Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

The administration of new pharmaceutical compounds orally can pose certain challenges in terms of drug absorption, bioavailability, and pharmacokinetic profile. However, a widely recognized method for enhancing bioavailability involves lipid-based drug delivery systems. Lipid-based drug delivery systems (LBDDS) are the most favourable method for formulating medicines that have low solubility in water. Nanotechnology exerts a significant impact on the therapeutic efficacy of hydrophobic medicines and has emerged as a crucial method in the field of drug delivery research. Self-nanoemulsifying drug delivery systems (SNEDDs) are an important approach that combines the advantages of lipid-based drug delivery systems (LBDDS) and nanotechnology. SNEDDs are currently the favoured method for enhancing the formulation of pharmaceuticals that have low solubility in water. SNEDDs are homogenous mixtures that can self-emulsify spontaneously with gentle stirring, forming an oil-in-water emulsion that conveniently protects and creates a pathway for the lipophilic drug. The small particle size of <200 nm increases the solubilisation capacity of the drug by increasing its surface area. SNEDDs have demonstrated the ability to enhance the bioavailability of medicines that are not easily soluble in water. SNEDDs stand apart from other solubility enhancement approaches due to their inclusion of biodegradable components, their ease of large-scale manufacture, and their numerous potential for drug targeting. The aim of the present review was to provide basic knowledge about formulation, applications, and benefits of using SNEDDs. A detailed manuscript has been prepared by doing a literature survey on databases like Google Scholar, SCOPUS, and Pubmed to review the current state of nanotechnology applications, industrial developments, and challenges for using SNEDDS as a novel delivery system is provided in this manuscript.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873304985240627061125
2024-07-18
2025-10-27
Loading full text...

Full text loading...

References

  1. KawabataY. WadaK. NakataniM. YamadaS. OnoueS. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications.Int. J. Pharm.2011420111010.1016/j.ijpharm.2011.08.03221884771
    [Google Scholar]
  2. MinochaN. KumarV. Nanostructure system: Liposome : A bioactive carrier in drug delivery systems.Mater. Today Proc.20226961461910.1016/j.matpr.2022.09.494
    [Google Scholar]
  3. KumarV. MinochaN. GargV. DurejaH. Nanostructured materials used in drug delivery.Mater. Today Proc.20226917418010.1016/j.matpr.2022.08.306
    [Google Scholar]
  4. KottaS. KhanA.W. PramodK. AnsariS.H. SharmaR.K. AliJ. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs.Expert Opin. Drug Deliv.20129558559810.1517/17425247.2012.66852322512597
    [Google Scholar]
  5. StegemannS. LeveillerF. FranchiD. de JongH. LindénH. When poor solubility becomes an issue: From early stage to proof of concept.Eur. J. Pharm. Sci.200731524926110.1016/j.ejps.2007.05.11017616376
    [Google Scholar]
  6. MehtaM. Workshop on Biopharmaceutics Classification system,. AAPS/FDA.20022527Available from: https://dissolutiontech.com/DTresour/1102art/1102_art4.htm
  7. RaoL. BhardwajB.Y. ChughM. SharmaA. ShahR. MinochaN. PandeyP. Enhanced efficacy of carvedilol by utilization of solid dispersion and other novel strategies: A review.Cardiovasc. Hematol. Disord. Drug Targets202323314115610.2174/011871529X24762223110107585437953616
