Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

The ulcer is a chronic disease that penetrates the gastrointestinal tract and produces a deep lesion. One type of ulcer is peptic ulcer, which leads to the development of a lesion on the lining (mucosa) of the digestive tract. Various drugs are used for the treatment, including antibiotics, but don't provide correct eradication, so for the excellence in therapeutic value and decreasing side effects, nanotechnology is being used. Nanotechnology is a technique that is nowadays used in trend because of its outstanding efficacy and also its effect at both cellular and molecular levels. Based on this technology, nanoparticles are used for the treatment of peptic ulcers. This review focuses on the treatment approaches for peptic ulcers by using nanotechnology. Some nanoparticles used in the treatment of Helicobacter pylori () are metallic nanoparticles, polymeric nanoparticles, targeting nanoparticles, and a new technology arrived is membrane coated nanoparticles, which are very advantageous for treatment. The purpose of this review is to overview and gain attention to the limitations in treatment (like antibiotic resistance) and also the new strategies to overcome them and enhance the properties of nanoparticles to produce the anti-bacterial effect. This development helps in the treatment of .

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873291800240416064129
2024-04-26
2025-10-27
Loading full text...

Full text loading...

References

  1. BandyopadhyayD. BiswasK. BhattacharyyaM. ReiterR. BanerjeeR. Gastric toxicity and mucosal ulceration induced by oxygen-derived reactive species: Protection by melatonin.Curr. Mol. Med.20011450151310.2174/156652401336348311899094
    [Google Scholar]
  2. SinghA.K. SinghS.K. SinghP.P. SrivastavaA.K. PandeyK.D. KumarA. YadavH. Biotechnological aspects of plants metabolites in the treatment of ulcer: A new prospective.Biotechnol. Rep. (Amst.)201818e0025610.1016/j.btre.2018.e0025629876305
    [Google Scholar]
  3. SenguptaJ. GhoshS. DattaP. GomesA. GomesA. Physiologically important metal nanoparticles and their toxicity.J. Nanosci. Nanotechnol.2014141990100610.1166/jnn.2014.907824730316
    [Google Scholar]
  4. RoyR. KumarS. TripathiA. DasM. DwivediP.D. Interactive threats of nanoparticles to the biological system.Immunol. Lett.20141581-2798710.1016/j.imlet.2013.11.01924316409
    [Google Scholar]
  5. ZhangL. PornpattananangkulD. HuC.M. HuangC.M. Development of nanoparticles for antimicrobial drug delivery.Curr. Med. Chem.201017658559410.2174/09298671079041629020015030
    [Google Scholar]
  6. JainK.K. Role of nanobiotechnology in developing personalized medicine for cancer.Technol. Cancer Res. Treat.20054664565010.1177/15330346050040060816292884
    [Google Scholar]
  7. DateA.A. HanesJ. EnsignL.M. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art.J. Control. Release201624050452610.1016/j.jconrel.2016.06.01627292178
    [Google Scholar]
  8. HasnathS.D.R.A. Prevalence of peptic ulcer disease among the patients with abdominal pain attending the department of medicine in Dhaka medical college hospital, Banglades.IOSR J. Dent. Med. Sci2014130520
    [Google Scholar]
  9. VimalaG. Gricilda ShobaF. A review on antiulcer activity of few Indian medicinal plants.Int. J. Microbiol.2014201411410.1155/2014/51959024971094
    [Google Scholar]
  10. KarakusC. UlupinarZ. AkbasF. YaziciD. Detection of anti-CagA antibodies in sera of H. pylori-infected patients using an immunochromatographic test strip.J. Chromatogr. Sci.20205821722210.1093/chromsci/bmz09331812997
    [Google Scholar]
  11. ZhuX. SuT. WangS. ZhouH. ShiW. New advances in nano- drug delivery systems: Helicobacter pylori and gastric cancer.Front. Oncol.20221283493410.3389/fonc.2022.83493435619913
    [Google Scholar]
  12. AsgariS. NikkamN. SanieeP. Metallic Nanoparticles as promising tools to eradicate H. pylori: A comprehensive review on recent advancements.Talanta Open2022610012910.1016/j.talo.2022.100129
    [Google Scholar]
