Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Atherosclerosis (AS) is a chronic inflammatory vascular disease and the primary pathological basis of cardiovascular diseases. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol compound in green tea, has garnered significant attention in recent years for its protective effects against AS. EGCG possesses properties that lower lipid levels, exhibit antioxidant and anti-inflammatory activities, enhance plaque stability, and promote the recovery of endothelial function. The regulatory mechanisms of EGCG in AS primarily involve inhibiting apoptosis, modulating autophagy, improving gut microbiota, and regulating the Nrf2 and inflammatory signaling pathways. This review summarizes the role of EGCG in the prevention and treatment of AS and its potential mechanisms, providing a scientific basis for future research directions and therapeutic applications.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240354839241113044604
2025-01-09
2026-01-06
Loading full text...

Full text loading...

References

  1. TsaoC.W. AdayA.W. AlmarzooqZ.I. Heart disease and stroke statistics—2022 update: A report from the American heart association.Circulation20221458e153e63910.1161/CIR.0000000000001052 35078371
    [Google Scholar]
  2. FanJ. WatanabeT. Atherosclerosis: Known and unknown.Pathol. Int.202272315116010.1111/pin.13202 35076127
    [Google Scholar]
  3. MooreK.J. TabasI. Macrophages in the pathogenesis of atherosclerosis.Cell2011145334135510.1016/j.cell.2011.04.005 21529710
    [Google Scholar]
  4. LibbyP. The changing landscape of atherosclerosis.Nature2021592785552453310.1038/s41586‑021‑03392‑8 33883728
    [Google Scholar]
  5. LimS. OhP.C. SakumaI. KohK.K. How to balance cardiorenometabolic benefits and risks of statins.Atherosclerosis2014235264464810.1016/j.atherosclerosis.2014.06.001 24973595
    [Google Scholar]
  6. LuoH. ChenJ. SuC. ZhaL. Advances in the bioactivities of phytochemical saponins in the prevention and treatment of Atherosclerosis.Nutrients20221423499810.3390/nu14234998 36501028
    [Google Scholar]
  7. KhanN. MukhtarH. Tea polyphenols in promotion of human health.Nutrients20181113910.3390/nu11010039 30585192
    [Google Scholar]
  8. BasuA. LucasE.A. Mechanisms and effects of green tea on cardiovascular health.Nutr. Rev.200765836137510.1111/j.1753‑4887.2007.tb00314.x 17867370
    [Google Scholar]
  9. ChenB. ZhangW. LinC. ZhangL. A comprehensive review on beneficial effects of catechins on secondary mitochondrial diseases.Int. J. Mol. Sci.202223191156910.3390/ijms231911569 36232871
    [Google Scholar]
  10. KawabataK. YoshiokaY. TeraoJ. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols.Molecules201924237010.3390/molecules24020370 30669635
    [Google Scholar]
  11. ZhangJ. NieS. WangS. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages.J. Agric. Food Chem.201361389200920910.1021/jf4023004 24020822
    [Google Scholar]
  12. Andreu FernándezV. Almeida ToledanoL. Pizarro LozanoN. Bioavailability of epigallocatechin gallate administered with different nutritional strategies in healthy volunteers.Antioxidants20209544010.3390/antiox9050440 32438698
    [Google Scholar]
  13. PengX. McClementsD.J. LiuX. LiuF. EGCG-based nanoparticles: Synthesis, properties, and applications.Crit. Rev. Food Sci. Nutr.202412210.1080/10408398.2024.2328184 38520117
    [Google Scholar]
  14. ChenS.J. KaoY.H. JingL. Epigallocatechin-3-gallate reduces scavenger receptor A expression and foam cell formation in human macrophages.J. Agric. Food Chem.201765153141315010.1021/acs.jafc.6b05832 28367625
    [Google Scholar]
  15. ShinH.S. HanJ.M. KimH.G. Anti-atherosclerosis and hyperlipidemia effects of herbal mixture, Artemisia iwayomogi Kitamura and Curcuma longa Linne, in apolipoprotein E-deficient mice.J. Ethnopharmacol.2014153114215010.1016/j.jep.2014.01.039 24508858