    [Google Scholar]
  8. RajpootA.K. KumarA. SharmaS. KumarH. Self-emulsifying drug delivery system: A review.Int. J. Pharm. Biol. Arch.201910117
    [Google Scholar]
  9. PoutonC.W. PorterC.J.H. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies.Adv. Drug Deliv. Rev.200860662563710.1016/j.addr.2007.10.01018068260
    [Google Scholar]
  10. PuriA. LoomisK. SmithB. LeeJ.H. YavlovichA. HeldmanE. BlumenthalR. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic.Crit. Rev. Therap. Drug. Carr. Sys.2009266253280
    [Google Scholar]
  11. José AlonsoM. Nanomedicines for overcoming biological barriers.Biomed. Pharmacother.200458316817210.1016/j.biopha.2004.01.00715082339
    [Google Scholar]
  12. SinghA. PatelA. ChaudharyH. YadavK. MinochaN. Nanotheranostics: The fabrication of theranostics with nanoparticles and their application to treat the neurological disorders.Recent Pat. Nanotechnol.202320231837464820
    [Google Scholar]
  13. AttriM. RaghavA. RaoK. PandeyP. MinochaN. A review on nanosponges: An idiosyncratic approach for delivery of proactive molecules.Curr. Nanomater.202320238
    [Google Scholar]
  14. ZhangL. GuF.X. ChanJ.M. WangA.Z. LangerR.S. FarokhzadO.C. Nanoparticles in medicine: Therapeutic applications and developments.Clin. Pharmacol. Ther.200883576176910.1038/sj.clpt.610040017957183
    [Google Scholar]
  15. AlaouieA. SofouS. Liposomes with triggered content release for cancer therapy.J. Biomed. Nanotechnol.200843234244
    [Google Scholar]
  16. AsadM. RasulA. AbbasG. ShahM.A. NazirI. Self-emulsifying drug delivery systems: A versatile approach to enhance the oral delivery of BCS class III drug via hydrophobic ion pairing.PLoS One2023186e028666810.1371/journal.pone.028666837294790
    [Google Scholar]
  17. RaoK. BansalN. YadavN. MinochaN. Essential herbal plants for the clinical management of polycystic ovary syndrome and patents for the same.Curr. Womens Health Rev.2024204e26062321824410.2174/1573404820666230626110413
    [Google Scholar]
  18. MalhotraP. MinochaN. PandeyP. KaushikD. VashistN. A review on history, chemical constituents, phytochemistry, pharmacological activities, and recent patents of valerian.Nat. Prod. J.2024142e18072321882210.2174/2210315514666230718100526
    [Google Scholar]
  19. VermaR. MinochaN. MittalV. KaushikD. Exploring the potential of nano drug delivery systems in non-small cell lung cancer treatment: Recent developments and perspectives.Curr.Drug. Ther.202419118
    [Google Scholar]
  20. BansalN. RaoK. YadavN. MinochaN. Biodegradable polymeric microspheres as drug carriers for anti- microbial agent.Curr. Drug Ther.2024191495910.2174/1574885518666230530095329
    [Google Scholar]
  21. PatelA. SinghA. MinochaN. Exploring the potential characteristics of zinc oxide nanoparticles: A review.Curr.Mat. Sci.202417114
    [Google Scholar]
  22. HadinotoK. SundaresanA. CheowW.S. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review.Eur. J. Pharm. Biopharm.201385342744310.1016/j.ejpb.2013.07.00223872180
    [Google Scholar]
  23. BoydB.J. Past and future evolution in colloidal drug delivery systems.Expert Opin. Drug Deliv.200851698510.1517/17425247.5.1.6918095929
    [Google Scholar]
  24. GutiérrezJ.M. GonzálezC. MaestroA. SolèI. PeyC.M. NollaJ. Nano-emulsions: New applications and optimization of their preparation.Curr. Opin. Colloid Interface Sci.200813424525110.1016/j.cocis.2008.01.005
    [Google Scholar]
