Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be anti-inflammatory. This review aims to provide a comprehensive summary of the previously documented mechanisms underlying the beneficial effects of acupuncture in ALI/ARDS, including inhibiting excessive oxidative stress, alleviating pulmonary inflammatory response, suppressing programmed cell death, and protecting the alveolar-capillary membrane. Collectively, these findings indicate that acupuncture yields therapeutic benefits for ALI/ARDS.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240334516241123130753
2025-01-14
2025-12-07
Loading full text...

Full text loading...

/deliver/fulltext/cmm/25/11/CMM-25-11-02.html?itemId=/content/journals/cmm/10.2174/0115665240334516241123130753&mimeType=html&fmt=ahah

References

  1. VadászI. SznajderJ.I. Update in acute lung injury and critical care 2010.Am. J. Respir. Crit. Care Med.201118391147115210.1164/rccm.201102‑0327UP 21531954
    [Google Scholar]
  2. RubenfeldG.D. CaldwellE. PeabodyE. Incidence and outcomes of acute lung injury.N. Engl. J. Med.2005353161685169310.1056/NEJMoa050333 16236739
    [Google Scholar]
  3. RubenfeldG.D. HerridgeM.S. Epidemiology and outcomes of acute lung injury.Chest2007131255456210.1378/chest.06‑1976 17296661
    [Google Scholar]
  4. ZhongZ. YaoL. LiuY.Z. Objectivization study of acupuncture Deqi and brain modulation mechanisms: a review.Front. Neurosci.202418138610810.3389/fnins.2024.1386108 38765671
    [Google Scholar]
  5. YuC.C. DuY.J. WangS.Q. Experimental Evidence of the Benefits of Acupuncture for Alzheimer’s Disease: An Updated Review.Front. Neurosci.20201454977210.3389/fnins.2020.549772 33408601
    [Google Scholar]
  6. LiN. GuoY. GongY. The Anti-Inflammatory Actions and Mechanisms of Acupuncture from Acupoint to Target Organs via Neuro-Immune Regulation.J. Inflamm. Res.2021147191722410.2147/JIR.S341581 34992414
    [Google Scholar]
  7. OhJ.E. KimS.N. Anti-Inflammatory Effects of Acupuncture at ST36 Point: A Literature Review in Animal Studies.Front. Immunol.20221281374810.3389/fimmu.2021.813748 35095910
    [Google Scholar]
  8. ZhuB. Zhongguo Zhenjiu202141943950[On the acupoint and its specificity
    [Google Scholar]
  9. ZhangH.M. LuoD. ChenR. Research progress on acupuncture treatment in central nervous system diseases based on NLRP3 inflammasome in animal models.Front. Neurosci.202317111850810.3389/fnins.2023.1118508 36925735
    [Google Scholar]
  10. LiuS. WangZ. SuY. A neuroanatomical basis for electroacupuncture to drive the vagal–adrenal axis.Nature2021598788264164510.1038/s41586‑021‑04001‑4 34646018
    [Google Scholar]
  11. FanA.Y. Anti-inflammatory mechanism of electroacupuncture involves the modulation of multiple systems, levels and targets and is not limited to “driving the vagus-adrenal axis”.J. Integr. Med.202321432032310.1016/j.joim.2023.06.001 37331861
    [Google Scholar]
  12. BienenstockJ. The lung as an immunologic organ.Annu. Rev. Med.1984351496210.1146/annurev.me.35.020184.000405 6372668
    [Google Scholar]
  13. AskonasB.A. HumphreyJ.H. Formation of specific antibodies and γ-globulin in vitro. A study of the synthetic ability of various tissues from rabbits immunized by different methods.Biochem. J.195868225226110.1042/bj0680252 13522610
    [Google Scholar]