  13. GuptaA. ShettyS. MutalikS. Chandrashekar HR. KN. MathewE.M. JhaA. MishraB. RajpurohitS. RaviG. SahaM. MoorkothS. Treatment of H. pylori infection and gastric ulcer: Need for novel Pharmaceutical formulation.Heliyon2023910e2040610.1016/j.heliyon.2023.e2040637810864
    [Google Scholar]
  14. ZakiM. CoudronP.E. McCuenR.W. HarringtonL. ChuS. SchubertM.L. H. pylori acutely inhibits gastric secretion by activating CGRP sensory neurons coupled to stimulation of somatostatin and inhibition of histamine secretion.Am. J. Physiol. Gastrointest. Liver Physiol.20133048G715G72210.1152/ajpgi.00187.201223392237
    [Google Scholar]
  15. SmolkaA.J. SchubertM.L. Helicobacter pylori-induced changes in gastric acid secretion and upper gastrointestinal disease.Curr. Top. Microbiol. Immunol.201740022725210.1007/978‑3‑319‑50520‑6_1028124156
    [Google Scholar]
  16. CardosA.I. MaghiarA. ZahaD.C. PopO. FriteaL. Miere GrozaF. CavaluS. Evolution of diagnostic methods for Helicobacter pylori infections: From traditional tests to high technology, advanced sensitivity and discrimination tools.Diagnostics (Basel)202212250810.3390/diagnostics1202050835204598
    [Google Scholar]
  17. LeeJ.H. ParkY.S. ChoiK.S. KimD.H. ChoiK.D. SongH.J. LeeG.H. JangS.J. JungH.Y. KimJ.H. Optimal biopsy site for Helicobacter pylori detection during endoscopic mucosectomy in patients with extensive gastric atrophy.Helicobacter201217640541010.1111/j.1523‑5378.2012.00972.x23066901
    [Google Scholar]
  18. SabbaghP. Mohammadnia-AfrouziM. JavanianM. BabazadehA. KoppoluV. VasigalaV.R. NouriH.R. EbrahimpourS. Diagnostic methods for Helicobacter pylori infection: Ideals, options, and limitations.Eur. J. Clin. Microbiol. Infect. Dis.2019381556610.1007/s10096‑018‑3414‑430414090
    [Google Scholar]
  19. ChoJ.H. ChangY.W. JangJ.Y. ShimJ.J. LeeC.K. DongS.H. KimH.J. KimB.H. LeeT.H. ChoJ.Y. Close observation of gastric mucosal pattern by standard endoscopy can predict H elicobacter pylori Infection status.J. Gastroenterol. Hepatol.201328227928410.1111/jgh.1204623189930
    [Google Scholar]
  20. ToyoshimaO. NishizawaT. YoshidaS. MatsunoT. OdawaraN. ToyoshimaA. SakitaniK. WatanabeH. FujishiroM. SuzukiH. Consistency between the endoscopic Kyoto classification and pathological updated Sydney system for gastritis: A cross-sectional study.J. Gastroenterol. Hepatol.202237229130010.1111/jgh.1569334569096
    [Google Scholar]
  21. ToyoshimaO. NishizawaT. KoikeK. Endoscopic Kyoto classification of Helicobacter pylori infection and gastric cancer risk diagnosis.World J. Gastroenterol.202026546647710.3748/wjg.v26.i5.46632089624
    [Google Scholar]
  22. GonenC. SimsekI. SariogluS. AkpinarH. Comparison of high resolution magnifying endoscopy and standard videoendoscopy for the diagnosis of Helicobacter pylori gastritis in routine clinical practice: A prospective study.Helicobacter2009141122110.1111/j.1523‑5378.2009.00650.x19191891
    [Google Scholar]
  23. ZhuY. WangF. ZhouY. XiaG.L. DongL. HeW.H. XiaoB. Blue laser magnifying endoscopy in the diagnosis of chronic gastritis.Exp. Ther. Med.20191831993200010.3892/etm.2019.781131452698
    [Google Scholar]
  24. SakaiE. HigurashiT. OhkuboH. HosonoK. UedaA. MatsuhashiN. NakajimaA. Investigation of small bowel abnormalities in HIV-infected patients using capsule endoscopy.Gastroenterol. Res. Pract.201720171710.1155/2017/193264728408924
    [Google Scholar]
  25. VairaD. VakilN. GattaL. RicciC. PernaF. SaracinoI. FioriniG. HoltonJ. Accuracy of a new ultrafast rapid urease test to diagnose Helicobacter pylori infection in 1000 consecutive dyspeptic patients.Aliment. Pharmacol. Ther.201031233133810.1111/j.1365‑2036.2009.04196.x19891666
    [Google Scholar]
  26. KashaniN. AbadiA.T.B. Reliability of rapid urease test for screening gastric cancer in high-risk populations.Scand. J. Gastroenterol.201753563710.1080/00365521.2017.140412529141465
    [Google Scholar]
  27. HowdenC.W. HuntR.H. Ad Hoc Committee on Practice Parameters of the American College of Gastroenterology Guidelines for the management of Helicobacter pylori infection.Am. J. Gastroenterol.199893122330233810.1111/j.1572‑0241.1998.00684.x9860388
    [Google Scholar]
