Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

The human skin is the largest organ, is a vital interface with the external environment, and maintains homeostasis through its layered structure of epidermis, dermis, and hypodermis. The epidermis forms a strong barrier against microorganisms, and the dermis consists of essential components like collagen and melanin, and the hypodermis aids in insulation and energy storage. The skin diseases, spanning the epidermis, dermis, and subcutaneous tissue, include psoriasis, dermatitis, acne, hyperpigmentation, and aging. The nanocarrier-based drug delivery, particularly transferosomes, shows promise in treating dermatological conditions. Transfersomes are composed of phospholipids and edge activators, and navigate skin structures with flexibility, enhancing drug permeation. They offer continuous drug release, accommodating both lipophilic and hydrophilic drugs, and respond to osmotic gradients, optimizing transdermal delivery. Despite being non-invasive, formulation challenges and stability issues require attention. Studies demonstrate transferosomes' efficacy in treating conditions like acne, psoriasis, and melasma, demonstrating their potential for targeted drug delivery and overcoming conventional limitations in dermatology.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873307635240520074626
2024-05-28
2025-10-27
Loading full text...

Full text loading...

References

  1. WaltersK.A. RobertsM.S. The structure and function of skin. Dermatological and transdermal formulations.CRC press2002195810.1201/9780824743239‑4
    [Google Scholar]
  2. ChuongC-M. NickoloffB.J. EliasP.M. GoldsmithL.A. MacherE. MadersonP.A. SundbergJ.P. TagamiH. PlonkaP.M. PedersonT.K. BernardB.A. SchröderJ.M. DottoP. ChangC.M. WilliamsM.L. FeingoldK.R. KingL.E. KligmanA.M. ReesJ.L. ChristophersE. What is the ‘true’ function of skin?Exp. Dermatol.200211215918711994143
    [Google Scholar]
  3. GilaberteY. TorresP.L. PastushenkoI. JuarranzÁ. Anatomy and function of the skin. Nanoscience in dermatology.Elsevier2016114
    [Google Scholar]
  4. KumarM.A. The skin.Techniques in small animal wound management20241
    [Google Scholar]
  5. PillaiS MancoM OresajoC BaalbakiN. Cosmetic dermatology: Products and procedures.Epidermal barrier.2022202211510.1002/9781119676881.ch1
    [Google Scholar]
  6. MarksR.M. KnightA. LaidlerP. Atlas of skin pathology.Springer Science & Business Media2012
    [Google Scholar]
  7. BensonHA Topical and transdermal drug delivery: Principles and practice.Skin structure, function, and permeation.20122012122
    [Google Scholar]
  8. BakerL.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health.Temperature20196321125910.1080/23328940.2019.163214531608304
    [Google Scholar]
  9. ChenR. ZhuZ. JiS. GengZ. HouQ. SunX. FuX. Sweat gland regeneration: Current strategies and future opportunities.Biomaterials202025512020110.1016/j.biomaterials.2020.12020132592872
    [Google Scholar]
  10. d’IschiaM. WakamatsuK. CicoiraF. Di MauroE. BorronG.J.C. CommoS. GalvánI. GhanemG. KenzoK. MeredithP. PezzellaA. SantatoC. SarnaT. SimonJ.D. ZeccaL. ZuccaF.A. NapolitanoA. ItoS. Melanins and melanogenesis: From pigment cells to human health and technological applications.Pigment Cell Melanoma Res.201528552054410.1111/pcmr.1239326176788
    [Google Scholar]
  11. MansouriP ChalangariR ChalangariKM SaffarianZ Skin aging and immune system.Immunology of aging.201420143396810.1007/978‑3‑642‑39495‑9_25
    [Google Scholar]
  12. MonizT. LimaC.S.A. ReisS. Human skin models: From healthy to disease-mimetic systems; Characteristics and applications.Br. J. Pharmacol.2020177194314432910.1111/bph.1518432608012
    [Google Scholar]