  14. BullC.G. Respiratory immunity in rabbits. VII. resistance to intranasal infection in the absence of demonstrable antibodies.Am. J. Epidemiol.1929949019910.1093/oxfordjournals.aje.a121662
    [Google Scholar]
  15. KumarV. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury.Front. Immunol.202011172210.3389/fimmu.2020.01722 32849610
    [Google Scholar]
  16. SchaeferL. Complexity of danger: the diverse nature of damage-associated molecular patterns.J. Biol. Chem.201428951352373524510.1074/jbc.R114.619304 25391648
    [Google Scholar]
  17. TakeuchiO. AkiraS. Pattern recognition receptors and inflammation.Cell2010140680582010.1016/j.cell.2010.01.022 20303872
    [Google Scholar]
  18. KumarV. Inflammation research sails through the sea of immunology to reach immunometabolism.Int. Immunopharmacol.20197312814510.1016/j.intimp.2019.05.002 31096130
    [Google Scholar]
  19. KawaiT. AkiraS. Antiviral signaling through pattern recognition receptors.J. Biochem.2006141213714510.1093/jb/mvm032 17190786
    [Google Scholar]
  20. RathinamV.A.K. ZhaoY. ShaoF. Innate immunity to intracellular LPS.Nat. Immunol.201920552753310.1038/s41590‑019‑0368‑3 30962589
    [Google Scholar]
  21. FullertonJ.N. GilroyD.W. Resolution of inflammation: a new therapeutic frontier.Nat. Rev. Drug Discov.201615855156710.1038/nrd.2016.39 27020098
    [Google Scholar]
  22. Matute-BelloG. FrevertC.W. MartinT.R. Animal models of acute lung injury.Am. J. Physiol. Lung Cell. Mol. Physiol.20082953L379L39910.1152/ajplung.00010.2008 18621912
    [Google Scholar]
  23. HudsonL.D. MilbergJ.A. AnardiD. MaunderR.J. Clinical risks for development of the acute respiratory distress syndrome.Am. J. Respir. Crit. Care Med.1995151229330110.1164/ajrccm.151.2.7842182 7842182
    [Google Scholar]
  24. PepeP.E. PotkinR.T. ReusD.H. HudsonL.D. CarricoC.J. Clinical predictors of the adult respiratory distress syndrome.Am. J. Surg.1982144112413010.1016/0002‑9610(82)90612‑2 7091520
    [Google Scholar]
  25. Dos SantosC.C. SlutskyA.S. Invited Review: Mechanisms of ventilator-induced lung injury: a perspective.J. Appl. Physiol.20008941645165510.1152/jappl.2000.89.4.1645 11007607
    [Google Scholar]
  26. Brun-BuissonC. DoyonF. CarletJ. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units.JAMA19952741296897410.1001/jama.1995.03530120060042 7674528
    [Google Scholar]
  27. RaghavendranK. DavidsonB.A. MullanB.A. Acid and particulate-induced aspiration lung injury in mice: importance of MCP-1.Am. J. Physiol. Lung Cell. Mol. Physiol.20052891L134L14310.1152/ajplung.00390.2004 15778247
    [Google Scholar]
  28. DhanireddyS. AltemeierW.A. Matute-BelloG. Mechanical ventilation induces inflammation, lung injury, and extra-pulmonary organ dysfunction in experimental pneumonia.Lab. Invest.200686879079910.1038/labinvest.3700440 16855596
    [Google Scholar]
  29. SakumaT. TakahashiK. OhyaN. Ischemia-reperfusion lung injury in rabbits: mechanisms of injury and protection.Am. J. Physiol.19992761L137L145 9887066
    [Google Scholar]
  30. Welty-WolfK.E. CarrawayM.S. OrtelT.L. Blockade of tissue factor-factor X binding attenuates sepsis-induced respiratory and renal failure.Am. J. Physiol. Lung Cell. Mol. Physiol.20062901L21L3110.1152/ajplung.00155.2005 16100288
    [Google Scholar]
