Current Molecular Medicine - Volume 2, Issue 5, 2002
Volume 2, Issue 5, 2002
-
-
Pycnodysostosis: Role and Regulation of Cathepsin K in Osteoclast Function and Human Disease
More LessAuthors: G. Motyckova and D.E. FisherPatients with pycnodysostosis, a rare skeletal dysplasia, present with bone abnormalities such as short stature, acroosteolysis of distal phalanges, and skull deformities. The disease is caused by a deficiency of the cysteine protease cathepsin K which is responsible for degradation of collagen type I and other bone proteins. Osteoclasts, bone cells of hematopoietic origin responsible for bone mineral as well as protein matrix degradation, are dysfunctional in patients with pycnodysostosis due to mutations in the cathepsin K gene. Cathepsin K deficient osteoclasts can demineralize bone but cannot degrade the protein matrix. Mutations in the cathepsin K gene disrupting wild type cathepsin K activity have been described in patients with pycnodysostosis. Animal models of cathepsin K deficiency have been created and provide a valuable tool to study osteoclast function and treatment for cathepsin K deficiency. Understanding the regulation and role of cathepsin K in osteoclast function is important for designing future therapies for pycnodysostosis. Cathepsin K inhibitors will be useful in pathological processes involving excess osteoclast activation and bone resorption such as osteoporosis, bone metastasis and multiple myeloma. This review will discuss the bone remodeling cycle, the human disease pycnodysostosis caused by cathepsin K deficiency and cathepsin K activity and regulation.
-
-
-
Neuronal Ceroid Lipofuscinoses Caused by Defects in Soluble Lysosomal Enzymes (CLN1 and CLN2)
More LessAuthors: S.L. Hofmann, A. Atashband, S.K. Cho, A.K. Das, P. Gupta and J-Y. LuInfantile and classical late infantile neuronal ceroid lipofuscinoses (NCL) are two recent additions to the expanding spectrum of lysosomal storage disorders caused by deficiencies in lysosomal hydrolases. They are latecomers to the lysosomal storage disorders, probably because of the heterogeneous nature of the storage material, which precluded meaningful biochemical analysis. Infantile NCL is caused by deficiency in palmitoyl-protein thioesterase, an enzyme that hydrolyzes fatty acids from cysteine residues in lipid-modified proteins. Classical late-infantile NCL is caused by a deficiency in tripeptidyl amino peptidase-I, a lysosomal peptidase that removes three amino acids from the free amino terminus of peptides or small proteins. Late-onset forms of these disorders have been described. The clinical, biochemical, and molecular genetic aspects of these two latest lysosomal storage disorders are discussed in this review. In addition, approaches to treatment and future directions for research are examined.
-
-
-
Mutated Genes in Juvenile and Variant Late Infantile Neuronal Ceroid Lipofuscinoses Encode Lysosomal Proteins
More LessAuthors: J. Vesa and L. PeltonenPositional cloning efforts of genes mutated in Batten disease and in the Finnish type of variant late infantile neuronal ceroid lipofuscinosis resulted in the identification of two novel genes, CLN3 and CLN5, and corresponding gene products that proved to be residents of lysosomes. Although the clinical phenotype of these NCL subtypes differs in the age of onset, average life span and EEG findings, the major component of material accumulating in patients' lysosomes is subunit c of mitochondrial ATPase in both these diseases. The CLN3 and CLN5 genes show ubiquitous expression patterns and are targeted to lysosomes in vitro, but the observed synaptosomal localization of the CLN3 protein in neurons would suggest some cell specificity in targeting and function of these proteins. So far, 31 different mutations of the CLN3 gene have been described in Batten patients, with one deletion of 1.02 kb accounting for 75% of disease alleles worldwide. Four CLN5 mutations are known, with one premature stop representing the major founder mutation in the isolated Finnish population. Functional studies of the yeast homolog of CLN3 and increased pH in patients' lysosomes would suggest an involvement of this protein in lysosomal pH homeostasis. Knock-out mouse models for CLN3 have been produced and the histopathology bears a close resemblance to human counterparts with characteristic lysosomal accumulations. Both CLN3 and CLN5 mouse models will provide experimental tools to resolve the pathological cascade in these neurodegenerative diseases.
-
-
-
The Molecular Basis of Mucolipidosis Type IV
More LessMucolipidosis Type IV (MLIV) is a lysosomal storage disorder that is characterized by severe neurologic and ophthalmologic abnormalities. It is a progressive disease that usually presents during the first year of life with mental retardation, corneal opacities, and delayed motor milestones. First described in 1974, MLIV is a rare autosomal recessive disease and the majority of patients diagnosed to date are of Ashkenazi Jewish descent. MLIV was originally classified as a lysosomal storage disorder due to the abnormal accumulation of mucopolysaccharides and lipids. Extensive studies in MLIV cells, however, have shown that the abnormal storage is due to a defect in the late endocytic pathway. Positional cloning led to the recent discovery of a novel gene on human chromosome 19, MCOLN1, that is mutated in MLIV. To date 14 independent mutations have been reported in MCOLN1, with two mutations accounting for 95% of the Ashkenazi Jewish MLIV alleles. The identification of the MLIV gene has led to a simple tool for definitive diagnosis and will permit carrier screening in the Ashkenazi Jewish population. MCOLN1 is a new member of the transient receptor potential (TRP) cation channel gene family. The protein encoded by MCOLN1, mucolipin-1, has six predicted transmembrane domains and a putative channel pore. The identification of mutations in MCOLN1 represents the first example of a neurological disease caused by a TRP-related channel. While the function of mucolipin-1 is currently unknown, homology to the TRP superfamily and the recent description of the C. elegans mucolipin-1 homolog allow us to begin to speculate about the role of mucolipin-1 in diverse cellular processes.