  13. BorkowskiA.W. The pattern recognition receptor toll-like receptor 3 regulates skin barrier homeostasis.San DiegoUniversity of California2014
    [Google Scholar]
  14. KhanaI. Skin aging and vesicular delivery systems.Science and applications of nanoparticles2022309
    [Google Scholar]
  15. GarcíaF.R. LalatsaA. StattsL. FernándezB.F. BallesterosM.P. SerranoD.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale.Int. J. Pharm.202057311881710.1016/j.ijpharm.2019.11881731678520
    [Google Scholar]
  16. EspadaleE. SantoroD. Structure and function of the skin. BSAVA Manual of Canine and Feline Dermatology.BSAVA Library2021112
    [Google Scholar]
  17. PrausnitzM.R. EliasP.M. FranzT.J. SchmuthM. TsaiJ-C. MenonG.K. Skin barrier and transdermal drug delivery.Dermatology2012320652073
    [Google Scholar]
  18. VermaD. VermaS. BlumeG. FahrA. Particle size of liposomes influences dermal delivery of substances into skin.Int. J. Pharm.20032581-214115110.1016/S0378‑5173(03)00183‑212753761
    [Google Scholar]
  19. RajanR. VasudevanD.T. MukundB.V.P. JoseS. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.J. Adv. Pharm. Technol. Res.20112313814310.4103/2231‑4040.8552422171309
    [Google Scholar]
  20. RaiS. PandeyV. RaiG. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art.Nano Rev. Exp.201781132570810.1080/20022727.2017.132570830410704
    [Google Scholar]
  21. ChaurasiyaP. GanjuE. UpmanyuN. RayS.K. JainP. Transfersomes: A novel technique for transdermal drug delivery.J. Drug Deliv. Ther.20199127928510.22270/jddt.v9i1.2198
    [Google Scholar]
  22. NamrataM. VijetaB. AlagusundaramM. Transferosomes the effective targeted drug delivery system overview.J. Pharm. Negat. Results202213843164321
    [Google Scholar]
  23. KapoorD. ChilkapalliS.C. PrajapatiB.G. RodriquesP. PatelR. SinghS. BhattacharyaS. The astonishing accomplishment of biological drug delivery using lipid nanoparticles: An ubiquitous review.Curr. Pharm. Biotechnol.20242510.2174/011389201026882423112204123738265380
    [Google Scholar]
  24. RajkumarJ. LakshmiS.R.K. VineeshaS. A new approach to transdermal drug delivery using transfersomes-based nanoencapsulation: A research update.Asian J. Pharmaceutical Res. Development2022101647010.22270/ajprd.v10i1.1082
    [Google Scholar]
  25. ParrishL. Psoriasis: Symptoms, treatments and its impact on quality of life.Br. J. Community Nurs.20121711524528, 526, 52810.12968/bjcn.2012.17.11.52423124421
    [Google Scholar]
  26. WollinaU. TirantM. VojvodicA. LottiT. Treatment of psoriasis: Novel approaches to topical delivery.Open Access Maced. J. Med. Sci.20197183018302510.3889/oamjms.2019.41431850114
    [Google Scholar]
  27. AfoninaI.S. NuffelVE. BeyaertR. Immune responses and therapeutic options in psoriasis.Cell. Mol. Life Sci.20217862709272710.1007/s00018‑020‑03726‑133386888
    [Google Scholar]
  28. PetitR.G. CanoA. OrtizA. EspinaM. PratJ. MuñozM. SeverinoP. SoutoE.B. GarcíaM.L. PujolM. LópezS.E. Psoriasis: From pathogenesis to pharmacological and nano-technological-based therapeutics.Int. J. Mol. Sci.2021229498310.3390/ijms2209498334067151
    [Google Scholar]
  29. SatoY. OgawaE. OkuyamaR. Role of innate immune cells in psoriasis.Int. J. Mol. Sci.20202118660410.3390/ijms2118660432917058
    [Google Scholar]
  30. CaputoV. StrafellaC. CosioT. LannaC. CampioneE. NovelliG. GiardinaE. CascellaR. Pharmacogenomics: An update on biologics and small-molecule drugs in the treatment of psoriasis.Genes2021129139810.3390/genes1209139834573380
    [Google Scholar]
  31. ArmstrongA.W. ReadC. Pathophysiology, clinical presentation, and treatment of psoriasis: A review.JAMA2020323191945196010.1001/jama.2020.400632427307
    [Google Scholar]