  31. WalleyK.R. LukacsN.W. StandifordT.J. StrieterR.M. KunkelS.L. Balance of inflammatory cytokines related to severity and mortality of murine sepsis.Infect. Immun.199664114733473810.1128/iai.64.11.4733‑4738.1996 8890233
    [Google Scholar]
  32. Fox-DewhurstR. AlbertsM.K. KajikawaO. Pulmonary and systemic inflammatory responses in rabbits with gram-negative pneumonia.Am. J. Respir. Crit. Care Med.199715562030204010.1164/ajrccm.155.6.9196112 9196112
    [Google Scholar]
  33. HashimotoS. PittetJ.F. HongK. Depletion of alveolar macrophages decreases neutrophil chemotaxis to Pseudomonas airspace infections.Am. J. Physiol.19962705 Pt 1L819L828 8967517
    [Google Scholar]
  34. NaritaM. KawashimaK. MorozumiT. TakashimaH. Effect of physical defenses of the respiratory tract on the development of pneumonia in pigs inoculated endobronchially with Actinobacillus pleuropneumoniae.J. Vet. Med. Sci.199557583984410.1292/jvms.57.839 8593289
    [Google Scholar]
  35. ChenH. BaiC. WangX. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine.Expert Rev. Respir. Med.20104677378310.1586/ers.10.71 21128752
    [Google Scholar]
  36. WangJ. LuS. YangF. The role of macrophage polarization and associated mechanisms in regulating the anti-inflammatory action of acupuncture: a literature review and perspectives.Chin. Med.20211615610.1186/s13020‑021‑00466‑7 34281592
    [Google Scholar]
  37. Matute-BelloG. DowneyG. MooreB.B. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals.Am. J. Respir. Cell Mol. Biol.201144572573810.1165/rcmb.2009‑0210ST 21531958
    [Google Scholar]
  38. MaasS.L. SoehnleinO. ViolaJ.R. Organ-Specific Mechanisms of Transendothelial Neutrophil Migration in the Lung, Liver, Kidney, and Aorta.Front. Immunol.20189273910.3389/fimmu.2018.02739 30538702
    [Google Scholar]
  39. KatzensteinA.L. BloorC.M. LeibowA.A. Diffuse alveolar damage--the role of oxygen, shock, and related factors. A review.Am. J. Pathol.1976851209228 788524
    [Google Scholar]
  40. ChenC.M. WangL.F. SuB. HsuH.H. Methylprednisolone effects on oxygenation and histology in a rat model of acute lung injury.Pulm. Pharmacol. Ther.200316421522010.1016/S1094‑5539(03)00027‑0 12850124
    [Google Scholar]
  41. ChenH.I. YehD.Y. LiouH.L. KaoS.J. Insulin attenuates endotoxin-induced acute lung injury in conscious rats.Crit. Care Med.200634375876410.1097/01.CCM.0000201902.37115.22 16505662
    [Google Scholar]
  42. McGuiganC.P.T.R.M. MullenixC.P.T.P. NorlundM.A.J.L.L. WardM.A.J.D. WaltsM.A.J.M. AzarowL.T.C.K. Acute lung injury using oleic acid in the laboratory rat: establishment of a working model and evidence against free radicals in the acute phase.Curr. Surg.200360441241710.1016/S0149‑7944(02)00775‑4 14972232
    [Google Scholar]
  43. MikawaK. NishinaK. TakaoY. ObaraH. ONO-1714, a nitric oxide synthase inhibitor, attenuates endotoxin-induced acute lung injury in rabbits.Anesth. Analg.20039761751175510.1213/01.ANE.0000086896.90343.13 14633554
    [Google Scholar]
  44. LiD. SunT. ChiL. ZhaoD. LiW. Acupoint Catgut Embedding Improves the Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome in Rats.BioMed Res. Int.202020201910.1155/2020/2394734 32566670
    [Google Scholar]
  45. FengD. ZhouH. JinX. Electroacupuncture Pretreatment Alleviates LPS‐Induced Acute Respiratory Distress Syndrome via Regulating the PPAR Gamma/NF‐Kappa B Signaling Pathway.Evid. Based Complement. Alternat. Med.202020201459463110.1155/2020/4594631 32774418