  25. MinochaN. SharmaN. VermaR. KaushikD. PandeyP. Solid lipid nanoparticles: Peculiar strategy to deliver bio-proactive molecules.Recent Pat. Nanotechnol.202317322824210.2174/187221051666622031714335135301957
    [Google Scholar]
  26. PandeyP. PurohitD. SharmaS. LambaA.K. SainiS. MinochaN. VashistN. KaushikD. Nanocrystals: A deep insight into formulation aspects, stabilization strategies, and biomedical applications.Recent Pat. Nanotechnol.202317430732610.2174/187221051666622052312031335616680
    [Google Scholar]
  27. MinochaN. PandeyP. SharmaN. SainiS. Wheatgrass (Triticum aestivum) extract loaded chitosan solid lipid nanoparticles: formulation, physicochemical characterisation and cytotoxic potential.Rec. Pat. Nanotechnol.202418118
    [Google Scholar]
  28. KaushikD. PandeyP. MinochaN. VashistN. ShahR. SainiS. MakhijaM. PurohitD. Emulgel: An emerging approach towards effective topical drug delivery.Drug Deliv. Lett.202212422724210.2174/2210303112666220818115231
    [Google Scholar]
  29. AntonN. BenoitJ.P. SaulnierP. Design and production of nanoparticles formulated from nano-emulsion templates—A review.J. Control. Release2008128318519910.1016/j.jconrel.2008.02.00718374443
    [Google Scholar]
  30. BatesT.R. CarriganP.J. Apparent absorption kinetics of micronized griseofulvin after its oral administration on single- and multiple-dose regimens to rats as a corn oil-in-water emulsion and aqueous suspension.J. Pharm. Sci.19756491475148110.1002/jps.26006409101185560
    [Google Scholar]
  31. RogerK. CabaneB. OlssonU. Formation of 10-100 nm size-controlled emulsions through a sub-PIT cycle.Langmuir20102663860386710.1021/la903401g19899785
    [Google Scholar]
  32. RogerK. CabaneB. OlssonU. Emulsification through surfactant hydration: The PIC process revisited.Langmuir201127260461110.1021/la104260321171639
    [Google Scholar]
  33. KhalilovR. BakishzadeA. NasibovaA. Future prospects of biomaterials in nanomedicine.Adv. Biol. Earth. Sci.20238510
    [Google Scholar]
  34. RosicG. SelakovicD. OmarovaS. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Adv. Biol. Earth. Sci.20249Special Issue113410.62476/abes9s11
    [Google Scholar]
  35. HuseynovE. KhalilovR. MohamedA.J. Novel nanomaterials for hepatobiliary diseases treatment and future perspectives.Adv. Biol. Earth. Sci.20249Special Issue819110.62476/abes9s81
    [Google Scholar]
  36. SalahshourP. Nanobiomaterials/bioinks based scaffolds in 3d bioprinting for tissue engineering and artificial human organs.Adv. Biol. Earth. Sci.20249Special Issue9710410.62476/abes9s97
    [Google Scholar]
  37. ErdilN. Cardiovascular disease, signaling, gene/cell therapy and advanced nanobiomaterials.Adv. Biol. Earth. Sci.20249Special Issue588010.62476/abes9s58
    [Google Scholar]
  38. SolansC. SoléI. Nano-emulsions: Formation by low-energy methods.Curr. Opin. Colloid Interface Sci.201217524625410.1016/j.cocis.2012.07.003
    [Google Scholar]
  39. WilkingJ.N. MasonT.G. Irreversible shear-induced vitrification of droplets into elastic nanoemulsions by extreme rupturing.Phys. Rev. E Stat. Nonlin. Soft Matter Phys.200775404140710.1103/PhysRevE.75.04140717500894
    [Google Scholar]
  40. DateA.A. DesaiN. DixitR. NagarsenkerM. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances.Nanomedicine20105101595161610.2217/nnm.10.12621143036
    [Google Scholar]
  41. SinghB. BandopadhyayS. Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications.Crit Rev Ther Drug Carrier Syst2009265427521
    [Google Scholar]
  42. ShakeelF. IqbalM. EzzeldinE. Bioavailability enhancement and pharmacokinetic profile of an anticancer drug ibrutinib by self-nanoemulsifying drug delivery system.J. Pharm. Pharmacol.201668677278010.1111/jphp.1255027018771