  32. Dall’OglioF. NascaM.R. GerbinoC. MicaliG. An overview of the diagnosis and management of seborrheic dermatitis.Clin. Cosmet. Investig. Dermatol.2022151537154810.2147/CCID.S28467135967915
    [Google Scholar]
  33. FaergemannJ. Management of seborrheic dermatitis and pityriasis versicolor.Am. J. Clin. Dermatol.200012758010.2165/00128071‑200001020‑0000111702314
    [Google Scholar]
  34. GuptaA.K. BluhmR. BarlowJ.O. FleischerA.B.Jr FeldmanS.R. Prescribing practices for seborrheic dermatitis vary with the physician’s specialty: Implications for clinical practice.J. Dermatolog. Treat.200415420821310.1080/0954663041003243015764032
    [Google Scholar]
  35. MesjaszA. ZawadzkaM. ChałubińskiM. TrzeciakM. Is atopic dermatitis only a skin disease?Int. J. Mol. Sci.202324183710.3390/ijms2401083736614274
    [Google Scholar]
  36. BootheD.W TarboxJA TarboxMB Atopic dermatitis: Pathophysiology.Management of atopic dermatitis: Methods and challenges.2017213710.1007/978‑3‑319‑64804‑0_3
    [Google Scholar]
  37. TomaszewskaS.J. TrzeciakM. Molecular mechanisms of atopic dermatitis pathogenesis.Int. J. Mol. Sci.2021228413010.3390/ijms2208413033923629
    [Google Scholar]
  38. CorkMJ DanbyS VasilopoulosY Epidermal barrier dysfunction in atopic dermatitis.Textbook of Atopic Dermatitis.200820084770
    [Google Scholar]
  39. HoV SchacterD MillerR Acne management for the 90s: Current treatment guidelines.The Can J Diag.199512125
    [Google Scholar]
  40. AkM. A comprehensive review of acne vulgaris.J. Clin. Pharmacol.2019111745
    [Google Scholar]
  41. AdkinsK. Stigmatisation, media and acne: A mixed methods interdisciplinary approach.University of Sheffield2018
    [Google Scholar]
  42. MelnikB.C. SchmitzG. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris.Exp. Dermatol.2009181083384110.1111/j.1600‑0625.2009.00924.x19709092
    [Google Scholar]
  43. CongT.X. HaoD. WenX. LiX.H. HeG. JiangX. From pathogenesis of acne vulgaris to anti-acne agents.Arch. Dermatol. Res.2019311533734910.1007/s00403‑019‑01908‑x30859308
    [Google Scholar]
  44. DrénoB. What is new in the pathophysiology of acne, an overview.J. Eur. Acad. Dermatol. Venereol.201731S581210.1111/jdv.1437428805938
    [Google Scholar]
  45. AlexeyevO.A. DekioI. LaytonA.M. LiH. HughesH. MorrisT. ZouboulisC.C. PatrickS. Why we continue to use the name Propionibacterium acnes.Br. J. Dermatol.20181795122710.1111/bjd.1708530101491
    [Google Scholar]
  46. BergfeldW.F. The pathophysiology of acne vulgaris in children and adolescents, Part 1.Cutis2004742929715379361
    [Google Scholar]
  47. JiangH. LiC. Common pathogenesis of acne vulgaris and atherosclerosis.Inflammation20194211510.1007/s10753‑018‑0863‑y30073565
    [Google Scholar]
  48. MeysR. Skin pigmentation.Medicine201745743844310.1016/j.mpmed.2017.04.011
    [Google Scholar]
  49. PlatsidakiE. EfstathiouV. MarkantoniV. KourisA. KontochristopoulosG. NikolaidouE. RigopoulosD. StratigosA. GregoriouS. Self-esteem, depression, anxiety and quality of life in patients with melasma living in a sunny mediterranean area: Results from a prospective cross-sectional study.Dermatol. Ther.20231351127113610.1007/s13555‑023‑00915‑136995579
    [Google Scholar]
  50. LeeA.Y. Recent progress in melasma pathogenesis.Pigment Cell Melanoma Res.201528664866010.1111/pcmr.1240426230865
    [Google Scholar]
  51. KangH.Y. SuzukiI. LeeD.J. HaJ. ReinicheP. AubertJ. DeretS. ZugajD. VoegelJ.J. OrtonneJ.P. Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma.J. Invest. Dermatol.201113181692170010.1038/jid.2011.10921562572
    [Google Scholar]
  52. MukhtarA. LovattC. PatelG. British Society for Investigative Dermatology Virtual Annual Meeting, 29–31 March 2021.Br J Dermatol.20221871e1e63
    [Google Scholar]
