Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Background

Audiogenic Epilepsy (AEs) is a subtype of epileptic seizure that is generally caused by high-intensity sounds. A large number of traditional medicines has been explored in this lieu where our study chased L. (Rubiaceae), an herbal plant which is commonly known as Lady's Bedstraw, that contains a highly rich chemical composition including flavonoids (Hispidulin, Quercetin, and Kaempferol), and phenolic acids (chlorogenic acid, caftaric acid, and gallic acid). is well known for its antioxidant, neuroprotective, and anti-inflammatory properties. Recently, the unique role of Adhesion G Protein-Coupled Receptor V1 (ADGRV1) protein in the progression of audiogenic epilepsy has been explored.

Aims and Objectives

This study aimed to examine the potent phytoconstituents of the hydroalcoholic extract of (HEGV) using analytical techniques. Additionally, our study sought to evaluate the antioxidant, neuroprotective, anti-inflammatory properties, and antiepileptic potency of HEGV by targeting ADGRV1 and analyses using SH-SY5Y cells.

Methods

HPLC and LC-MS techniques were employed to identify the flavonoids, iridoids, and phenolic acid derivatives present in HEGV. DPPH (2,2-diphenyl-1-picrylhydrazyl), nitric oxide (NO), and hydroxyl (OH) radical scavenging assays were performed to confirm the antioxidant potential of the extract. Additionally, molecular docking and molecular dynamic studies were performed using AutoDock Vina software to analyze the possible interactions between crucial phytoconstituents of HEGV and ADGRV1, followed by cell line analysis. In the analysis, antioxidant, neuroprotective, and anti-inflammatory properties were assessed cell viability assay, IL, GABA, and glutamate estimation.

Results

LC-MS and HPLC analyses revealed high concentrations of hispidulin, a major flavonoid found in HEGV. HEGV exhibited moderate-to-high free radical-scavenging activities comparable to those of ascorbic acid. Docking analysis demonstrated that hispidulin has a stronger binding affinity with ADGRV1 (Vina score = -8.6 kcal/mol) than other compounds. Furthermore, cell line analysis revealed that the MSG exacerbates the neurodegeneration and neuroinflammation, whereas, HEGV and Hispidulin both possess neuroprotective, antioxidant, and antiepileptic activities.

Conclusion

HEGV and Hispidulin proved to be promising candidates for treating audiogenic epilepsy by modulating ADGRV1.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249330123240822063420
2024-08-27
2025-10-27
Loading full text...

Full text loading...