-
-
-
Disorders of Vesicles of Lysosomal Lineage: The Hermansky- Pudlak Syndromes
More LessAuthors: M. Huizing and W.A. GahlHermansky-Pudlak syndrome (HPS) has evolved into a group of genetically distinct disorders characterized by oculocutaneous albinism, a storage pool deficiency, and impaired formation or trafficking of intracellular vesicles. HPS-1 results from mutations in the HPS1 gene and affects approximately 400 individuals in northwest Puerto Rico due to a 16-bp duplication in exon 15. Another 13 mutations have been reported in non-Puerto Ricans. HPS1 codes for a 79.3 kDa cytoplasmic protein of unknown function. HPS-1 patients typically develop fatal pulmonary fibrosis in their fourth decade. HPS-2 is caused by mutations in ADTB3A, which codes for the β3A subunit of the adaptor protein-3 complex, AP3. This coat protein complex has been localized to the TGN as well as to a peripheral endosomal compartment. Evidence indicates that AP3 plays a role in the stepwise process of vesicular trafficking which leads to formation of the melanosomal, platelet dense body and lysosomal compartments. All three known HPS-2 patients had childhood neutropenia and infections. HPS-3 results from mutations in HPS3 and affects central Puerto Ricans homozygous for a 3904-bp deletion removing exon 1. At least 8 non-Puerto Rican patients have other HPS3 mutations, including an IVS5+1G->A splicing mutation in five Ashkenazi Jewish patients. HPS3 codes for a 113.7 kDa protein of unknown function. HPS-3 manifests with mild hypopigmentation and bleeding. All types of HPS are diagnosed by whole mount electron microscopic demonstration of absent platelet dense bodies, and molecular diagnoses are available for the Puerto Rican HPS1 and HPS3 founder mutations. Mouse and Drosophila models provide candidates for new genes causing HPS in humans. These genes will reveal the pathways by which specialized vesicles of lysosomal lineage arise within cells.
-
-
-
Chediak-Higashi Syndrome: a Clinical and Molecular View of a Rare Lysosomal Storage Disorder
More LessAuthors: D. Ward, S.L. Shiflett and J. KaplanChediak Higashi syndrome (CHS) is a rare, autosomal recessive disorder that affects multiple systems of the body. Patients with CHS exhibit hypopigmentation of the skin, eyes and hair, prolonged bleeding times, easy bruisability, recurrent infections, abnormal NK cell function and peripheral neuropathy. Morbidity results from patients succumbing to frequent bacterial infections or to an “accelerated phase” lymphoproliferation into the major organs of the body. Current treatment for the disorder is bone marrow transplant, which alleviates the immune problems and the accelerated phase, but does not inhibit the development of neurologic disorders that grow increasingly worse with age. There are several animal models of CHS, the beige mouse being the most characterized. Positional cloning and YAC complementation resulted in the identification of the Beige and CHS1 / LYST genes. These genes encode a cytosolic protein of 430,000 Da. Sequence analysis identified three conserved regions in the protein: a HEAT repeat motif at the amino-terminus that contains several α helices, a BEACH domain containing the amino acid sequence WIDL, and a WD40 repeat motif, which is described as a protein-protein interaction domain. The presence of the BEACH and WD40 domains defines a family of genes that encode extremely large proteins.
-
-
-
Albinism and Immunity: What's the Link?
More LessA small number of inherited diseases show a combination of immunological and pigmentation defects. Chediak-Higashi, Griscellis and Hermansky-Pudlak syndromes are all autosomal recessive diseases with these characteristics. Recent advances in both the identification of the genes giving rise to these diseases and the cell biology of immune cells and melanocytes have begun to reveal the molecular links between immunodeficiencies and albinism. These studies identify key proteins, such as Rab27a, which are critical for secretion of specialised granules found in melanocytes and immune cells. The granules of these cells are modified lysosomes termed “secretory lysosomes”. These studies reveal that secretory lysosomes use specialised mechanisms of secretion, not found in other cell types, which explains the selective defects in these diseases.
-
-
-
The Niemann-Pick C Proteins and Trafficking of Cholesterol Through the Late Endosomal / Lysosomal System
More LessAuthors: W.S. Garver and R.A. HeidenreichTo maintain proper cellular function, the amount and distribution of cholesterol residing within cellular membranes must be regulated. The principal disorder affecting transport of cholesterol through the late endosomal / lysosomal system and intracellular cholesterol homeostasis is Niemann- Pick type C (NPC) disease. The genes responsible for NPC disease have been identified, and the encoded Niemann-Pick C1 (NPC1) and Niemann-Pick C2 (HE1 / NPC2) proteins are currently the subject of intense investigation. This review provides a detailed examination of NPC1 and HE1 / NPC2 in regulating the transport of cholesterol through the late endosomal / lysosomal system to other cellular compartments responsible for maintaining intracellular cholesterol homeostasis, and how defective function of these proteins may be responsible for the pathophysiology associated with NPC disease.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month