  28. MoonS.W. KimT.H. KimH.S. JuJ.H. AhnY.J. JangH.J. ShimS.G. KimH.J. JungW.T. LeeO.J. United rapid urease test is superior than separate test in detecting Helicobacter pylori at the gastric antrum and body specimens.Clin. Endosc.201245439239610.5946/ce.2012.45.4.39223251887
    [Google Scholar]
  29. GisbertJ.P. AbrairaV. Accuracy of Helicobacter pylori diagnostic tests in patients with bleeding peptic ulcer: A systematic review and meta-analysis.Am. J. Gastroenterol.2006101484886310.1111/j.1572‑0241.2006.00528.x16494583
    [Google Scholar]
  30. TongtaweeT. KaewpitoonS. KaewpitoonN. DechsukhumC. LeeanansaksiriW. LoydR.A. MatrakoolL. PanpimanmasS. Diagnosis of Helicobacter pylori infection.Asian Pac. J. Cancer Prev.20161741631163510.7314/APJCP.2016.17.4.163127221831
    [Google Scholar]
  31. WhiteJ.R. SamiS.S. ReddiarD. MannathJ. Ortiz-Fernández-SordoJ. BegS. ScottR. ThiagarajanP. AhmadS. Parra-BlancoA. KasiM. TelakisE. SultanA.A. DavisJ. FigginsA. KayeP. RobinsonK. AthertonJ.C. RagunathK. Narrow band imaging and serology in the assessment of premalignant gastric pathology.Scand. J. Gastroenterol.201853121611161810.1080/00365521.2018.154245530600732
    [Google Scholar]
  32. HassanT.M. Al-NajjarS. Al-ZahraniI. AlanaziF.B. AlotibiM. Helicobacter pylori chronic gastritis updated Sydney grading in relation to endoscopic findings and H. pylori IgG antibody: diagnostic methods.J. Microsc. Ultrastruct.20164416717410.1016/j.jmau.2016.03.00430023224
    [Google Scholar]
  33. MégraudF. Advantages and disadvantages of current diagnostic tests for the detection of Helicobacter pylori.Scand. J. Gastroenterol.199631sup215576210.3109/003655296090945368722384
    [Google Scholar]
  34. CerqueiraL. FernandesR.M. FerreiraR.M. OleastroM. CarneiroF. BrandãoC. Pimentel-NunesP. Dinis-RibeiroM. FigueiredoC. KeevilC.W. VieiraM.J. AzevedoN.F. Validation of a fluorescence in situ hybridization method using peptide nucleic acid probes for detection of Helicobacter pylori clarithromycin resistance in gastric biopsy specimens.J. Clin. Microbiol.20135161887189310.1128/JCM.00302‑1323596234
    [Google Scholar]
  35. GrahamD.Y. MalatyH.M. EvansD.G. EvansD.J.Jr KleinP.D. AdamE. Epidemiology of Helicobacter pylori in an asymptomatic population in the United States.Gastroenterology199110061495150110.1016/0016‑5085(91)90644‑Z2019355
    [Google Scholar]
  36. El-ShabrawiM. El-AzizN.A. El-AdlyT.Z. HassaninF. EskanderA. Abou-ZekriM. MansourH. MeshaalS. Stool antigen detection versus 13 C-urea breath test for non-invasive diagnosis of pediatric Helicobacter pylori infection in a limited resource setting.Arch. Med. Sci.201811697310.5114/aoms.2016.6103129379534
    [Google Scholar]
  37. VairaD. GattaL. RicciC. MiglioliM. Diagnosis of Helicobacter pylori infection.Aliment. Pharmacol. Ther.200216s1Suppl. 1162310.1046/j.1365‑2036.2002.0160s1016.x11849123
    [Google Scholar]
  38. GoossensH. GlupczynskiY. BuretteA. Van den BorreC. DePrezC. BodenmannJ. KellerA. ButzlerJ.P. Evaluation of a commercially available complement fixation test for diagnosis of Helicobacter pylori infection and for follow-up after antimicrobial therapy.J. Clin. Microbiol.199230123230323310.1128/jcm.30.12.3230‑3233.19921452707
    [Google Scholar]
  39. WangY.K. KuoF.C. LiuC.J. WuM.C. ShihH.Y. WangS.S. WuJ.Y. KuoC.H. HuangY.K. WuD.C. Diagnosis of Helicobacter pylori infection: Current options and developments.World J. Gastroenterol.20152140112211123510.3748/wjg.v21.i40.1122126523098
    [Google Scholar]
  40. ZhouQ. LiL. AiY. PanZ. GuoM. HanJ. Diagnostic accuracy of the 14C-urea breath test in Helicobacter pylori infections: A meta-analysis.Wien. Klin. Wochenschr.20171291-2384510.1007/s00508‑016‑1117‑327848071
    [Google Scholar]
  41. GisbertJ.P. de la MorenaF. AbrairaV. Accuracy of monoclonal stool antigen test for the diagnosis of H. pylori infection: A systematic review and meta-analysis.Am. J. Gastroenterol.200610181921193010.1111/j.1572‑0241.2006.00668.x16780557
    [Google Scholar]
  42. OsmanH.A. HasanH. SuppianR. BaharN. Che HussinN.S. RahimA.A. HassanS. AndeeD.Z. ZilfalilB.A. Evaluation of the Atlas Helicobacter pylori stool antigen test for diagnosis of infection in adult patients.Asian Pac. J. Cancer Prev.201415135245524710.7314/APJCP.2014.15.13.524525040982