    [Google Scholar]
  43. KuruvilaS.F. MathewF. KuppuswamyS. Solid self nanoemulsifying drug delivery system (SNEDDS) development, applications and future perspective: A review.IAJPS201743651669
    [Google Scholar]
  44. PoutonC.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems.Eur. J. Pharm. Sci.2000112S93S9810.1016/S0928‑0987(00)00167‑611033431
    [Google Scholar]
  45. MinochaN. SainiS. PandeyP. Nutritional prospects of wheatgrass (Triticum aestivum) and its effects in treatment and chemoprevention.Expl. Med.20223543244210.37349/emed.2022.00104
    [Google Scholar]
  46. MinochaN. SainiS. PandeyP. Design of experiments: How to develop and optimize drug delivery systems.TMR Pharmacol. Res.2022231010.53388/PR202202010
    [Google Scholar]
  47. MinochaN. SharmaN. PandeyP. Wheatgrass: An epitome of nutritional value.Curr. Nutr. Food Sci.2022181223010.2174/1573401317666210906140834
    [Google Scholar]
  48. BuyaA.B. BeloquiA. MemvangaP.B. PréatV. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery.Pharmaceutics20201212119410.3390/pharmaceutics1212119433317067
    [Google Scholar]
  49. ZhaoT. ManiglioD. ChenJ. ChenB. MottaA. MigliaresiC. Design and optimization of self-nanoemulsifying formulations for lipophilic drugs.Nanotechnology2015261212510210.1088/0957‑4484/26/12/12510225744555
    [Google Scholar]
  50. MittalT. SMEDDS/SNEDDS: An emerging technique to solubility enhancement for the pharmaceutical industry.World J. Pharm. Pharm. Sci.20172017317336
    [Google Scholar]
  51. WangK. QiJ. WengT. TianZ. LuY. HuK. YinZ. WuW. Enhancement of oral bioavailability of cyclosporine A: Comparison of various nanoscale drug-delivery systems.Int. J. Nanomedicine201494991499925378925
    [Google Scholar]
  52. NguyenT.N. ParkJ.S. Exploring fenofibrate formulations for the treatment of lipid disorders: Past, present, and future.Cardio.Metab. Synd. J.202222779510.51789/cmsj.2022.2.e13
    [Google Scholar]
  53. SurapaneniM.S. DasS.K. DasN.G. Designing Paclitaxel drug delivery systems aimed at improved patient outcomes: Current status and challenges.ISRN Pharmacol.2012201211510.5402/2012/62313922934190
    [Google Scholar]
  54. WangL. DongJ. ChenJ. EastoeJ. LiX. Design and optimization of a new self-nanoemulsifying drug delivery system.J. Colloid Interface Sci.2009330244344810.1016/j.jcis.2008.10.07719038395
    [Google Scholar]
  55. JózsaL. VasváriG. SinkaD. NemesD. UjhelyiZ. VecsernyésM. VáradiJ. FenyvesiF. LekliI. GyöngyösiA. BácskayI. FehérP. Enhanced antioxidant and anti-inflammatory effects of self-nano and microemulsifying drug delivery systems containing curcumin.Molecules20222719665210.3390/molecules2719665236235189
    [Google Scholar]
  56. Neslihan GursoyR. BenitaS. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs.Biomed. Pharmacother.200458317318210.1016/j.biopha.2004.02.00115082340
    [Google Scholar]
  57. LarsenA.T. ÅkessonP. JuréusA. SaabyL. Abu-RmailehR. AbrahamssonB. ØstergaardJ. MüllertzA. Bioavailability of cinnarizine in dogs: Effect of SNEDDS loading level and correlation with cinnarizine solubilization during in vitro lipolysis.Pharm. Res.201330123101311310.1007/s11095‑013‑1145‑x23949249
    [Google Scholar]
  58. KolliparaS. GandhiR.K. Pharmacokinetic aspects and in vitro–in vivo correlation potential for lipid-based formulations.Acta Pharm. Sin. B20144533334910.1016/j.apsb.2014.09.00126579403
    [Google Scholar]
