. Med. Chem.202128234799482510.2174/1875533XMTA4aNzUBx 32744957
    [Google Scholar]
  120. WuX. CaiH. PanL. CuiG. QinF. LiY. CaiZ. Small molecule natural products and Alzheimer’s disease.Curr. Top. Med. Chem.201919318720410.2174/1568026619666190201153257 30714527
    [Google Scholar]
  121. RibaudoG. MemoM. GianoncelliA. Multi-target natural and nature-inspired compounds against neurodegeneration: A focus on dual cholinesterase and phosphodiesterase inhibitors.Appl. Sci. (Basel)20211111504410.3390/app11115044
    [Google Scholar]
  122. VarshneyH. SiddiqueY.H. Multi-target natural and nature-inspired compounds against neurodegeneration: A focus on dual cholinesterase and phosphodiesterase inhibitors. Appl. Sci.,11115044.202110.3390/app11115044
    [Google Scholar]
  123. TakahashiJ.A. SandeD. da Silva LimaG. MouraM.A.F. LimaM.T.N.S. Fungal metabolites as promising new drug leads for the treatment of Alzheimer’s Disease.In: Studies in Natural Products Chemistry; Elsevier20196213910.1016/B978‑0‑444‑64185‑4.00001‑0
    [Google Scholar]
  124. ZakiA.G. El-SayedE.S.R. Abd ElkodousM. El-SayyadG.S. Microbial acetylcholinesterase inhibitors for Alzheimer’s therapy: Recent trends on extraction, detection, irradiation-assisted production improvement and nano-structured drug delivery.Appl. Microbiol. Biotechnol.2020104114717473510.1007/s00253‑020‑10560‑9 32285176
    [Google Scholar]
  125. NooriT. DehpourA.R. SuredaA. Sobarzo-SanchezE. ShirooieS. Role of natural products for the treatment of Alzheimer’s disease.Eur. J. Pharmacol.202189817397410.1016/j.ejphar.2021.173974 33652057
    [Google Scholar]
  126. AhmadS.S. YounisK. PhilippeJ. AschnerM. KhanH. Strategic approaches to target the enzymes using natural compounds for the management of Alzheimer’s disease: A review.CNS Neurol. Disord. Drug Targets202221761062010.2174/1871527320666210811160007 34382514
    [Google Scholar]
  127. ZhuY. PengL. HuJ. ChenY. ChenF. Current anti-Alzheimer’s disease effect of natural products and their principal targets.J. Integr. Neurosci.201918332733910.31083/j.jin.2019.03.1105 31601083
    [Google Scholar]
  128. VrabecR. BlundenG. CahlíkováL. Natural alkaloids as multi-target compounds towards factors implicated in Alzheimer’s disease.Int. J. Mol. Sci.2023245439910.3390/ijms24054399 36901826
    [Google Scholar]
  129. MossD.E. Improving anti-neurodegenerative benefits of acetylcholinesterase inhibitors in Alzheimer’s disease: Are irreversible inhibitors the future?Int. J. Mol. Sci.20202110343810.3390/ijms21103438 32414155
    [Google Scholar]
  130. SabuSneha JothilinSubitsha A. Research advantages in marine microbial acetylcholinesterase inhibitors against Alzheimer’s disease: An overview.Int. J. Adv. Res. Sci. Commun. Technol.20211212313010.48175/IJARSCT‑733
    [Google Scholar]
  131. ZhangC. Natural compounds that modulate BACE1-processing of amyloid-beta precursor protein in Alzheimer’s disease.Discov. Med.20121476189197 23021373
    [Google Scholar]
  132. KushwahaP. SinghV. SomvanshiP. BhardwajT. BarretoG.E. AshrafG.M. MishraB.N. ChundawatR.S. HaqueS. Identification of new BACE1 inhibitors for treating Alzheimer’s disease.J. Mol. Model.20212725810.1007/s00894‑021‑04679‑3 33517514
    [Google Scholar]
  133. WangS. KongX. ChenZ. WangG. ZhangJ. WangJ. role of natural compounds and target enzymes in the treatment of Alzheimer’s disease.Molecules20222713417510.3390/molecules27134175 35807418
    [Google Scholar]
  134. AhmedS. KhanS.T. ZargahamM.K. KhanA.U. KhanS. HussainA. UddinJ. KhanA. Al-HarrasiA. Potential therapeutic natural products against Alzheimer’s disease with Reference of Acetylcholinesterase.Biomed. Pharmacother.202113911160910.1016/j.biopha.2021.111609 33915501