    [Google Scholar]
  43. ShimoyamaT. Stool antigen tests for the management of Helicobacter pylori infection.World J. Gastroenterol.201319458188819110.3748/wjg.v19.i45.818824363508
    [Google Scholar]
  44. BestL.M.J. TakwoingiY. SiddiqueS. SelladuraiA. GandhiA. LowB. YaghoobiM. GurusamyK.S. Non-invasive diagnostic tests for Helicobacter pylori infection.Cochrane Libr.201820183CD01208010.1002/14651858.CD012080.pub229543326
    [Google Scholar]
  45. LiangX.J. MengH. WangY. HeH. MengJ. LuJ. WangP.C. ZhaoY. GaoX. SunB. ChenC. XingG. ShenD. GottesmanM.M. WuY. YinJ. JiaL. Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis.Proc. Natl. Acad. Sci. USA2010107167449745410.1073/pnas.090970710720368438
    [Google Scholar]
  46. MohanrajV. ChenY. Nanoparticles-a review.Trop. J. Pharm. Res.20065561573
    [Google Scholar]
  47. BhatiaS. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications.Natural polymer drug delivery systems.Springer2016339310.1007/978‑3‑319‑41129‑3_2
    [Google Scholar]
  48. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  49. ChoiM.J. McDonaghA.M. MaynardP. RouxC. Metal-containing nanoparticles and nano-structured particles in fingermark detection.Forensic Sci. Int.20081792-3879710.1016/j.forsciint.2008.04.02718565707
    [Google Scholar]
  50. ShenoyD.B. AmijiM.M. Poly(ethylene oxide)-modified poly(ɛ- caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer.Int. J. Pharm.20052931-226127010.1016/j.ijpharm.2004.12.01015778064
    [Google Scholar]
  51. GómezgaeteC. TsapisN. BesnardM. BochotA. FattalE. Encapsulation of dexamethasone into biodegradable polymeric nanoparticles.Int. J. Pharm.2007331215315910.1016/j.ijpharm.2006.11.02817157461
    [Google Scholar]
  52. DamgéC. MaincentP. UbrichN. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats.J. Control. Release2007117216317010.1016/j.jconrel.2006.10.02317141909
    [Google Scholar]
  53. KimS.Y. LeeY.M. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(ε-caprolactone) as novel anticancer drug carriers.Biomaterials200122131697170410.1016/S0142‑9612(00)00292‑111396872
    [Google Scholar]
  54. Brannon-PeppasL. BlanchetteJ.O. Nanoparticle and targeted systems for cancer therapy.Adv. Drug Deliv. Rev.200456111649165910.1016/j.addr.2004.02.01415350294
    [Google Scholar]
  55. MundargiR.C. BabuV.R. RangaswamyV. PatelP. AminabhaviT.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives.J. Control. Release2008125319320910.1016/j.jconrel.2007.09.01318083265
    [Google Scholar]
  56. Pinto ReisC. NeufeldR.J. RibeiroA.J. VeigaF. NanoencapsulationI. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles.Nanomedicine20062182110.1016/j.nano.2005.12.00317292111
    [Google Scholar]
  57. LiuD. MoriA. HuangL. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes.Biochim. Biophys. Acta Biomembr.1992110419510110.1016/0005‑2736(92)90136‑A1550858
    [Google Scholar]
  58. Radovic-MorenoA.F. LuT.K. PuscasuV.A. YoonC.J. LangerR. FarokhzadO.C. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics.ACS Nano2012654279428710.1021/nn300838322471841
    [Google Scholar]
  59. ChanJ.M. ZhangL. YuetK.P. LiaoG. RheeJ.W. LangerR. FarokhzadO.C. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery.Biomaterials20093081627163410.1016/j.biomaterials.2008.12.01319111339
    [Google Scholar]
  60. ÖztürkA.A. Martin-BanderasL. Cayero-OteroM.D. YenilmezE. YazanY. New approach to hypertension treatment: Carvedilol-loaded plga nanoparticles, preparation, in vitro characterization and gastrointestinal stability.Lat. Am. J. Pharm.20183717301741
    [Google Scholar]
  61. FontanaG. LicciardiM. MansuetoS. SchillaciD. GiammonaG. Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: Influence of PEG coating on the particle size, drug release rate and phagocytic uptake.Biomaterials200122212857286510.1016/S0142‑9612(01)00030‑811561891
    [Google Scholar]
  62. UmamaheshwariR.B. JainN.K. Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori.J. Drug Target.200311741542410.1080/1061186031000164777115203930
