Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Aim

We aimed to conduct screening of the potential phytoconstituent from a natural product database to find SIRT2 inhibitors.

Background

Alzheimer's disease (AD) is the most prevalent type of dementia, characterized by behavioral and mental symptoms as well as a progressive loss of cognitive ability. Since SIRT2 may be detrimental to neurological illnesses, it is a prime target for research into SIRT2 inhibitors.

Objective

To identify the SIRT2 inhibitors and their role in AD.

Methods

We have utilized NPAtlas database and screened using pharmacophore-based virtual screening, molecular docking, and simulation. The Natural Products Atlas provides unrestricted access to various natural products derived from bacteria and fungi, allowing researchers to investigate and visualize the extensive chemical diversity in the natural world.

Results

From screening data, we have found phytoconstituents that could function as SIRT2 inhibitors. Six phytoconstituents were identified using pharmacophore-based virtual screening. According to molecular docking, Kurasoin B outperformed the reference molecule regarding binding energy. Kurasoin B exhibited a binding affinity of -12.543 kcal/mol, whereas the binding affinity of the reference molecule was -12.089 kcal/mol. The Kurasoin B complex with SIRT2 was determined to be stable throughout the simulation by performing MD simulation, with an RMSD of 2.88 (Å), whereas the reference and free protein displayed RMSDs of 3.74 and 4.70 (Å), respectively.

Conclusion

studies and data analysis, suggest that Kurasoin B may be able to suppress the SIRT2 protein for managing AD.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249319554240930050002
2025-12-01
2025-10-08
Loading full text...

Full text loading...

References

  1. CummingsJ. Cognitive and behavioral heterogeneity in Alzheimer’s disease: Seeking the neurobiological basis.Neurobiol. Aging200021684586110.1016/S0197‑4580(00)00183‑4 11124429
    [Google Scholar]
  2. TraniJ.F. ZhuY. ParkS. KhuramD. AzamiR. FazalM.R. BabulalG.M. Multidimensional poverty is associated with dementia among adults in Afghanistan.EClinicalMedicine20235810190610.1016/j.eclinm.2023.101906
    [Google Scholar]
  3. OssenkoppeleR. van der KantR. HanssonO. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials.Lancet Neurol.202221872673410.1016/S1474‑4422(22)00168‑5 35643092
    [Google Scholar]
  4. WisniewskiT. KonietzkoU. Amyloid-β immunisation for Alzheimer’s disease.Lancet Neurol.20087980581110.1016/S1474‑4422(08)70170‑4 18667360
    [Google Scholar]
  5. PerryE. WalkerM. GraceJ. PerryR. Acetylcholine in mind: A neurotransmitter correlate of consciousness?Trends Neurosci.199922627328010.1016/S0166‑2236(98)01361‑7 10354606
    [Google Scholar]
  6. ZhuX. RainaA.K. PerryG. SmithM.A. Alzheimer’s disease: The two-hit hypothesis.Lancet Neurol.20043421922610.1016/S1474‑4422(04)00707‑0 15039034
    [Google Scholar]
  7. BondaD.J. LeeH. CaminsA. PallàsM. CasadesusG. SmithM.A. ZhuX. The sirtuin pathway in ageing and Alzheimer disease: Mechanistic and therapeutic considerations.Lancet Neurol.201110327527910.1016/S1474‑4422(11)70013‑8 21349442
    [Google Scholar]
  8. ZhangY. Anoopkumar-DukieS. AroraD. DaveyA.K. Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases.Eur. J. Pharmacol.202086717284710.1016/j.ejphar.2019.172847 31812544
    [Google Scholar]
  9. ChenX. LuW. WuD. Sirtuin 2 (SIRT2): Confusing roles in the pathophysiology of neurological disorders.Front. Neurosci.20211561410710.3389/fnins.2021.614107 34108853
    [Google Scholar]
  10. Zivari-GhaderT. ValiogluF. EftekhariA. AliyevaI. BeylerliO. DavranS. ChoW.C. BeilerliA. KhalilovR. JavadovS. Recent progresses in natural based therapeutic materials for Alzheimer’s disease.Heliyon2024104e2635110.1016/j.heliyon.2024.e26351 38434059
    [Google Scholar]
  11. MiryusifovaK. MalikovaG. AllahverdiyevaA. HuseynovaN. UmudluA. >The saffron effects on the dynamics of experimental epilepsy.Adv. Biol. Earth Sci.20249119620210.62476/abes9196
    [Google Scholar]
  12. GashimovaU. GuliyevaR. JavadovaK. IbishovaA. PanakhovaE. Histological examination of retinal function and the effects of Curcuma longa on memory correction in experimental olfactory bulbectomy rat models.Adv. Biol. Earth Sci.20249121622210.62476/abes9216
    [Google Scholar]
  13. TuzimskiT. PetruczynikA. Determination of anti-alzheimer’s disease activity of selected plant ingredients.Molecules20222710322210.3390/molecules27103222 35630702
    [Google Scholar]
  14. SunseriJ. KoesD.R. Pharmit: Interactive exploration of chemical space.Nucleic Acids Res.201644W1W442W44810.1093/nar/gkw287 27095195
    [Google Scholar]
  15. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera — A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  16. van SantenJ.A. PoyntonE.F. IskakovaD. McMannE. AlsupT.A. ClarkT.N. FergussonC.H. FewerD.P. HughesA.H. McCaddenC.A. ParraJ. SoldatouS. RudolfJ.D. JanssenE.M.L. DuncanK.R. LiningtonR.G. The Natural Products Atlas 2.0: A database of microbially-derived natural products.Nucleic Acids Res.202250D1D1317D132310.1093/nar/gkab941 34718710
    [Google Scholar]
  17. AgarwalD. KumarS. AmbatwarR. BhanwalaN. ChandrakarL. KhatikG.L. Lead identification through in silico studies: Targeting acetylcholinesterase enzyme against Alzheimer’s disease.Cent. Nerv. Syst. Agents Med. Chem.202424221924210.2174/0118715249268585240107184956 38288823
    [Google Scholar]
  18. KumarH. DatusaliaA.K. KhatikG.L. Virtual screening of acetylcholinesterase inhibitors through pharmacophore-based 3D-QSAR modeling, ADMET, molecular docking, and MD simulation studies.In Silico Pharmacol.20241211310.1007/s40203‑024‑00189‑1 38370859
    [Google Scholar]
  19. RostkowskiM. OlssonM.H.M. SøndergaardC.R. JensenJ.H. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA.BMC Struct. Biol.2011111610.1186/1472‑6807‑11‑6 21269479
    [Google Scholar]
  20. ChristofferC. KiharaD. Domain-based protein docking with extremely large conformational changes.J. Mol. Biol.20224342116782010.1016/j.jmb.2022.167820 36089054
    [Google Scholar]
  21. RumpfT. SchiedelM. KaramanB. RoesslerC. NorthB.J. LehotzkyA. OláhJ. LadweinK.I. SchmidtkunzK. GajerM. PannekM. SteegbornC. SinclairD.A. GerhardtS. OvádiJ. SchutkowskiM. SipplW. EinsleO. JungM. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site.Nat. Commun.201561626310.1038/ncomms7263 25672491
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249319554240930050002
Loading
/content/journals/cnsamc/10.2174/0118715249319554240930050002
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Alzheimer's disease; brain; drug-design; phytoconstituent; SIRT2; virtual screening
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test