References

  1. RibakC.E. An abnormal GABAergic system in the inferior colliculus provides a basis for audiogenic seizures in genetically epilepsy-prone rats.Epilepsy Behav.201771Pt B16016410.1016/j.yebeh.2015.02.02425812940
    [Google Scholar]
  2. FedotovaI.B. SurinaN.M. NikolaevG.M. RevishchinA.V. PoletaevaI.I. Rodent Brain Pathology, Audiogenic Epilepsy.Biomedicines2021911164110.3390/biomedicines911164134829870
    [Google Scholar]
  3. McMillanD.R. WhiteP.C. Studies on the Very Large G Protein–Coupled Receptor From Initial Discovery to Determining Its Role in Sensorineural Deafness in Higher Animals.Madame Curie Bioscience DatabaseLandes Bioscience2010
    [Google Scholar]
  4. MyersK.A. NasioulasS. BoysA. McMahonJ.M. SlaterH. LockhartP. SartD. SchefferI.E. ADGRV1 is implicated in myoclonic epilepsy.Epilepsia201859238138810.1111/epi.1398029266188
    [Google Scholar]
  5. MartinB. DieusetG. PawluskiJ.L. CostetN. BirabenA. Audiogenic seizure as a model of sudden death in epilepsy: A comparative study between four inbred mouse strains from early life to adulthood.Epilepsia202061234234910.1111/epi.1643231981213
    [Google Scholar]
  6. SinghM. PandaS.P. The Role of Monosodium Glutamate (MSG) in Epilepsy and other Neurodegenerative Diseases: Phytochemical-based Therapeutic Approa-ches and Mechanisms.Curr. Pharm. Biotechnol.202325221322910.2174/138920102466623072616131435352648
    [Google Scholar]
  7. DahawiM. ElmagzoubM.S.A. A AhmedE. BaldassariS. AchazG. ElmugadamF.A. AbdelgadirW.A. BaulacS. BurattiJ. AbdallaO. GamilS. AlzubeirM. AbubakerR. NoéE. ElsayedL. AhmedA.E. LeguernE. Involvement of ADGRV1 Gene in Familial Forms of Genetic Generalized Epilepsy.Front. Neurol.20211273827210.3389/fneur.2021.73827234744978
    [Google Scholar]
  8. HazzaaS. AbdelazizS. Abd EldaimM. Abdel-DaimM. ElgarawanyG. Neuroprotective Potential of Allium sativum against Monosodium Glutamate-Induced Excitotoxicity: Impact on Short-Term Memory, Gliosis, and Oxidative Stress.Nutrients2020124102810.3390/nu1204102832290031
    [Google Scholar]
  9. StemerdinkM. BroekmanS. PetersT. KremerH. de VriezeE. van WijkE. Generation and Characterization of a Zebrafish Model for ADGRV1-Associated Retinal Dysfunction Using CRISPR/Cas9 Genome Editing Technology.Cells20231212159810.3390/cells1212159837371069
    [Google Scholar]
  10. CanoA. FonsecaE. EttchetoM. Sánchez-LópezE. de RojasI. Alonso-LanaS. MoratóX. SoutoE.B. ToledoM. BoadaM. MarquiéM. RuízA. Epilepsy in Neurodegenerative Diseases: Related Drugs and Molecular Pathways.Pharmaceuticals (Basel)20211410105710.3390/ph1410105734681281
    [Google Scholar]
  11. PocrnicI. LourencoD.A.L. MasudaY. MisztalI. Accuracy of genomic BLUP when considering a genomic relationship matrix based on the number of the largest eigenvalues: a simulation study.Genet. Sel. Evol.20195117510.1186/s12711‑019‑0516‑031830899
    [Google Scholar]
  12. DanboltN.C. Glutamate uptake.Prog. Neurobiol.2001651110510.1016/S0301‑0082(00)00067‑811369436
    [Google Scholar]
  13. KrzyskoJ. MaciagF. MertensA. GülerB.E. LinnertJ. BoldtK. UeffingM. Nagel-WolfrumK. HeineM. WolfrumU. The Adhesion GPCR VLGR1/ADGRV1 Regulates the Ca2+ Homeostasis at Mitochondria-Associated ER Membranes.Cells20221118279010.3390/cells1118279036139365
    [Google Scholar]
  14. ZhouP. MengH. LiangX. LeiX. ZhangJ. BianW. HeN. LinZ. SongX. ZhuW. HuB. LiB. YanL. TangB. SuT. LiuH. MaoY. ZhaiQ. YiY. ADGRV1 Variants in Febrile Seizures/Epilepsy With Antecedent Febrile Seizures and Their Associations With Audio-Visual Abnormalities.Front. Mol. Neurosci.20221586407410.3389/fnmol.2022.86407435813073