    [Google Scholar]
  63. RamtekeS. JainN.K. Clarithromycin- and omeprazole-containing gliadin nanoparticles for the treatment of Helicobacter pylori.J. Drug Target.2008161657210.1080/1061186070173327818172822
    [Google Scholar]
  64. ArvizoR.R. BhattacharyyaS. KudgusR.A. GiriK. BhattacharyaR. MukherjeeP. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future.Chem. Soc. Rev.20124172943297010.1039/c2cs15355f22388295
    [Google Scholar]
  65. KuoC.H. LuC.Y. YangY.C. ChinC. WengB.C. LiuC.J. ChenY.H. ChangL.L. KuoF.C. WuD.C. SuH.L. Does long-term use of silver nanoparticles have persistent inhibitory effect on H. pylori based on Mongolian gerbil’s model?BioMed Res. Int.201420141710.1155/2014/46103424864246
    [Google Scholar]
  66. MalfertheinerP. MegraudF. RokkasT. GisbertJ.P. LiouJ.M. SchulzC. GasbarriniA. HuntR.H. LejaM. O’MorainC. RuggeM. SuerbaumS. TilgH. SuganoK. El-OmarE.M. European Helicobacter and Microbiota Study group Management of Helicobacter pylori infection: The Maastricht VI/Florence consensus report.Gut20227191724176210.1136/gutjnl‑2022‑32774535944925
    [Google Scholar]
  67. Sánchez-LópezE. GomesD. EsteruelasG. BonillaL. Lopez-MachadoA.L. GalindoR. CanoA. EspinaM. EttchetoM. CaminsA. SilvaA.M. DurazzoA. SantiniA. GarciaM.L. SoutoE.B. Metal-based nanoparticles as antimicrobial agents: An overview.Nanomaterials (Basel)202010229210.3390/nano1002029232050443
    [Google Scholar]
  68. AmeenF. AlsamharyK. AlabdullatifJ.A. ALNadhariS. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi.Ecotoxicol. Environ. Saf.202121311202710.1016/j.ecoenv.2021.11202733578100
    [Google Scholar]
  69. SwathiS. AmeenF. RaviG. YuvakkumarR. HongS.I. VelauthapillaiD. AlKahtaniM.D.F. ThambiduraiM. DangC. Cancer targeting potential of bioinspired chain like magnetite (Fe3O4) nanostructures.Curr. Appl. Phys.202020898298710.1016/j.cap.2020.06.013
    [Google Scholar]
  70. AmeenF. AltunerE.E. Elhouda TiriR.N. GulbagcaF. AygunA. SenF. MajrashiN. OrfaliR. DragoiE.N. Highly active iron (II) oxide-zinc oxide nanocomposite synthesized Thymus vulgaris plant as bioreduction catalyst: Characterization, hydrogen evolution and photocatalytic degradation.Int. J. Hydrogen Energy20234855211392115110.1016/j.ijhydene.2022.11.229
    [Google Scholar]
  71. DreadenE.C. AlkilanyA.M. HuangX. MurphyC.J. El-SayedM.A. The golden age: Gold nanoparticles for biomedicine.Chem. Soc. Rev.20124172740277910.1039/C1CS15237H22109657
    [Google Scholar]
  72. WhiteC. LeeJ. KambeT. FritscheK. PetrisM.J. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity.J. Biol. Chem.200928449339493395610.1074/jbc.M109.07020119808669
    [Google Scholar]
  73. AmeenF. Al-MaaryK.S. AlmansobA. AlNadhariS. Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora- mediated gold nanoparticles.Appl. Nanosci.20231332233224010.1007/s13204‑021‑02047‑4
    [Google Scholar]
  74. BadwaikV.D. VangalaL.M. PenderD.S. WillisC.B. AguilarZ.P. GonzalezM.S. ParipellyR. DakshinamurthyR. Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method.Nanoscale Res. Lett.20127162310.1186/1556‑276X‑7‑62323146145
    [Google Scholar]
  75. Rahaman MollickM.M. BhowmickB. MondalD. MaityD. RanaD. DashS.K. ChattopadhyayS. RoyS. SarkarJ. AcharyaK. ChakrabortyM. ChattopadhyayD. Anticancer ( in vitro ) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route.RSC Advances2014471378383784810.1039/C4RA07285E
    [Google Scholar]
  76. RahimM. IramS. SyedA. AmeenF. HodhodM.S. KhanM.S. Nutratherapeutics approach against cancer: Tomato-mediated synthesised gold nanoparticles.IET Nanobiotechnol.20181211510.1049/iet‑nbt.2017.0068
    [Google Scholar]
  77. AhamedM. AlSalhiM.S. SiddiquiM.K.J. Silver nanoparticle applications and human health.Clin. Chim. Acta201041123-241841184810.1016/j.cca.2010.08.01620719239
    [Google Scholar]
  78. SathishkumarP. PreethiJ. VijayanR. Mohd YusoffA.R. AmeenF. SureshS. BalagurunathanR. PalvannanT. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract.J. Photochem. Photobiol. B2016163697610.1016/j.jphotobiol.2016.08.00527541567
    [Google Scholar]