  59. MuH. HolmR. MüllertzA. Lipid-based formulations for oral administration of poorly water-soluble drugs.Int. J. Pharm.2013453121522410.1016/j.ijpharm.2013.03.05423578826
    [Google Scholar]
  60. RajpootK. TekadeM. PandeyV. NagarajaS. Youngren-OrtizS.R. TekadeR.K. Self-microemulsifying drug-delivery system: Ongoing challenges and future ahead.Drug Deliv. Syst.20202020393454
    [Google Scholar]
  61. LiL. ZhouC.H. XuZ.P. Self-nanoemulsifying drug-delivery system.Nanocarr. Drug.Deliv.2019421449
    [Google Scholar]
  62. GuptaS. KesarlaR. OmriA. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems.ISRN Pharm.2013201311610.1155/2013/84804324459591
    [Google Scholar]
  63. ZupančičO. GrieβingerJ.A. RohrerJ. Pereira de SousaI. DanningerL. PartenhauserA. SündermannN.E. LaffleurF. Bernkop-SchnürchA. Development, in vitro and in vivo evaluation of a self-emulsifying drug delivery system (SEDDS) for oral enoxaparin administration.Eur. J. Pharm. Biopharm.201610911312110.1016/j.ejpb.2016.09.01327693677
    [Google Scholar]
  64. YinY.M. CuiF.D. MuC.F. ChoiM.K. KimJ.S. ChungS.J. ShimC.K. KimD.D. Docetaxel microemulsion for enhanced oral bioavailability: Preparation and in vitro and in vivo evaluation.J. Control. Release20091402869410.1016/j.jconrel.2009.08.01519709639
    [Google Scholar]
  65. MountfieldR.J. SenepinS. SchleimerM. WalterI. BittnerB. Potential inhibitory effects of formulation ingredients on intestinal cytochrome P450.Int. J. Pharm.20002111-2899210.1016/S0378‑5173(00)00586‑X11137342
    [Google Scholar]
  66. RegeB.D. KaoJ.P.Y. PolliJ.E. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers.Eur. J. Pharm. Sci.2002164-523724610.1016/S0928‑0987(02)00055‑612208453
    [Google Scholar]
  67. StrickleyR.G. Solubilizing excipients in oral and injectable formulations.Pharm. Res.200421220123010.1023/B:PHAM.0000016235.32639.2315032302
    [Google Scholar]
  68. DateA.A. NagarsenkerM.S. Parenteral microemulsions: An overview.Int. J. Pharm.20083551-2193010.1016/j.ijpharm.2008.01.00418295991
    [Google Scholar]
  69. PoutonC.W. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system.Eur J Pharm Sci2006293-4278287
    [Google Scholar]
  70. HuaL. WeisanP. JiayuL. YingZ. Preparation, evaluation, and NMR characterization of vinpocetine microemulsion for transdermal delivery.Drug Dev. Ind. Pharm.200430665766610.1081/DDC‑12003918315285339
    [Google Scholar]
  71. SjöholmE. SandlerN. Additive manufacturing of personalized orodispersible warfarin films.Int. J. Pharm.201956411712310.1016/j.ijpharm.2019.04.01830974195
    [Google Scholar]
  72. KaleA.A. PatravaleV.B. Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine.AAPS PharmSciTech20089119119610.1208/s12249‑008‑9037‑918446481
    [Google Scholar]
  73. NepalP.R. HanH.K. ChoiH.K. Preparation and in vitroin vivo evaluation of Witepsol® H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q10.Eur. J. Pharm. Sci.201039422423210.1016/j.ejps.2009.12.00420035865
    [Google Scholar]
  74. MemvangaP.B. CocoR. PréatV. An oral malaria therapy: Curcumin-loaded lipid-based drug delivery systems combined with β-arteether.J. Control. Release2013172390491310.1016/j.jconrel.2013.09.00124021359
    [Google Scholar]
  75. Memvanga PatrickB. VéroniqueP. Formulation design and in vivo antimalarial evaluation of lipid-based drug delivery systems for oral delivery of β-arteether.Eur. J. Pharm. Biopharm.20121112119
    [Google Scholar]