    [Google Scholar]
  16. MooreK.J. SheedyF.J. FisherE.A. Macrophages in atherosclerosis: A dynamic balance.Nat. Rev. Immunol.2013131070972110.1038/nri3520 23995626
    [Google Scholar]
  17. BäckM. YurdagulA.Jr TabasI. ÖörniK. KovanenP.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities.Nat. Rev. Cardiol.201916738940610.1038/s41569‑019‑0169‑2 30846875
    [Google Scholar]
  18. BattyM. BennettM.R. YuE. The role of oxidative stress in Atherosclerosis.Cells20221123384310.3390/cells11233843 36497101
    [Google Scholar]
  19. KongP. CuiZ.Y. HuangX.F. ZhangD.D. GuoR.J. HanM. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention.Signal Transduct. Target. Ther.20227113110.1038/s41392‑022‑00955‑7 35459215
    [Google Scholar]
  20. XuS. IlyasI. LittleP.J. Endothelial dysfunction in Atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies.Pharmacol. Rev.202173392496710.1124/pharmrev.120.000096 34088867
    [Google Scholar]
  21. ZhangJ. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases.Rev Cardiovasc Med202223(2)07310.31083/j.rcm230207335229564
    [Google Scholar]
  22. AlmatroodiS.A. AlmatroudiA. KhanA.A. AlhumaydhiF.A. AlsahliM.A. RahmaniA.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer.Molecules20202514314610.3390/molecules25143146 32660101
    [Google Scholar]
  23. ChenT.S. LiaoW.Y. HuangC.W. ChangC.H. Adipose-derived stem cells preincubated with green tea EGCG enhance pancreatic tissue regeneration in rats with type 1 diabetes through ROS/Sirt1 signaling regulation.Int. J. Mol. Sci.2022236316510.3390/ijms23063165 35328586
    [Google Scholar]
  24. MohsenzadehM.S. RazaviB.M. ImenshahidiM. MohajeriS.A. RameshradM. HosseinzadehH. Evaluation of green tea extract and epigallocatechin gallate effects on bisphenol A‐induced vascular toxicity in isolated rat aorta and cytotoxicity in human umbilical vein endothelial cells.Phytother. Res.2021352996100910.1002/ptr.6861 32893422
    [Google Scholar]
  25. XingL. ZhangH. QiR. TsaoR. MineY. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols.J. Agric. Food Chem.20196741029104310.1021/acs.jafc.8b06146 30653316
    [Google Scholar]
  26. PathakN.M. MillarP.J.B. PathakV. FlattP.R. GaultV.A. Beneficial metabolic effects of dietary epigallocatechin gallate alone and in combination with exendin-4 in high fat diabetic mice.Mol. Cell. Endocrinol.201846020020810.1016/j.mce.2017.07.024 28754350
    [Google Scholar]
  27. Quezada-FernándezP. Trujillo-QuirosJ. Pascoe-GonzálezS. Effect of green tea extract on arterial stiffness, lipid profile and sRAGE in patients with type 2 diabetes mellitus: a randomised, double-blind, placebo-controlled trial.Int. J. Food Sci. Nutr.201970897798510.1080/09637486.2019.1589430 31084381
    [Google Scholar]
  28. PangJ. ZhangZ. ZhengT. Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis.Int. J. Cardiol.201620296797410.1016/j.ijcard.2014.12.176 26318390
    [Google Scholar]
  29. JagtapS. MeganathanK. WaghV. WinklerJ. HeschelerJ. SachinidisA. Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin and curcumin against cancer and cardiovascular diseases.Curr. Med. Chem.200916121451146210.2174/092986709787909578 19355899
    [Google Scholar]
  30. WolframS. Effects of green tea and EGCG on cardiovascular and metabolic health.J. Am. Coll. Nutr.2007264373S388S10.1080/07315724.2007.10719626 17906191
    [Google Scholar]
  31. TritschN. StegerM.C. SegatzV. Risk assessment of caffeine and Epigallocatechin Gallate in coffee leaf tea.Foods202211326310.3390/foods11030263 35159415
    [Google Scholar]
  32. WangW. ZhangZ.Z. WuY. (–)-Epigallocatechin-3-Gallate Ameliorates atherosclerosis and modulates hepatic lipid metabolic gene expression in apolipoprotein E knockout mice: Involvement of TTC39B.Front. Pharmacol.2018919510.3389/fphar.2018.00195 29593532