  53. KhannaN. RasoolS. Facial melanoses: Indian perspective.Indian J. Dermatol. Venereol. Leprol.201177555256310.4103/0378‑6323.8404621860153
    [Google Scholar]
  54. SuryaningsihB.E. SadewaA.H. WirohadidjojoY.W. SoebonoH. Association between heterozygote Val92Met MC1R gene polymorphisms with incidence of melasma: A study of Javanese women population in Yogyakarta.Clin. Cosmet. Investig. Dermatol.20191248949510.2147/CCID.S20611531308719
    [Google Scholar]
  55. GuY. HanJ. JiangC. ZhangY. Biomarkers, oxidative stress and autophagy in skin aging.Ageing Res. Rev.20205910103610.1016/j.arr.2020.10103632105850
    [Google Scholar]
  56. BickersD.R. AtharM. Oxidative stress in the pathogenesis of skin disease.J. Invest. Dermatol.2006126122565257510.1038/sj.jid.570034017108903
    [Google Scholar]
  57. MakrantonakiE. ZouboulisC.C. William J. Cunliffe Scientific Awards. Characteristics and pathomechanisms of endogenously aged skin.Dermatology2007214435236010.1159/00010089017460411
    [Google Scholar]
  58. ZhangS. DuanE. Fighting against skin aging: The way from bench to bedside.Cell Transplant.201827572973810.1177/096368971772575529692196
    [Google Scholar]
  59. MyneniG.S. RadhaG. SoujanyaG. Novel vesicular drug delivery systems: A review.J. Pharm. Res.20211116501664
    [Google Scholar]
  60. PatelD. ChatterjeeB. Identifying underlying issues related to the inactive excipients of transfersomes based drug delivery system.Curr. Pharm. Des.202127797198010.2174/138161282666620101614435433069192
    [Google Scholar]
  61. SolankiD. KushwahL. MotiwaleM. ChouhanV. Transferosomes- A review.World J. Pharm. Pharm. Sci.2016510435449
    [Google Scholar]
  62. MoqejwaT. MarimuthuT. KondiahP.P.D. ChoonaraY.E. Development of stable nano-sized transfersomes as a rectal colloid for enhanced delivery of cannabidiol.Pharmaceutics202214470310.3390/pharmaceutics1404070335456536
    [Google Scholar]
  63. CevcG. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery.Crit Rev Ther Drug Carrier Syst.1996133-425738810.1615/CritRevTherDrugCarrierSyst.v13.i3‑4.30
    [Google Scholar]
  64. LivermanK.L. MattaiJ. TinsleyR. WuJ. Mechanisms of skin hydration.Handbook of cosmetic science and technology.200910.1201/b15273‑10
    [Google Scholar]
  65. CostaF.R.C. SchiettiJ. StarkS.C. SmithM.N. The other side of tropical forest drought: Do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought?New Phytol.2023237371473310.1111/nph.1791435037253
    [Google Scholar]
  66. MarwahH. GargT. RathG. GoyalA.K. Development of transferosomal gel for trans-dermal delivery of insulin using iodine complex.Drug Deliv.20162351636164410.3109/10717544.2016.115524327187718
    [Google Scholar]
  67. MalakarJ. SenS.O. NayakA.K. SenK.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery.Saudi Pharm. J.201220435536310.1016/j.jsps.2012.02.00123960810
    [Google Scholar]
  68. PatelNN VikranKR GuptaA GuptaA Proniosomes for improved transdermal drug delivery–A review.The Pharma, a Journal of Pharmacy Research.20134428
    [Google Scholar]
  69. ParkH. LeeJ. JeongS. ImB.N. KimM.K. YangS.G. NaK. Lipase-sensitive transfersomes based on photosensitizer/polymerizable lipid conjugate for selective antimicrobial photodynamic therapy of acne.Adv. Healthc. Mater.20165243139314710.1002/adhm.20160081527863184
    [Google Scholar]
  70. VasanthS. DubeyA. G SR. LewisS.A. GhateV.M. ZahabyE.S.A. HebbarS. Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: A collegial approach for the treatment of acne vulgaris.AAPS PharmSciTech20202126110.1208/s12249‑019‑1518‑531915948
    [Google Scholar]
  71. GuptaM. PrajapatiR.N. IrchhaiyaR. SinghN. PrajapatiS.K. Novel clindamycin loaded transfersomes formulation for effective management of acne.World J. Pharm. Res.20176676577310.20959/wjpr20176‑8494
    [Google Scholar]