  76. JainS. GargT. KushwahV. ThankiK. AgrawalA.K. DoraC.P. α- Tocopherol as functional excipient for resveratrol and coenzyme Q10-loaded SNEDDS for improved bioavailability and prophylaxis of breast cancer.J. Drug Target.201725655456510.1080/1061186X.2017.129860328274130
    [Google Scholar]
  77. YanfeiM. GuoguangC. LiliR. PingkaiO. Controlled release of glaucocalyxin a self-nanoemulsifying system from osmotic pump tablets with enhanced bioavailability.Pharm. Dev. Technol.201722214815510.3109/10837450.2015.108990126400477
    [Google Scholar]
  78. BatoolA. ArshadR. RazzaqS. NousheenK. KianiM.H. ShahnazG. Formulation and evaluation of hyaluronic acid-based mucoadhesive self nanoemulsifying drug delivery system (SNEDDS) of tamoxifen for targeting breast cancer.Int. J. Biol. Macromol.202015250351510.1016/j.ijbiomac.2020.02.27532112841
    [Google Scholar]
  79. HosnyK.M. AldawsariH.M. BahmdanR.H. SindiA.M. KurakulaM. AlrobaianM.M. AldryhimA.Y. AlkhalidiH.M. BahmdanH.H. KhallafR.A. El SisiA.M. Preparation, optimization, and evaluation of hyaluronic acid-based hydrogel loaded with miconazole self-nanoemulsion for the treatment of oral thrush.AAPS PharmSciTech201920729710.1208/s12249‑019‑1496‑731444661
    [Google Scholar]
  80. ReissH. Entropy-induced dispersion of bulk liquids.J. Colloid Interface Sci.1975531617010.1016/0021‑9797(75)90035‑1
    [Google Scholar]
  81. GrovesM.J. de GalindezD.A. The self-emulsifying action of mixed surfactants in oil.Acta Pharm. Suec.1976134361372998277
    [Google Scholar]
  82. WakerlyM.G. PoutonC.W. MeakinB.J. MortonF.S. Self-emulsification of vegetable oil-nonionic surfactant mixtures a proposed mechanism of action.ACS Symposium Series198624225510.1021/bk‑1986‑0311.ch018
    [Google Scholar]
  83. QianJ. MengH. XinL. XiaM. ShenH. LiG. XieY. Self-nanoemulsifying drug delivery systems of myricetin: Formulation development, characterization, and in vitro and in vivo evaluation.Colloids Surf. B Biointerfaces201716010110910.1016/j.colsurfb.2017.09.02028917148
    [Google Scholar]
  84. BasaliousE.B. ShawkyN. Badr-EldinS.M. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: Development and optimization.Int. J. Pharm.20103911-220321110.1016/j.ijpharm.2010.03.00820214965
    [Google Scholar]
  85. TekadeR.K. Drug Delivery SystemsAcademic PressCambridge, MA, USA2020393454
    [Google Scholar]
  86. MandalS. MandalS.S. Microemulsion drug delivery system: A platform for improving dissolution rate of poorly water soluble drug.IJPSN20113412141219
    [Google Scholar]
  87. PatelJ. DhinganiA. GaralaK. RavalM. ShethN. Quality by design approach for oral bioavailability enhancement of Irbesartan by self-nanoemulsifying tablets.Drug Deliv.201421641243510.3109/10717544.2013.85370924215334
    [Google Scholar]
  88. NazzalS. SmalyukhI.I. LavrentovichO.D. KhanM.A. Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: Mechanism and progress of emulsion formation.Int. J. Pharm.20022351-224726510.1016/S0378‑5173(02)00003‑011879759
    [Google Scholar]
  89. BaliV. AliM. AliJ. Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe.Colloids Surf. B Biointerfaces201076241042010.1016/j.colsurfb.2009.11.02120042320
    [Google Scholar]
  90. GuptaS. ChavhanS. SawantK.K. Self-nanoemulsifying drug delivery system for adefovir dipivoxil: Design, characterization, in vitro and ex-vivo evaluation.Colloids Surf. A Physicochem. Eng. Asp.2011392114515510.1016/j.colsurfa.2011.09.048
    [Google Scholar]
  91. ElsheikhM.A. ElnaggarY.S. GoharE.Y. AbdallahO.Y. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: Optimization and in vivo appraisal.Int. J. Nanomedicine201273787380222888234