  79. SonbolH. AmeenF. AlYahyaS. AlmansobA. AlwakeelS. Padina boryana mediated green synthesis of crystalline palladium nanoparticles as potential nanodrug against multidrug resistant bacteria and cancer cells.Sci. Rep.2021111544410.1038/s41598‑021‑84794‑633686169
    [Google Scholar]
  80. AmeenF. Al-HomaidanA.A. Al-SabriA. AlmansobA. AlNAdhariS. Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans.Appl. Nanosci.202313162363110.1007/s13204‑021‑01874‑9
    [Google Scholar]
  81. IndhiraD. KrishnamoorthyM. AmeenF. BhatS.A. ArumugamK. RamalingamS. PriyanS.R. KumarG.S. Biomimetic facile synthesis of zinc oxide and copper oxide nanoparticles from Elaeagnus indica for enhanced photocatalytic activity.Environ. Res.2022212Pt C11332310.1016/j.envres.2022.11332335472463
    [Google Scholar]
  82. CammarotaG. SanguinettiM. GalloA. PosteraroB. Review article: biofilm formation by H elicobacter pylori as a target for eradication of resistant infection.Aliment. Pharmacol. Ther.201236322223010.1111/j.1365‑2036.2012.05165.x22650647
    [Google Scholar]
  83. PrasadA. BakerS. Nagendra PrasadM.N. DeviA.T. SatishS. ZameerF. ShivamalluC. Phytogenic synthesis of silver nanobactericides for anti-biofilm activity against human pathogen H. pylori.SN Applied Sciences20191434110.1007/s42452‑019‑0362‑2
    [Google Scholar]
  84. ReddyK.M. FerisK. BellJ. WingettD.G. HanleyC. PunnooseA. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems.Appl. Phys. Lett.2007902121390210.1063/1.274232418160973
    [Google Scholar]
  85. SaravananM. GopinathV. ChaurasiaM.K. SyedA. AmeenF. PurushothamanN. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties.Microb. Pathog.2018115576310.1016/j.micpath.2017.12.03929248514
    [Google Scholar]
  86. Sangeetha VidhyaM. AmeenF. DawoudT. YuvakkumarR. RaviG. KumarP. VelauthapillaiD. Anti-cancer applications of Zr, Co, Ni-doped ZnO thin nanoplates.Mater. Lett.202128312876010.1016/j.matlet.2020.128760
    [Google Scholar]
  87. BegumI. ShamimS. AmeenF. HussainZ. BhatS.A. QadriT. HussainM. A combinatorial approach towards antibacterial and antioxidant activity using tartaric acid capped silver nanoparticles.Processes (Basel)202210471610.3390/pr10040716
    [Google Scholar]
  88. MohantaY.K. PandaS.K. SyedA. AmeenF. BastiaA.K. MohantaT.K. Bio-inspired synthesis of silver nanoparticles from leaf extracts of Cleistanthus collinus (Roxb.): Its potential antibacterial and anticancer activities.IET Nanobiotechnol.201812334334810.1049/iet‑nbt.2017.0203
    [Google Scholar]
  89. Al-EnaziN.M. AmeenF. AlsamharyK. DawoudT. Al-KhattafF. AlNadhariS. Tin oxide nanoparticles (SnO2-NPs) synthesis using Galaxaura elongata and its anti-microbial and cytotoxicity study: A greenery approach.Appl. Nanosci.202313151952710.1007/s13204‑021‑01828‑1
    [Google Scholar]
  90. SonbolH. AlYahyaS. AmeenF. AlsamharyK. AlwakeelS. Al-OtaibiS. KoranyS. Bioinspired synthesize of CuO nanoparticles using Cylindrospermum stagnale for antibacterial, anticancer and larvicidal applications.Appl. Nanosci.202313191792710.1007/s13204‑021‑01940‑2
    [Google Scholar]
  91. YuanP. DingX. YangY.Y. XuQ.H. Metal nanoparticles for diagnosis and therapy of bacterial infection.Adv. Healthc. Mater.2018713170139210.1002/adhm.20170139229582578
    [Google Scholar]
  92. KrollA.V. FangR.H. ZhangL. Biointerfacing and applications of cell membrane-coated nanoparticles.Bioconjug. Chem.2017281233210.1021/acs.bioconjchem.6b0056927798829
    [Google Scholar]
  93. AiX. WangS. DuanY. ZhangQ. ChenM.S. GaoW. ZhangL. Emergingapproaches to functionalizing cell membrane-coated nanoparticles.Biochem.2020202060941955
    [Google Scholar]
  94. ParodiA. QuattrocchiN. van de VenA.L. ChiappiniC. EvangelopoulosM. MartinezJ.O. BrownB.S. KhaledS.Z. YazdiI.K. EnzoM.V. IsenhartL. FerrariM. TasciottiE. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions.Nat. Nanotechnol.201381616810.1038/nnano.2012.21223241654
    [Google Scholar]
  95. ZhangL. WangZ. ZhangY. CaoF. DongK. RenJ. QuX. Erythrocyte membrane cloaked metal–organic framework nanoparticle as biomimetic nanoreactor for starvation-activated colon cancer therapy.ACS Nano20181210102011021110.1021/acsnano.8b0520030265804