    [Google Scholar]
  15. KusuluriD.K. GülerB.E. KnappB. HornN. BoldtK. UeffingM. AustG. WolfrumU. Adhesion G protein-coupled receptor VLGR1/ADGRV1 regulates cell spreading and migration by mechanosensing at focal adhesions.iScience202124410228310.1016/j.isci.2021.10228333851099
    [Google Scholar]
  16. DamascenoS. FonsecaP.A.S. RosseI.C. MoraesM.F.D. de OliveiraJ.A.C. Garcia-CairascoN. Brunialti GodardA.L. Putative Causal Variant on Vlgr1 for the Epileptic Phenotype in the Model Wistar Audiogenic Rat.Front. Neurol.20211264785910.3389/fneur.2021.64785934177758
    [Google Scholar]
  17. MaviA. TerziZ. ÖzgenU. YildirimA. CoşkunM. Antioxidant properties of some medicinal plants: Prangos ferulacea (Apiaceae), Sedum sempervivoides (Crassulaceae), Malva neglecta (Malvaceae), Cruciata taurica (Rubiaceae), Rosa pimpinellifolia (Rosaceae), Galium verum subsp. verum (Rubiaceae), Urtica dioica (Urticaceae).Biol. Pharm. Bull.200427570270510.1248/bpb.27.70215133249
    [Google Scholar]
  18. IlinaT. KashpurN. GranicaS. BazylkoA. ShinkovenkoI. KovalyovaA. GoryachaO. KoshovyiO. Phytochemical Profiles and In Vitro Immunomodulatory Activity of Ethanolic Extracts from Galium aparine L.Plants201981254110.3390/plants812054131775336
    [Google Scholar]
  19. TavaA. BiazziE. RongaD. AvatoP. Identification of the Volatile Components of Galium verum L. and Cruciata leavipes Opiz from the Western Italian Alps.Molecules20202510233310.3390/molecules2510233332429453
    [Google Scholar]
  20. ZhaoC.C. ShaoJ.H. LiX. KangX.D. ZhangY.W. MengD.L. LiN. Flavonoids from Galium verum L.J. Asian Nat. Prod. Res.2008107-861361718636371
    [Google Scholar]
  21. FarcasA.D. MotA.C. Zagrean-TuzaC. TomaV. CimpoiuC. HosuA. ParvuM. RomanI. Silaghi-DumitrescuR. Chemo-mapping and biochemical-modulatory and antioxidant/prooxidant effect of Galium verum extract during acute restraint and dark stress in female rats.PLoS One2018137e020002210.1371/journal.pone.020002229969484
    [Google Scholar]
  22. LakićN. Mimica-DukićN. IsakJ. BožinB. Antioxidant properties of Galium verum L. (Rubiaceae) extracts.Open Life Sci.20105333133710.2478/s11535‑010‑0022‑4
    [Google Scholar]
  23. BradicJ. PetkovicA. TomovicM. Phytochemical and Pharmacological Properties of Some Species of the Genus Galium L. Galium Verum and Mollugo.Serb. J. Exp. Clin. Res.20180010.1515/sjecr‑2017‑0057
    [Google Scholar]
  24. ShinkovenkoI.L. KashpurN.V. IlinaT.V. KovalyovaA.M. GoryachaO.V. KoshovyiO.M. KryvoruchkoO.V. KomissarenkoA.M. The immunomodulatory activity of ethanolic extracts from Galium verum L. herb.Ceska Slov. Farm.201867310110630630326
    [Google Scholar]
  25. DongJ.M. MaY.L. ZhangZ.Y. LiR. ZhuY.L. MaL. [Effects and related mechanism of flavone from Galium verum L on peroxide induced oxidative injury in human umbilical vein endothelial cells].Zhonghua Xin Xue Guan Bing Za Zhi201644761061527530947
    [Google Scholar]
  26. SemenescuA.D. MoacăE.A. IftodeA. DeheleanC.A. Tchiakpe-AntalD.S. VlaseL. VlaseA.M. MunteanD. ChioibaşR. Phytochemical and Nutraceutical Screening of Ethanol and Ethyl Acetate Phases of Romanian Galium verum Herba (Rubiaceae).Molecules20232823780410.3390/molecules2823780438067535
    [Google Scholar]
  27. ShinkovenkoI.L. KashpurN.V. IlyinaT.V. KovalyovaA.M. GoryachaO.V. KoshovyiO.M. ToryanykE.L. KryvoruchkoO.V. The immunomodulatory activity of the extracts and complexes of biologically active compounds of Galium verum L. herb.Ceska Slov. Farm.2018671252930157664
    [Google Scholar]