    [Google Scholar]
  135. DasS. SenguptaS. ChakrabortyS. Scope of β-secretase (bace1)-targeted therapy in alzheimer’s disease: Emphasizing the flavonoid based natural scaffold for bace1 inhibition.ACS Chem. Neurosci.202011213510352210.1021/acschemneuro.0c00579 33073981
    [Google Scholar]
  136. NaushadM. DurairajanS.S.K. BeraA.K. SenapatiS. LiM. Natural compounds with anti-BACE1 activity as promising therapeutic drugs for treating Alzheimerʼs disease.Planta Med.201985171316132510.1055/a‑1019‑9819 31618777
    [Google Scholar]
  137. AhmadS.S. AkhtarS. Danish Rizvi, S.M.; Kamal, M.A.; Sayeed, U.; Khan, M.K.A.; Siddiqui, M.H.; Arif, J.M. Screening and elucidation of selected natural compounds for anti-Alzheimer’s potential targeting BACE-1 enzyme: A case computational study.Curr. Computeraided Drug Des.2017134311318 28413992
    [Google Scholar]
  138. DaiR. SunY. SuR. GaoH. Anti-Alzheimer’s disease potential of traditional chinese medicinal herbs as inhibitors of BACE1 and AChE enzymes.Biomed. Pharmacother.202215411357610.1016/j.biopha.2022.113576 36007279
    [Google Scholar]
  139. DhanjalJ.K. GoyalS. SharmaS. HamidR. GroverA. Mechanistic insights into mode of action of potent natural antagonists of BACE-1 for checking Alzheimer’s plaque pathology.Biochem. Biophys. Res. Commun.201444331054105910.1016/j.bbrc.2013.12.088 24365147
    [Google Scholar]
  140. WangH.Q. LiuM. WangL. LanF. ZhangY.H. XiaJ.E. XuZ.D. ZhangH. Identification of a novel BACE1 inhibitor, timosaponin A-III, for treatment of Alzheimer’s disease by a cell extraction and chemogenomics target knowledgebase-guided method.Phytomedicine202075153244Advance online publication10.1016/j.phymed.2020.153244 32502824
    [Google Scholar]
  141. PradoP.C. LimaJ.A. HamerskiL. RennóM.N. Natural products with BACE1 and GSK3β inhibitory activity.Mini Rev. Med. Chem.202323788189510.2174/1389557523666221118113923 36411570
    [Google Scholar]
  142. LeeJ.H. AhnN.H. ChoiS.B. KwonY. YangS.H. Natural products targeting amyloid beta in Alzheimer’s disease.Int. J. Mol. Sci.2021225234110.3390/ijms22052341 33652858
    [Google Scholar]
  143. DasS. MajumderT. SarkarA. MukherjeeP. BasuS. Flavonoids as BACE1 inhibitors: QSAR modelling, screening and in vitro evaluation. Int. J. Biol. Macromol.,2020165Pt A1323133010.1016/j.ijbiomac.2020.09.232 33010267
    [Google Scholar]
  144. VassarR. ColeS. The basic biology of BACE1: A key therapeutic target for Alzheimer’s disease.Curr. Genomics20078850953010.2174/138920207783769512 19415126
    [Google Scholar]
  145. La ClairJ.J. Natural product mode of action (MOA) studies: A link between natural and synthetic worlds.Nat. Prod. Rep.201027796999510.1039/b909989c 20422068
    [Google Scholar]
  146. SathyaM. PremkumarP. KarthickC. MoorthiP. JayachandranK.S. AnusuyadeviM. BACE1 in Alzheimer’s disease.Clin. Chim. Acta201241417117810.1016/j.cca.2012.08.013 22926063
    [Google Scholar]
  147. Moussa-PachaN.M. AbdinS.M. OmarH.A. AlnissH. Al-TelT.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease.Med. Res. Rev.202040133938410.1002/med.21622 31347728
    [Google Scholar]
  148. WillboldD. KutzscheJ. SchemmertS. WilluweitA. JürgensD. P4‐672: Exploring a potentially different or additional moa for the clinical stage compound PRI‐002. Alzheimers Dement.,201915(7S_Part_30), 1589-P158910.1016/j.jalz.2019.09.038
    [Google Scholar]
  149. ZhangC. LvY. BaiR. XieY. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer’s disease.Bioorg. Chem.202111410507010.1016/j.bioorg.2021.105070 34126574
    [Google Scholar]