    [Google Scholar]
  96. LiJ. AngsantikulP. LiuW. Esteban-Fernández de ÁvilaB. ChangX. SandrazE. LiangY. ZhuS. ZhangY. ChenC. GaoW. ZhangL. WangJ. Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats.Adv. Mater.2018302170480010.1002/adma.20170480029193346
    [Google Scholar]
  97. NarainA. AsawaS. ChhabriaV. Patil-SenY. Cell membrane coated nanoparticles: Next-generation therapeutics.Nanomedicine (Lond.)201712212677269210.2217/nnm‑2017‑022528965474
    [Google Scholar]
  98. LiuY. LuoJ. ChenX. LiuW. ChenT. Cell membrane coating technology: A promising strategy for biomedical applications.Nano-Micro Lett.201911110010.1007/s40820‑019‑0330‑934138027
    [Google Scholar]
  99. ImranM. JhaL.A. HasanN. ShresthaJ. PangeniR. ParvezN. MohammedY. JhaS.K. PaudelK.R. “Nanodecoys” - Future of drug delivery by encapsulating nanoparticles in natural cell membranes.Int. J. Pharm.202262112179010.1016/j.ijpharm.2022.12179035504432
    [Google Scholar]
  100. XiaQ. ZhangY. LiZ. HouX. FengN. Red blood cell membrane-camouflaged nanoparticles: A novel drug delivery system for antitumor application.Acta Pharm. Sin. B20199467568910.1016/j.apsb.2019.01.01131384529
    [Google Scholar]
  101. MaJ. JiangL. LiuG. Cell membrane-coated nanoparticles for the treatment of bacterial infection.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022145e182510.1002/wnan.182535725897
    [Google Scholar]
  102. ZouS. HeQ. WangQ. WangB. LiuG. ZhangF. ChengX. WangB. ZhangL. Injectable nanosponge-loaded pluronic F127 hydrogel for pore-forming toxin neutralization.Int. J. Nanomedicine2021164239425010.2147/IJN.S31506234194227
    [Google Scholar]
  103. WangS. WangD. DuanY. ZhouZ. GaoW. ZhangL. Cellular nanosponges for biological neutralization.Adv. Mater.20223413210771910.1002/adma.20210771934783078
    [Google Scholar]
  104. OlssonM. BruhnsP. FrazierW.A. RavetchJ.V. OldenborgP.A. Platelet homeostasis is regulated by platelet expression of CD47 under normal conditions and in passive immune thrombocytopenia.Blood200510593577358210.1182/blood‑2004‑08‑298015665111
    [Google Scholar]
  105. WilkeG.A. WardenburgJ.B. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin–mediated cellular injury.Proc. Natl. Acad. Sci. USA201010730134731347810.1073/pnas.100181510720624979
    [Google Scholar]
  106. ZhouJ. KrollA.V. HolayM. FangR.H. ZhangL. Biomimetic nanotechnology toward personalized vaccines.Adv. Mater.20203213190125510.1002/adma.20190125531206841
    [Google Scholar]
  107. AngsantikulP. ThamphiwatanaS. ZhangQ. SpiekermannK. ZhuangJ. FangR.H. GaoW. ObonyoM. ZhangL. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection.Adv. Ther. (Weinh.)201812180001610.1002/adtp.20180001630320205
    [Google Scholar]
  108. GaoW. ZhangL. Coating nanoparticles with cell membranes for targeted drug delivery.J. Drug Target.2015237-861962610.3109/1061186X.2015.105207426453159
    [Google Scholar]
  109. NeouzeM.A. SchubertU. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands.Monatsh. Chem.2008139318319510.1007/s00706‑007‑0775‑2
    [Google Scholar]
  110. LuoM. JiaY.Y. JingZ.W. LiC. ZhouS.Y. MeiQ.B. ZhangB.L. Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori.Colloids Surf. B Biointerfaces2018164111910.1016/j.colsurfb.2018.01.00829367052
    [Google Scholar]
  111. ObonyoM. ZhangL. ThamphiwatanaS. PornpattananangkulD. FuV. ZhangL. Antibacterial activities of liposomal linolenic acids against antibiotic-resistant Helicobacter pylori.Mol. Pharm.2012992677268510.1021/mp300243w22827534
    [Google Scholar]
  112. ThamphiwatanaS. AngsantikulP. EscajadilloT. ZhangQ. OlsonJ. LukB.T. ZhangS. FangR.H. GaoW. NizetV. ZhangL. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management.Proc. Natl. Acad. Sci. USA201711443114881149310.1073/pnas.171426711429073076
    [Google Scholar]
  113. ArifM. DongQ.J. RajaM.A. ZeenatS. ChiZ. LiuC.G. Development of novel pH-sensitive thiolated chitosan/PMLA nanoparticles for amoxicillin delivery to treat Helicobacter pylori.Mater. Sci. Eng. C201883172410.1016/j.msec.2017.08.03829208276
    [Google Scholar]