  72. ShahJ.P. KhanA.I. MauryaR. ShuklaA.K. Formulation development and evaluation of transferosomal drug delivery for effective treatment of acne.Advance Pharmaceutical J.201941263410.31024/apj.2019.4.1.4
    [Google Scholar]
  73. NayeemU. GargA. DasA.K. ShreeN. Yasmeen SultanaY. AhmedS. KhanM.A. Development and evaluation of the novel chitosan-based 1% clindamycin & 2.5% benzoyl peroxide transferosomal gel for topical acne treatment.J. Drug Deliv. Sci. Technol.20238910500210.1016/j.jddst.2023.105002
    [Google Scholar]
  74. AbdellatifA.A. TalebA.H.A. Transfersomal nanoparticles of keratolytic and antibacterial agents for enhanced transdermal delivery.J Nanotechnology & Advanced Materials.2016411923
    [Google Scholar]
  75. Abd-allahH. RagaieM.H. ElmowafyE. Unraveling the pharmaceutical and clinical relevance of the influence of syringic acid loaded linoleic acid transferosomes on acne.Int. J. Pharm.202363912294010.1016/j.ijpharm.2023.12294037040824
    [Google Scholar]
  76. KharwadeR. AliN. GanganeP. PawarK. MoreS. IqbalM. BhatA.R. AlAsmariA.F. KaleemM. DOE-assisted formulation, optimization, and characterization of tioconazole-loaded transferosomal hydrogel for the effective treatment of atopic dermatitis: In vitro and in vivo evaluation.Gels20239430310.3390/gels904030337102915
    [Google Scholar]
  77. RenJ. LiuT. BiB. SohailS. DinF. Development and evaluation of tacrolimus loaded nano-transferosomes for skin targeting and dermatitis treatment.J. Pharm. Sci.2024113247148510.1016/j.xphs.2023.10.03337898166
    [Google Scholar]
  78. LeiW YuC LinH ZhouX. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo .Asian J Pharmaceutical Sci.2013863364510.1016/j.ajps.2013.09.005
    [Google Scholar]
  79. ChauhanS. GulatiN. NagaichU. Fabrication and evaluation of ultra deformable vesicles for atopic dermatitis as topical delivery.Int. J. Polym. Mater.201968526627710.1080/00914037.2018.1443932
    [Google Scholar]
  80. SantosC.P.A. GamaM. PeixotoD. OliveiraS.I. FariaF.I. ZeinaliM. RavasjaniA.S. MeloM.F. HamishehkarH. VeigaF. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis.Int. J. Pharm.202261812165610.1016/j.ijpharm.2022.12165635278601
    [Google Scholar]
  81. ParkashV. MaanS. ChaudharyV. JogpalV. MittalG. JainV. Implementation of design of experiments in development and optimization of transfersomal carrier system of tacrolimus for the dermal management of psoriasis in albino wistar rat.J. Bioequivalence Bioavailab.20181059810510.4172/0975‑0851.1000385
    [Google Scholar]
  82. MotwaniK GuptaV. Nano-transfersomes of vitamin-E and aloe-vera for the management of psoriasis.J Sustainable Mat. Process. Management20211410.30880/jsmpm.2022.02.02.002
    [Google Scholar]
  83. DhavaleR.P. NadafS.J. BhatiaM.S. Quantitative structure property relationship assisted development of Fluocinolone acetonide loaded transfersomes for targeted delivery.J. Drug Deliv. Sci. Technol.20216510275810.1016/j.jddst.2021.102758
    [Google Scholar]
  84. GizawayS.E. FadelM. MouradB. ElnabyF.E.A. Betamethasone dipropionate gel for treatment of localized plaque psoriasis.Int. J. Pharm. Pharm. Sci.20179817318210.22159/ijpps.2017v9i8.18571
    [Google Scholar]
  85. ChaurasiaS ChaurasiyaS NigamV. Development and characterization of topical gel of transferosome of methotrexate using aloe extract for treatment of psoriasis.World J. Pharma. Res.2023
    [Google Scholar]
  86. TodkeP. PolakaS. RavalN. GondaliyaP. TambeV. MaheshwariR. KaliaK. TekadeR.K. ‘Transfersome-embedded-gel’ for dual-mechanistic delivery of anti-psoriatic drugs to dermal lymphocytes.J. Microencapsul.202239649551110.1080/02652048.2022.211611935993180
    [Google Scholar]