  28. HanJ.Y. LeeH.J. LeeY.M. ParkJ. Identification of missense ADGRV1 mutation as a candidate genetic cause of familial febrile seizure 4.Children (Basel)20207914410.3390/children709014432962041
    [Google Scholar]
  29. BussmannR.W. BatsatsashviliK. KikvidzeZ. Galium septentrionale Roem. & Schult. Galium verum L.Ethnobotany of the Mountain Regions of Central Asia and Altai. Ethnobotany of Mountain Regions.ChamSpringer2020
    [Google Scholar]
  30. PashapourS. HeshmatiM. MousaviZ. EsmaeiliS. Effect of whole methanolic extract of Galium verum on AGO cell line.Toxicol. Commun.2022421010.53388/20220202010
    [Google Scholar]
  31. TurcovD. BarnaA.S. TrifanA. BlagaA.C. TanasăA.M. SuteuD. Antioxidants from Galium verum as ingredients for the design of new dermatocosmetic products.Plants20221119245410.3390/plants1119245436235320
    [Google Scholar]
  32. SchmidtM. PolednikC. RollerJ. HagenR. Galium verum aqueous extract strongly inhibits the motility of head and neck cancer cell lines and protects mucosal keratinocytes against toxic DNA damage.Oncol. Rep.20143231296130210.3892/or.2014.331625017936
    [Google Scholar]
  33. MateiA.O. GateaF. RaduG.L. Analysis of phenolic compounds in some medicinal herbs by LC–MS.J. Chromatogr. Sci.20155371147115410.1093/chromsci/bmu17725583972
    [Google Scholar]
  34. BradicJ. AndjicM. NovakovicJ. KocovicA. TomovicM. PetrovicA. NikolicM. MitrovicS. JakovljevicV. PecarskiD. Lady’s bedstraw as a powerful antioxidant for attenuation of doxorubicin-induced cardiotoxicity.Antioxidants2023126127710.3390/antiox1206127737372007
    [Google Scholar]
  35. LaanetP.R. Saar-ReismaaP. JõulP. BraginaO. VaherM. Phytochemical screening and antioxidant activity of selected estonian Galium Species.Molecules2023286286710.3390/molecules2806286736985838
    [Google Scholar]
  36. VuleticM. JakovljevicV. ZivanovicS. PapicM. PapicM. MladenovicR. ZivkovicV. SrejovicI. JeremicJ. AndjicM. KocovicA. SretenovicJ. MitrovicS. BožinB. KladarN. BolevichS. BradicJ. The evaluation of healing properties of Galium verum-based oral gel in aphthous stomatitis in rats.Molecules20222715468010.3390/molecules2715468035897855
    [Google Scholar]
  37. PatelK. PatelD.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report.J. Tradit. Complement. Med.20177336036610.1016/j.jtcme.2016.11.00328725632
    [Google Scholar]
  38. TangsongcharoenT. IssaravanichS. PalanuvejC. RuangrungsiN. Quantitative analysis of hispidulin content in Clerodendrum petasites roots distributed in Thailand.Pharmacogn. J.20191151093109910.5530/pj.2019.11.171
    [Google Scholar]
  39. ZhuangG.D. GuW.T. XuS.H. CaoD.M. DengS.M. ChenY.S. WangS.M. TangD. Rapid screening of antioxidant from natural products by AAPH-Incubating HPLC-DAD-HR MS/MS method: A case study of Gardenia jasminoides fruit.Food Chem.202340113409110.1016/j.foodchem.2022.13409136116299
    [Google Scholar]
  40. WuH. GuoJ. ChenS. LiuX. ZhouY. ZhangX. XuX. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography–mass spectrometry.J. Pharm. Biomed. Anal.20137226729110.1016/j.jpba.2012.09.00423031576
    [Google Scholar]
  41. HuoJ. WuZ. ZhaoH. SunW. WuJ. HuangM. ZhangJ. WangZ. SunB. Structure-activity relationship of antioxidant polysaccharides from Huangshui based on the HPLC fingerprint combined with chemometrics methods.Lebensm. Wiss. Technol.202215911320110.1016/j.lwt.2022.113201
    [Google Scholar]
  42. KarageciliH. YılmazM.A. ErtürkA. KiziltasH. GüvenL. AlwaselS.H. Gulcinİ. Comprehensive metabolite profiling of berdav propolis using LC-MS/MS: Determination of antioxidant, anticholinergic, antiglaucoma, and antidiabetic effects.Molecules2023284173910.3390/molecules2804173936838726