  150. EgeT. Şeli̇menH. Monoamine Oxidase Inhibitory Effects of Medicinal Plants in Management of Alzheimer’s Disease.J. Turk. Chem. Soc. A: Chem.20218123924810.18596/jotcsa.823874
    [Google Scholar]
  151. OhJ.M. JangH.J. KangM.G. SongS. KimD.Y. KimJ.H. NohJ.I. ParkJ.E. ParkD. YeeS.T. KimH. Acetylcholinesterase and monoamine oxidase-B inhibitory activities by ellagic acid derivatives isolated from Castanopsis cuspidata var. sieboldii.Sci. Rep.20211111395310.1038/s41598‑021‑93458‑4 34230570
    [Google Scholar]
  152. ÖzdemirZ. AlagözM.A. BahçecioğluÖ.F. GökS. Monoamine oxidase-B (MAO-B) inhibitors in the treatment of Alzheimer’s and Parkinson’s disease.Curr. Med. Chem.202128296045606510.2174/1875533XMTEzjOTQcw 33538661
    [Google Scholar]
  153. SamadiA. ChiouaM. BoleaI. de los RíosC. IriepaI. MoraledaI. BastidaA. EstebanG. UnzetaM. GálvezE. Marco-ContellesJ. Synthesis, biological assessment and molecular modeling of new multipotent MAO and cholinesterase inhibitors as potential drugs for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.20114694665466810.1016/j.ejmech.2011.05.048 21669479
    [Google Scholar]
  154. EngelbrechtI. PetzerJ.P. PetzerA. Evaluation of selected natural compounds as dual inhibitors of catechol-O-methyltransferase and monoamine oxidase. Cent. Nerv. Syst. Agents Med. Chem.,192133145.201910.2174/1871524919666190619090852 31258092
    [Google Scholar]
  155. DhimanP. MalikN. KhatkarA. Natural based piperine derivatives as potent monoamine oxidase inhibitors: An in silico ADMET analysis and molecular docking studies.BMC Chem.20201411210.1186/s13065‑020‑0661‑0 32099971
    [Google Scholar]
  156. YusufzaiS.K. KhanM.S. SulaimanO. OsmanH. LamjinD.N. Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease.Chem. Cent. J.201812112810.1186/s13065‑018‑0497‑z 30515636
    [Google Scholar]
  157. GulcanH.O. OrhanI.E. A recent look into natural products that have potential to inhibit cholinesterases and monoamine oxidase B: Update for 2010-2019.Comb. Chem. High Throughput Screen.202023986287610.2174/1386207323666200127145246 31985374
    [Google Scholar]
  158. MathewB. ParambiD.G.T. MathewG.E. UddinM.S. InasuS.T. KimH. MarathakamA. UnnikrishnanM.K. CarradoriS. Emerging therapeutic potentials of dual‐acting MAO and AChE inhibitors in Alzheimer’s and Parkinson’s diseases.Arch. Pharm. (Weinheim)201935211190017710.1002/ardp.201900177 31478569
    [Google Scholar]
  159. ChowdhuryS. KumarS. Inhibition of BACE1, MAO‐B, cholinesterase enzymes, and anti‐amyloidogenic potential of selected natural phytoconstituents: Multi‐target‐directed ligand approach.J. Food Biochem.2021451e1357110.1111/jfbc.13571 33249607
    [Google Scholar]
  160. TundisR. LoizzoM.R. NabaviS.M. OrhanI.E. Skalicka-WoźniakK. D’OnofrioG. AielloF. Natural compounds and their derivatives as multifunctional agents for the treatment of Alzheimer disease.In: Discovery and Development of Neuroprotective Agents from Natural Products.Elsevier20186310210.1016/B978‑0‑12‑809593‑5.00003‑3
    [Google Scholar]
  161. PanzaF. LozuponeM. LogroscinoG. ImbimboB.P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease.Nat. Rev. Neurol.2019152738810.1038/s41582‑018‑0116‑6 30610216
    [Google Scholar]
  162. PinheiroL. FaustinoC. Therapeutic strategies targeting amyloid-β in Alzheimer’s disease.Curr. Alzheimer Res.201916541845210.2174/1567205016666190321163438 30907320
    [Google Scholar]
  163. ZhangY. ChenH. LiR. SterlingK. SongW. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future.Signal Transduct. Target. Ther.20238124810.1038/s41392‑023‑01484‑7 37386015
    [Google Scholar]