    [Google Scholar]
  92. ElnaggarY.S.R. El-MassikM.A. AbdallahO.Y. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: Design and optimization.Int. J. Pharm.20093801-213314110.1016/j.ijpharm.2009.07.01519635537
    [Google Scholar]
  93. KishishitaJ. Development and biopharmacotechnical/pharmacodynamic evaluation of topical formulations containing betamethasone.(Master's thesis, Federal University of Pernambuco)2018
    [Google Scholar]
  94. Nanotechnology in medical applications: The global market. Research.Paul Evers BCCUSA2015Available from: https://www.bccresearch.com/market-research/healthcare/nanotechnology-medical-applications-market.html
    [Google Scholar]
  95. WagnerV. DullaartA. BockA.K. ZweckA. The emerging nanomedicine landscape.Nat. Biotechnol.200624101211121710.1038/nbt1006‑121117033654
    [Google Scholar]
  96. GasparR.S. Silva-LimaB. MagroF. AlcobiaA. da CostaF.L. FeioJ. Non-biological complex drugs (NBCDs): Complex pharmaceuticals in need of individual robust clinical assessment before any therapeutic equivalence decision.Front. Med.2020759052710.3389/fmed.2020.59052733330550
    [Google Scholar]
  97. RagelleH. DanhierF. PréatV. LangerR. AndersonD.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures.Expert Opin. Drug Deliv.201714785186410.1080/17425247.2016.124418727730820
    [Google Scholar]
  98. NardinI. KöllnerS. Successful development of oral SEDDS: Screening of excipients from the industrial point of view.Adv. Drug Deliv. Rev.201914212814010.1016/j.addr.2018.10.01430414496
    [Google Scholar]
  99. MohsinK. AlanaziF. The fate of paclitaxel during in vitro dispersion testing of different lipid-based formulations.J. Drug Deliv. Sci. Technol.201222219720410.1016/S1773‑2247(12)50026‑2
    [Google Scholar]
  100. CserhátiT. ForgácsE. OrosG. Biological activity and environmental impact of anionic surfactants.Environ. Int.200228533734810.1016/S0160‑4120(02)00032‑612437283
    [Google Scholar]
  101. BandopadhyayS. ManchandaS. ChandraA. AliJ. DebP.K. Overview of different carrier systems for advanced drug delivery.Drug Delivery SystemsCambridge, MA, USAAcademic Press202017923310.1016/B978‑0‑12‑814487‑9.00005‑3
    [Google Scholar]
  102. BibiH.A. HolmR. Bauer-BrandlA. Simultaneous lipolysis/permeation in vitro model, for the estimation of bioavailability of lipid based drug delivery systems.Eur. J. Pharm. Biopharm.201711730030710.1016/j.ejpb.2017.05.00128478159
    [Google Scholar]
  103. KeeminkJ. MårtenssonE. BergströmC.A.S. Lipolysis-permeation setup for simultaneous study of digestion and absorption in vitro .Mol. Pharm.201916392193010.1021/acs.molpharmaceut.8b0081130628771
    [Google Scholar]
  104. AlvebrattC. KeeminkJ. EduengK. CheungO. StrømmeM. BergströmC.A.S. An in vitro dissolution–digestion–permeation assay for the study of advanced drug delivery systems.Eur. J. Pharm. Biopharm.2020149212910.1016/j.ejpb.2020.01.01031982572
    [Google Scholar]
  105. CrumM.F. TrevaskisN.L. WilliamsH.D. PoutonC.W. PorterC.J.H. A new in vitro lipid digestion in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.Pharm. Res.201633497098210.1007/s11095‑015‑1843‑726703975
    [Google Scholar]
  106. KaziM. ShahbaA.A. AlrashoudS. AlwadeiM. SherifA.Y. AlanaziF.K. Bioactive self-nanoemulsifying drug delivery systems (Bio-SNEDDS) for combined oral delivery of curcumin and piperine.Molecules2020257170310.3390/molecules2507170332276393
    [Google Scholar]