    [Google Scholar]
  43. AntoniakK. Studzińska-SrokaE. SzymańskiM. Dudek-MakuchM. Cielecka-PiontekJ. KorybalskaK. Antiangiogenic, anti-inflammatory and antioxidant properties of Bidens tripartite Herb, Galium verum Herb and Rumex hydrolapathum Root.Molecules20232813496610.3390/molecules2813496637446627
    [Google Scholar]
  44. TrinhP.C. ThaoL.T.T. HaH.T.V. NguyenT. DPPH‐scavenging and antimicrobial activities of asteraceae medicinal plants on uropathogenic bacteria.Evid. Based Complement. Alternat. Med.202020201780702610.1155/2020/780702632508954
    [Google Scholar]
  45. SannaD. DeloguG. MulasM. SchirraM. FaddaA. Determination of free radical scavenging activity of plant extracts through DPPH Assay: An EPR and UV–Vis Study.Food Anal. Methods20125475976610.1007/s12161‑011‑9306‑1
    [Google Scholar]
  46. JakharR. DangiM. KhichiA. ChhillarA.K. Relevance of molecular docking studies in drug designing.Curr. Bioinform.202015427027810.2174/1574893615666191219094216
    [Google Scholar]
  47. OshiroC. BradleyE.K. EksterowiczJ. EvensenE. LambM.L. LanctotJ.K. PuttaS. StantonR. GrootenhuisP.D.J. Performance of 3D-database molecular docking studies into homology models.J. Med. Chem.200447376476710.1021/jm030078114736258
    [Google Scholar]
  48. MalikA. MananA. MirzaM.U. Molecular docking and in silico ADMET studies of silibinin and glycyrrhetic acid anti-inflammatory activity.Trop. J. Pharm. Res.20171616710.4314/tjpr.v16i1.9
    [Google Scholar]
  49. DilshadR. KhanK.R. AhmadS. AatiH.Y. Al-qahtaniJ.H. SherifA.E. HussainM. GhallooB.A. TahirH. BasitA. AhmedM. Phytochemical profiling, in vitro biological activities, and in-silico molecular docking studies of Typha domingensis.Arab. J. Chem.2022151010413310.1016/j.arabjc.2022.104133
    [Google Scholar]
  50. TarachandS.P. ThirumoorthyG. LakshmaiahV.V. NagellaP. In silico molecular docking study of Andrographis paniculata phytochemicals against TNF-α as a potent anti-rheumatoid drug.J. Biomol. Struct. Dyn.20234172687269710.1080/07391102.2022.203746335147481
    [Google Scholar]
  51. AdejoroI.A. BabatundeD.D. TolufasheG.F. Molecular docking and dynamic simulations of some medicinal plants compounds against SARS-CoV-2: an in silico study.J. Taibah Univ. Sci.20201411563157010.1080/16583655.2020.1848049
    [Google Scholar]
  52. MirW.R. BhatB.A. RatherM.A. MuzamilS. AlmilaibaryA. AlkhananiM. MirM.A. Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya.Sci. Rep.20221211254710.1038/s41598‑022‑16102‑935869098
    [Google Scholar]
  53. KhalidH. AshfaqU.A. Molecular Docking and Pharmacoinformatics Studies Reveal Potential Phytochemicals Against HCV NS5B Polymerase.Comb. Chem. High Throughput Screen.202225233534610.2174/138620732366620122816022433371844
    [Google Scholar]
  54. JiaoY. ShiC. SunY. Unraveling the Role of Scutellaria baicalensis for the Treatment of Breast Cancer Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation.Int. J. Mol. Sci.2023244359410.3390/ijms2404359436835006
    [Google Scholar]
  55. NiJ. WuZ. MengJ. ZhuA. ZhongX. WuS. NakanishiH. The Neuroprotective Effects of Brazilian Green Propolis on Neurodegenerative Damage in Human Neuronal SH‐SY5Y Cells.Oxid. Med. Cell. Longev.201720171798432710.1155/2017/798432728265338
    [Google Scholar]
  56. LopesF.M. LonderoG.F. de MedeirosL.M. da MottaL.L. BehrG.A. de OliveiraV.A. IbrahimM. MoreiraJ.C.F. de Oliveira PorciúnculaL. da RochaJ.B.T. KlamtF. Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine.Neurotox. Res.201222213814910.1007/s12640‑012‑9311‑122271527