  164. GongC.X. Grundke-IqbalI. IqbalK. Targeting tau protein in Alzheimer’s disease.Drugs Aging201027535136510.2165/11536110‑000000000‑00000 20450234
    [Google Scholar]
  165. CongdonE.E. SigurdssonE.M. Tau-targeting therapies for Alzheimer disease.Nat. Rev. Neurol.201814739941510.1038/s41582‑018‑0013‑z 29895964
    [Google Scholar]
  166. RafiiM.S. Targeting tau protein in Alzheimer’s disease.Lancet2016388100622842284410.1016/S0140‑6736(16)32107‑9 27863808
    [Google Scholar]
  167. DhapolaR. HotaS.S. SarmaP. BhattacharyyaA. MedhiB. ReddyD.H. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease.Inflammopharmacology20212961669168110.1007/s10787‑021‑00889‑6 34813026
    [Google Scholar]
  168. ThakurS. DhapolaR. SarmaP. MedhiB. ReddyD.H. Neuroinflammation in Alzheimer’s disease: Current progress in molecular signaling and therapeutics.Inflammation202346111710.1007/s10753‑022‑01721‑1 35986874
    [Google Scholar]
  169. GoyalD. AliS.A. SinghR.K. Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease.Prog. Neuropsychopharmacol. Biol. Psychiatry202110611011210.1016/j.pnpbp.2020.110112 32949638
    [Google Scholar]
  170. KhanA.F. AdewaleQ. BaumeisterT.R. CarbonellF. ZillesK. Palomero-GallagherN. Iturria-MedinaY. Personalized brain models identify neurotransmitter receptor changes in Alzheimer’s disease.Brain202214551785180410.1093/brain/awab375 34605898
    [Google Scholar]
  171. AkyuzE. ArulsamyA. AslanF.S. SarisözenB. GuneyB. HekimogluA. YilmazB.N. RetinasamyT. ShaikhM.F. An expanded narrative review of neurotransmitters on Alzheimer’s disease: The role of therapeutic interventions on neurotransmission.Mol. Neurobiol.202410.1007/s12035‑024‑04333‑y 39012443
    [Google Scholar]
  172. KandimallaR. ReddyP.H. Therapeutics of neurotransmitters in Alzheimer’s disease.J. Alzheimers Dis.20175741049106910.3233/JAD‑161118 28211810
    [Google Scholar]
  173. BowenD.M. Treatment of Alzheimer’s disease. Molecular pathology versus neurotransmitter-based therapy.Br. J. Psychiatry1990157332733010.1192/bjp.157.3.327 1978786
    [Google Scholar]
  174. RiscadoM. BaptistaB. SousaF. New RNA-based breakthroughs in Alzheimer’s disease diagnosis and therapeutics.Pharmaceutics2021139139710.3390/pharmaceutics13091397 34575473
    [Google Scholar]
  175. AroraS. SharmaD. LayekB. SinghJ. A review of brain-targeted nonviral gene-based therapies for the treatment of Alzheimer’s disease.Mol. Pharm.202118124237425510.1021/acs.molpharmaceut.1c00611 34705472
    [Google Scholar]
  176. JagannathA. WoodM. RNA interference based gene therapy for neurological disease.Brief. Funct. Genomics Proteomics200761404910.1093/bfgp/elm005 17478451
    [Google Scholar]
  177. LiL. ZhangL. YangC. Multi-target strategy and experimental studies of traditional Chinese medicine for Alzheimer’s disease therapy.Curr. Top. Med. Chem.201516553754810.2174/1568026615666150813144003 26268330
    [Google Scholar]
  178. KumarR. KumarV. KumarB. ThakurA. DwivediA.R. Multi-target-directed ligands as an effective strategy for the treatment of Alzheimer’s disease.Curr. Med. Chem.202229101757180310.2174/0929867328666210512005508 33982650
    [Google Scholar]
  179. RizzoS. BisiA. BartoliniM. ManciniF. BellutiF. GobbiS. AndrisanoV. RampaA. Multi-target strategy to address Alzheimer’s disease: Design, synthesis and biological evaluation of new tacrine-based dimers.Eur. J. Med. Chem.20114694336434310.1016/j.ejmech.2011.07.004 21798635
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249333381241012073557
Loading
/content/journals/cnsamc/10.2174/0118715249333381241012073557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test