  107. BandyopadhyayS. BegS. KatareO. SharmaG. SinghB. QbD-oriented development of self-nanoemulsifying drug delivery systems (SNEDDS) of valsartan with improved biopharmaceutical performance.Curr. Drug Deliv.201512554456310.2174/156720181266615022712563925731868
    [Google Scholar]
  108. KaziM. Al-SwairiM. AhmadA. RaishM. AlanaziF.K. BadranM.M. KhanA.A. AlanaziA.M. HussainM.D. Evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for poorly water-soluble talinolol: Preparation, in vitro and in vivo assessment.Front. Pharmacol.20191045910.3389/fphar.2019.0045931118895
    [Google Scholar]
  109. ZafarA. YasirM. AlruwailiN.K. ImamS.S. AlsaidanO.A. AlshehriS. GhoneimM.M. AlqurainiA. RawafA. AnsariM.J. SaraU.V.S. Formulation of self-nanoemulsifying drug delivery system of cephalexin: Physiochemical characterization and antibacterial evaluation.Polymers2022145105510.3390/polym1405105535267877
    [Google Scholar]
  110. VermaA. AsijaR. GoyalA. Self nanoemulsifying drug delivery system: An updated review.Trop. J. Pharmac. Life. Sci.2022921120
    [Google Scholar]
  111. OhD.H. KangJ.H. KimD.W. LeeB.J. KimJ.O. YongC.S. ChoiH.G. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier.Int. J. Pharm.2011420241241810.1016/j.ijpharm.2011.09.00721944892
    [Google Scholar]
  112. KhanA.W. KottaS. AnsariS.H. SharmaR.K. AliJ. Potentials and challenges in self-nanoemulsifying drug delivery systems.Expert Opin. Drug Deliv.20129101305131710.1517/17425247.2012.71987022954323
    [Google Scholar]
  113. AultonM.E. The Design of Dosage Forms.Pharmaceutics the sciences of dosage form design.EdinburghChurchchill Livingstone1988113
    [Google Scholar]
  114. CavallariC. AbertiniB. González-RodríguezM.L. RodriguezL. Improved dissolution behaviour of steam-granulated piroxicam.Eur. J. Pharm. Biopharm.2002541657310.1016/S0939‑6411(02)00021‑812084504
    [Google Scholar]
  115. SalawiA. Self-emulsifying drug delivery systems: A novel approach to deliver drugs.Drug Deliv.20222911811182310.1080/10717544.2022.208372435666090
    [Google Scholar]
  116. JoyceP. DeningT.J. MeolaT.R. SchultzH.B. HolmR. ThomasN. PrestidgeC.A. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges.Adv. Drug Deliv. Rev.201914210211710.1016/j.addr.2018.11.00630529138
    [Google Scholar]
  117. HuJ. JohnstonK.P. WilliamsR.O.III Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs.Drug Dev. Ind. Pharm.200430323324510.1081/DDC‑12003042215109023
    [Google Scholar]
  118. CostaP. Sousa LoboJ.M. Modeling and comparison of dissolution profiles.Eur. J. Pharm. Sci.200113212313310.1016/S0928‑0987(01)00095‑111297896
    [Google Scholar]
  119. ConstantinidesP.P. ChaubalM.V. ShorrR. Advances in lipid nanodispersions for parenteral drug delivery and targeting.Adv. Drug Deliv. Rev.200860675776710.1016/j.addr.2007.10.01318096269
    [Google Scholar]
  120. AntonN. VandammeT.F. The universality of low-energy nano-emulsification.Int. J. Pharm.20093771-214214710.1016/j.ijpharm.2009.05.01419454306
    [Google Scholar]
  121. MinochaN. PandeyP. SharmaN. SainiS. Development of wheatgrass (triticum aestivum) extract loaded solid lipid nanoparticles using central composite design and its characterization- its in-vitro anti-cancer activity.Curr. Nanomater.20249433935410.2174/0124054615266447231107070012
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873304985240627061125
Loading
/content/journals/cnanom/10.2174/0124681873304985240627061125
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): BCS; bioavailability; nanoemulsion; self-emulsification; SNEDDs; solubilization
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test