    [Google Scholar]
  33. WangT. XiangZ. WangY. (−)-Epigallocatechin Gallate targets notch to attenuate the inflammatory response in the immediate early stage in human macrophages.Front. Immunol.2017843310.3389/fimmu.2017.00433 28443100
    [Google Scholar]
  34. DuanJ. ChenZ. LiangX. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease.Biomaterials202025512019910.1016/j.biomaterials.2020.120199 32580099
    [Google Scholar]
  35. XuX. PanJ. ZhouX. Amelioration of lipid profile and level of antioxidant activities by epigallocatechin-gallate in a rat model of atherogenesis.Heart Lung Circ.201423121194120110.1016/j.hlc.2014.05.013 25027849
    [Google Scholar]
  36. CaiY. Kurita-OchiaiT. HashizumeT. YamamotoM. Green tea epigallocatechin-3-gallate attenuates Porphyromonas gingivalis -induced atherosclerosis.Pathog. Dis.2013671768310.1111/2049‑632X.12001 23620122
    [Google Scholar]
  37. WangQ. ZhangJ. LiY. Green tea polyphenol epigallocatechin-3-gallate increases atherosclerotic plaque stability in apolipoprotein E-deficient mice fed a high-fat diet.Kardiol. Pol.20187681263127010.5603/KP.a2018.0114 29862488
    [Google Scholar]
  38. TownsendD. HughesE. AkienG. Epigallocatechin-3-gallate remodels apolipoprotein A-I amyloid fibrils into soluble oligomers in the presence of heparin.J. Biol. Chem.201829333128771289310.1074/jbc.RA118.002038 29853648
    [Google Scholar]
  39. CaoY. WangD. WangX. ZhangJ. ShanZ. TengW. (-)-Epigallocatechin gallate inhibits TNF-α-induced PAI-1 production in vascular endothelial cells.J. Cardiovasc. Pharmacol.201362545245610.1097/FJC.0b013e3182a18ba8 23921304
    [Google Scholar]
  40. LorenzM. RauhutF. HoferC. Tea-induced improvement of endothelial function in humans: No role for epigallocatechin gallate (EGCG).Sci. Rep.201771227910.1038/s41598‑017‑02384‑x 28536463
    [Google Scholar]
  41. WidlanskyM.E. HamburgN.M. AnterE. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease.J. Am. Coll. Nutr.20072629510210.1080/07315724.2007.10719590 17536120
    [Google Scholar]
  42. ChenQ. KangJ. FuC. The independence of and associations among apoptosis, autophagy, and necrosis.Signal Transduct. Target. Ther.2018311810.1038/s41392‑018‑0018‑5 29967689
    [Google Scholar]
  43. DuanH. ZhangQ. LiuJ. Suppression of apoptosis in vascular endothelial cell, the promising way for natural medicines to treat atherosclerosis.Pharmacol. Res.202116810559910.1016/j.phrs.2021.105599 33838291
    [Google Scholar]
  44. PaiP.Y. ChouW.C. ChanS.H. Epigallocatechin Gallate reduces Homocysteine-caused oxidative damages through modulation SIRT1/AMPK pathway in endothelial cells.Am. J. Chin. Med.202149111312910.1142/S0192415X21500063 33371812
    [Google Scholar]
  45. LiuJ. LiuY. WangY. TMEM164 is a new determinant of autophagy-dependent ferroptosis.Autophagy202319394595610.1080/15548627.2022.2111635 35947500
    [Google Scholar]
  46. PriemD. HuygheJ. BertrandM.J.M. LC3-independent autophagy is vital to prevent TNF cytotoxicity.Autophagy20231992585258910.1080/15548627.2023.2197760 37014272
    [Google Scholar]
  47. LiuS. YaoS. YangH. LiuS. WangY. Autophagy: Regulator of cell death.Cell Death Dis.2023141064810.1038/s41419‑023‑06154‑8 37794028
    [Google Scholar]
  48. LiN. ZhangR.X. XieX.J. GuH.F. Autophagy in chronic stress induced atherosclerosis.Clin. Chim. Acta2020503707510.1016/j.cca.2020.01.006 31945340
    [Google Scholar]
  49. LiuS. JiangX. CuiX. Smooth muscle-specific HuR knockout induces defective autophagy and atherosclerosis.Cell Death Dis.202112438510.1038/s41419‑021‑03671‑2 33837179
    [Google Scholar]
  50. YamagataK. XieY. SuzukiS. TagamiM. Epigallocatechin-3-gallate inhibits VCAM-1 expression and apoptosis induction associated with LC3 expressions in TNFα-stimulated human endothelial cells.Phytomedicine201522443143710.1016/j.phymed.2015.01.011 25925964