    [Google Scholar]
  57. GoettertM.I. HoffmannL.F. MartinsA. MajoloF. ContiniV. LauferS. Neural regeneration research model to be explored: SH-SY5Y human neuroblastoma cells.Neural Regen. Res.20231861265126610.4103/1673‑5374.35862136453406
    [Google Scholar]
  58. MeenambalR. KrukT. GurgulJ. WarszyńskiP. JantasD. Neuroprotective effects of polyacrylic acid (PAA) conjugated cerium oxide against hydrogen peroxide- and 6-OHDA-induced SH-SY5Y cell damage.Sci. Rep.20231311853410.1038/s41598‑023‑45318‑637898622
    [Google Scholar]
  59. NampoothiriM. ReddyN.D. JohnJ. KumarN. Kutty NampurathG. Rao ChamallamudiM. Insulin blocks glutamate-induced neurotoxicity in differentiated SH-SY5Y neuronal cells.Behav. Neurol.201420141810.1155/2014/67416425018588
    [Google Scholar]
  60. Al-RafiahA.R. MehdarK.M. Histopathological and Biochemical Assessment of Neuroprotective Effects of Sodium Valproate and Lutein on the Pilocarpine Albino Rat Model of Epilepsy.Behav. Neurol.2021202112210.1155/2021/554963834149964
    [Google Scholar]
  61. YuC.I. ChengC.I. KangY.F. ChangP.C. LinI.P. KuoY.H. JhouA.J. LinM.Y. ChenC.Y. LeeC.H. Hispidulin Inhibits Neuroinflammation in Lipopolysaccharide-Activated BV2 Microglia and Attenuates the Activation of Akt, NF-κB, and STAT3 Pathway.Neurotox. Res.202038116317410.1007/s12640‑020‑00197‑x32222934
    [Google Scholar]
  62. PalanivelV. GuptaV. MirshahvaladiS.S.O. SharmaS. GuptaV. ChitranshiN. MirzaeiM. GrahamS.L. BasavarajappaD. Neuroprotective Effects of Neuropeptide Y on Human Neuroblastoma SH-SY5Y Cells in Glutamate Excitotoxicity and ER Stress Conditions.Cells20221122366510.3390/cells1122366536429093
    [Google Scholar]
  63. BanerjeeA. MukherjeeS. MajiB.K. Monosodium glutamate causes hepato-cardiac derangement in male rats.Hum. Exp. Toxicol.20214012_supplSuppl.S359S36910.1177/0960327121104955034560825
    [Google Scholar]
  64. SoliusG.M. RevishchinA.V. PavlovaG.V. PoletaevaI.I. Audiogenic epilepsy and GABAergic system of the colliculus inferior in Krushinsky-Molodkina rats.Dokl. Biochem. Biophys.20164661323410.1134/S160767291601009927025483
    [Google Scholar]
  65. MuñozL.J. Carballosa-GautamM.M. YanowskyK. García-AtarésN. LópezD.E. The genetic audiogenic seizure hamster from Salamanca: The GASH:Sal.Epilepsy Behav.201771Pt B18119210.1016/j.yebeh.2016.03.00227072920
    [Google Scholar]
  66. LengX. ZhangT. GuanY. TangM. Genotype and phenotype analysis of epilepsy caused by ADGRV1 mutations in Chinese children.Seizure202210310811410.1016/j.seizure.2022.11.00536399868
    [Google Scholar]
  67. ScheelH. TomiukS. HofmannK. A common protein interaction domain links two recently identified epilepsy genes.Hum. Mol. Genet.200211151757176210.1093/hmg/11.15.175712095917
    [Google Scholar]
  68. VarlamovaE.G. BorisovaE.V. EvstratovaY.A. NewmanA.G. KuldaevaV.P. GavrishM.S. KondakovaE.V. TarabykinV.S. BabaevA.A. TurovskyE.A. Socrates: A Novel N-Ethyl-N-nitrosourea-Induced Mouse Mutant with Audiogenic Epilepsy.Int. J. Mol. Sci.202324231710410.3390/ijms24231710438069426
    [Google Scholar]
  69. LinnertJ. GülerB.E. KrzyskoJ. WolfrumU. The adhesion G protein‐coupled receptor VLGR1/ADGRV1 controls autophagy.Basic Clin. Pharmacol. Toxicol.2023133431333010.1111/bcpt.1386937002809
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249330123240822063420
Loading
/content/journals/cnsamc/10.2174/0118715249330123240822063420
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test