  87. DongareSS BhogaleVP Development, optimization and evaluation of psoralen loaded transfersomal gel for treatment of psoriasis.World Journal of Pharmaceutical Research (WJPR)2024
    [Google Scholar]
  88. CeliaC. CilurzoF. TrapassoE. CoscoD. FrestaM. PaolinoD. Ethosomes® and transfersomes® containing linoleic acid: Physicochemical and technological features of topical drug delivery carriers for the potential treatment of melasma disorders.Biomed. Microdevices201214111913010.1007/s10544‑011‑9590‑y21960035
    [Google Scholar]
  89. LeeM.H. LeeK.K. ParkM.H. HyunS.S. KahnS.Y. JooK.S. KangH-C. KwonW-T. In vivo anti-melanogenesis activity and in vitro skin permeability of niacinamide-loaded flexible liposomes (Bounsphere™).J. Drug Deliv. Sci. Technol.20163114715210.1016/j.jddst.2015.12.008
    [Google Scholar]
  90. LiJ. DuanN. SongS. NieD. YuM. WangJ. XiZ. LiJ. ShengY. XuC. WeiY. GanY. Transfersomes improved delivery of ascorbic palmitate into the viable epidermis for enhanced treatment of melasma.Int. J. Pharm.202160812105910.1016/j.ijpharm.2021.12105934474115
    [Google Scholar]
  91. LimsuwanT. BoonmeP. AmnuaikitT. Enhanced stability of phenylethyl resorcinol in elastic vesicular formulations.Trop. J. Pharm. Res.201917101895190210.4314/tjpr.v17i10.1
    [Google Scholar]
  92. JamadarA.T. PeramM.R. ChandrasekharN. KanshideA. KumbarV.M. DiwanP.V. Formulation, optimization, and evaluation of ultradeformable nanovesicles for effective topical delivery of hydroquinone.J. Pharm. Innov.202318506524
    [Google Scholar]
  93. AzimiM. KhodabandehM. DeezagiA. RahimiF. Impact of the transfersome delivered human growth hormone on the dermal fibroblast cells.Curr. Pharm. Biotechnol.201920141194120210.2174/138920102066619080912033331400264
    [Google Scholar]
  94. SuriniS. LeonyzaA. SuhC.W. Formulation and in vitro penetration study of recombinant human epidermal growth factor-loaded transfersomal emulgel.Adv. Pharm. Bull.202010458659410.34172/apb.2020.07033072536
    [Google Scholar]
  95. HsiehW.C. FangC.W. SuhailM. Lam VuQ. ChuangC.H. WuP.C. Improved skin permeability and whitening effect of catechin-loaded transfersomes through topical delivery.Int. J. Pharm.202160712103010.1016/j.ijpharm.2021.12103034438007
    [Google Scholar]
  96. AmnuaikitT LimsuwanT KhongkowP BoonmeP Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes.Asian J. Pharmaceutical Sciences.201813547284
    [Google Scholar]
  97. AvadhaniK.S. ManikkathJ. TiwariM. ChandrasekharM. GodavarthiA. VidyaS.M. HariharapuraR.C. KalthurG. UdupaN. MutalikS. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano- transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage.Drug Deliv.2017241617410.1080/10717544.2016.122871828155509
    [Google Scholar]
  98. MiatmokoA. MarufahN.A. NadaQ. RositaN. ErawatiT. SusantoJ. PurwantariK.E. NurkantoA. SoeratriW. The effect of surfactant type on characteristics, skin penetration and anti-aging effectiveness of transfersomes containing amniotic mesenchymal stem cells metabolite products in UV-aging induced mice.Drug Deliv.20222913443345336471900
    [Google Scholar]
  99. HarmitaH. IskandarsyahI. AfifahS.F. Effect of transfersome formulation on the stability and antioxidant activity of N-acetylcysteine in anti-aging cream.International J. Appl. Pharmaceutics20201215616210.22159/ijap.2020.v12s1.FF034
    [Google Scholar]
  100. HarmitaH. IskandarsyahM.F. MurtiF.Z. Effect of transfersome on the stability and antioxidant activity of glutathione in antiaging creams.International J. Appl. Pharmaceutics20201214915510.22159/ijap.2020.v12s1.FF033
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873307635240520074626
Loading
/content/journals/cnanom/10.2174/0124681873307635240520074626
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test