    [Google Scholar]
  51. JamunaS. AshokkumarR. Sakeena SadullahM.S. DevarajS.N. Oligomeric proanthocyanidins and epigallocatechin gallate aggravate autophagy of foam cells through the activation of Class III PI3K/Beclin1‐complex mediated cholesterol efflux.Biofactors201945576377310.1002/biof.1537 31237721
    [Google Scholar]
  52. MalardF. DoreJ. GauglerB. MohtyM. Introduction to host microbiome symbiosis in health and disease.Mucosal Immunol.202114354755410.1038/s41385‑020‑00365‑4 33299088
    [Google Scholar]
  53. YoshidaN. YamashitaT. HirataK. Gut microbiome and cardiovascular diseases.Diseases2018635610.3390/diseases6030056 29966270
    [Google Scholar]
  54. VourakisM. MayerG. RousseauG. The role of gut microbiota on cholesterol metabolism in atherosclerosis.Int. J. Mol. Sci.20212215807410.3390/ijms22158074 34360839
    [Google Scholar]
  55. ShengL. JenaP.K. LiuH.X. Obesity treatment by epigallocatechin‐3‐gallate−regulated bile acid signaling and its enriched Akkermansia muciniphila.FASEB J.201832126371638410.1096/fj.201800370R 29882708
    [Google Scholar]
  56. ZhangQ. LiuJ. DuanH. LiR. PengW. WuC. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress.J. Adv. Res.202134436310.1016/j.jare.2021.06.023 35024180
    [Google Scholar]
  57. YuW. LiuW. XieD. High level of uric acid promotes atherosclerosis by targeting NRF2-mediated autophagy dysfunction and ferroptosis.Oxid. Med. Cell. Longev.2022202212110.1155/2022/9304383 35480874
    [Google Scholar]
  58. KishimotoY. KondoK. MomiyamaY. The protective role of heme oxygenase-1 in atherosclerotic diseases.Int. J. Mol. Sci.20192015362810.3390/ijms20153628 31344980
    [Google Scholar]
  59. LiuP.L. LiuJ.T. KuoH.F. ChongI.W. HsiehC.C. Epigallocatechin gallate attenuates proliferation and oxidative stress in human vascular smooth muscle cells induced by interleukin-1β via heme oxygenase-1.Mediators Inflamm.201420141810.1155/2014/523684 25386047
    [Google Scholar]
  60. ZhengY. MorrisA. SunkaraM. LayneJ. ToborekM. HennigB. Epigallocatechin-gallate stimulates NF-E2-related factor and heme oxygenase-1 via caveolin-1 displacement.J. Nutr. Biochem.201223216316810.1016/j.jnutbio.2010.12.002 21447442
    [Google Scholar]
  61. YamagataK. Protective effect of epigallocatechin gallate on endothelial disorders in atherosclerosis.J. Cardiovasc. Pharmacol.202075429229810.1097/FJC.0000000000000792 31895874
    [Google Scholar]
  62. LiuY. LongY. FangJ. LiuG. Advances in the anti-atherosclerotic mechanisms of epigallocatechin gallate.Nutrients20241613207410.3390/nu16132074 38999821
    [Google Scholar]
  63. Vieceli Dalla SegaF. FortiniF. AquilaG. CampoG. VaccarezzaM. RizzoP. Notch signaling regulates immune responses in atherosclerosis.Front. Immunol.201910113010.3389/fimmu.2019.01130 31191522
    [Google Scholar]
  64. YinJ. HuangF. YiY. YinL. PengD. EGCG attenuates atherosclerosis through the Jagged-1/Notch pathway.Int. J. Mol. Med.201637239840610.3892/ijmm.2015.2422 26648562
    [Google Scholar]
  65. LiY.F. WangH. FanY. Epigallocatechin-3-gallate inhibits matrix Metalloproteinase-9 and monocyte chemotactic protein-1 expression through the 67-κDa Laminin receptor and the TLR4/MAPK/NF-κB signalling pathway in lipopolysaccharide-induced macrophages.Cell. Physiol. Biochem.201743392693610.1159/000481643 28957799
    [Google Scholar]
  66. HuangS.C. KaoY.H. ShihS.F. Epigallocatechin-3-gallate exhibits immunomodulatory effects in human primary T cells.Biochem. Biophys. Res. Commun.2021550707610.1016/j.bbrc.2021.02.132 33689882
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240354839241113044604
Loading
/content/journals/cmm/10.2174/0115665240354839241113044604
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; Atherosclerosis; autophagy; EGCG; gut microbiota; Nrf2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test