  114. GaoW. ChenY. ZhangY. ZhangQ. ZhangL. Nanoparticle-based local antimicrobial drug delivery.Adv. Drug Deliv. Rev.2018127465710.1016/j.addr.2017.09.01528939377
    [Google Scholar]
  115. LeeY.C. DoreM.P. GrahamD.Y. Diagnosis and treatment of Helicobacter pylori infection.Annu. Rev. Med.202273118319510.1146/annurev‑med‑042220‑02081435084993
    [Google Scholar]
  116. RokkasT. GisbertJ.P. MalfertheinerP. NivY. GasbarriniA. LejaM. MegraudF. O’MorainC. GrahamD.Y. Comparative Effectiveness of multiple different first-line treatment regimens for Helicobacter pylori infection: A network meta-analysis.Gastroenterology20211612495507.e410.1053/j.gastro.2021.04.01233839101
    [Google Scholar]
  117. ZouS.P. ChengQ. FengC.Y. XuC. SunM.H. Comparative effectiveness of first-line therapies for eradication of antibiotic-resistant Helicobacter pylori strains: A network meta-analysis.World J. Clin. Cases20221035129591297010.12998/wjcc.v10.i35.1295936569016
    [Google Scholar]
  118. ZulloA. VairaD. VakilN. HassanC. GattaL. RicciC. De FrancescoV. MenegattiM. TampieriA. PernaF. RinaldiV. PerriF. PapadìaC. FornariF. PilatiS. MeteL.S. MerlaA. PotìR. MarinoneG. SavioliA. CampoS.M.A. FaleoD. IerardiE. MiglioliM. MoriniS. High eradication rates of Helicobacter pylori with a new sequential treatment.Aliment. Pharmacol. Ther.200317571972610.1046/j.1365‑2036.2003.01461.x12641522
    [Google Scholar]
  119. MalfertheinerP. MegraudF. O’MorainC.A. GisbertJ.P. KuipersE.J. AxonA.T. BazzoliF. GasbarriniA. AthertonJ. GrahamD.Y. HuntR. MoayyediP. RokkasT. RuggeM. SelgradM. SuerbaumS. SuganoK. El-OmarE.M. European Helicobacter and Microbiota Study Group and Consensus panelManagement of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report.Gut201766163010.1136/gutjnl‑2016‑31228827707777
    [Google Scholar]
  120. GaloșF. BobocC. IeșanuM.I. AnghelM. IoanA. IanaE. CoșoreanuM.T. BobocA.A. Antibiotic resistance and therapeutic efficacy of Helicobacter pylori infection in pediatric patients-A tertiary center experience.Antibiotics (Basel)202312114610.3390/antibiotics1201014636671347
    [Google Scholar]
  121. CaroS.D. FiniL. DaoudY. GrizziF. GasbarriniA. De LorenzoA. Di RenzoL. McCartneyS. BloomS. BloomS. Levofloxacin/amoxicillin-based schemes vs quadruple therapy for Helicobacter pylori eradication in second-line.World J. Gastroenterol.201218405669567810.3748/wjg.v18.i40.566923155306
    [Google Scholar]
  122. Haji-AghamohammadiA.A. BastaniA. MiroliaeeA. OveisiS. SafarnezhadS. Comparison of levofloxacin versus clarithromycin efficacy in the eradication of Helicobacter pylori infection.Caspian J. Intern. Med.20167426727127999644
    [Google Scholar]
  123. HsuP.I. WuD.C. WuJ.Y. GrahamD.Y. Modified sequential Helicobacter pylori therapy: Proton pump inhibitor and amoxicillin for 14 days with clarithromycin and metronidazole added as a quadruple (hybrid) therapy for the final 7 days.Helicobacter201116213914510.1111/j.1523‑5378.2011.00828.x21435092
    [Google Scholar]
  124. Molina-InfanteJ. RomanoM. Fernandez-BermejoM. FedericoA. GravinaA.G. PozzatiL. Garcia-AbadiaE. Vinagre-RodriguezG. Martinez-AlcalaC. Hernandez-AlonsoM. MirandaA. IoveneM.R. Pazos-PachecoC. GisbertJ.P. Optimized nonbismuth quadruple therapies cure most patients with Helicobacter pylori infection in populations with high rates of antibiotic resistance.Gastroenterology20131451121128.e110.1053/j.gastro.2013.03.05023562754
    [Google Scholar]
  125. HsuP.I. WuD.C. Reverse hybrid therapy achieves a similar eradication rate as Hybrid therapy in the treatment of Helicobacter pylori infection.Gastroenterology20161504S7310.1016/S0016‑5085(16)30361‑4
    [Google Scholar]
  126. ChengS. LiH. LuoJ. ChiJ. ZhaoW. LinJ. XuC. Egg yolk antibody combined with bismuth-based quadruple therapy in Helicobacter pylori infection rescue treatment: A single-center, randomized, controlled study.Front. Microbiol.202314115012910.3389/fmicb.2023.115012937256061
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873291800240416064129
Loading
/content/journals/cnanom/10.2174/0124681873291800240416064129
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test