    [Google Scholar]
  46. LouY. YuQ. XuK. Electroacupuncture pre conditioning protects from lung injury induced by limb ischemia/reperfusion through TLR4 and NF κB in rats.Mol. Med. Rep.20202243225323210.3892/mmr.2020.11429 32945486
    [Google Scholar]
  47. LeeS. KimS.N. The Effect of Acupuncture on Modulating Inflammatory Cytokines in Rodent Animal Models of Respiratory Disease: A Systematic Review and Meta-Analysis.Front. Immunol.20221387846310.3389/fimmu.2022.878463 35784312
    [Google Scholar]
  48. PanW.X. FanA.Y. ChenS. AlemiS.F. Acupuncture modulates immunity in sepsis: Toward a science-based protocol.Auton. Neurosci.202123210279310.1016/j.autneu.2021.102793 33684727
    [Google Scholar]
  49. XuR. MaL. ChenT. WangJ. Sophorolipid Suppresses LPS-Induced Inflammation in RAW264.7 Cells through the NF-κB Signaling Pathway.Molecules20222715503710.3390/molecules27155037 35956987
    [Google Scholar]
  50. YeomM. ParkJ. LimC. Glucosylceramide attenuates the inflammatory mediator expression in lipopolysaccharide-stimulated RAW264.7 cells.Nutr. Res.201535324125010.1016/j.nutres.2015.01.001 25661072
    [Google Scholar]
  51. IshiiM. NakaharaT. ArahoD. MurakamiJ. NishimuraM. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.Biomed. Pharmacother.20179111112010.1016/j.biopha.2017.04.052 28448865
    [Google Scholar]
  52. AnaviS. TiroshO. iNOS as a metabolic enzyme under stress conditions.Free Radic. Biol. Med.2020146163510.1016/j.freeradbiomed.2019.10.411 31672462
    [Google Scholar]
  53. SzabóC. Alterations in nitric oxide production in various forms of circulatory shock.New Horiz.199531232 7535648
    [Google Scholar]
  54. Cassini-VieiraP. AraújoF.A. da Costa DiasF.L. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether‐Polyurethane Synthetic Implants.Mediators Inflamm.20152015113846110.1155/2015/138461 26106257
    [Google Scholar]
  55. ZhuY. WangJ. YaoL. Electroacupuncture at BL15 attenuates chronic fatigue syndrome by downregulating iNOS/NO signaling in C57BL/6 mice.Anat. Rec. (Hoboken)2023306123073308410.1002/ar.24953 35608198
    [Google Scholar]
  56. TangL. GaoX. ZhaoB. Design and synthesis of new disubstituted benzoxazolone derivatives that act as iNOS inhibitors with potent anti-inflammatory activity against LPS-induced acute lung injury (ALI).Bioorg. Med. Chem.2020282111573310.1016/j.bmc.2020.115733 33065432
    [Google Scholar]
  57. HuangC.L. HuangC.J. TsaiP.S. YanL.P. XuH.Z. Acupuncture stimulation of ST‐36 (Zusanli) significantly mitigates acute lung injury in lipopolysaccharide‐stimulated rats.Acta Anaesthesiol. Scand.200650672273010.1111/j.1399‑6576.2006.01029.x 16987368
    [Google Scholar]
  58. SarmaJ.V. WardP.A. Oxidants and redox signaling in acute lung injury.Compr. Physiol.2011131365138110.1002/cphy.c100068 23733646
    [Google Scholar]
  59. YangH. LvH. LiH. CiX. PengL. Oridonin protects LPS-induced acute lung injury by modulating Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB pathways.Cell Commun. Signal.20191716210.1186/s12964‑019‑0366‑y 31186013
    [Google Scholar]
  60. CrapoJ.D. Oxidative stress as an initiator of cytokine release and cell damage.Eur. Respir. J.20032244Suppl.4s6s10.1183/09031936.03.00000203a 14582891
    [Google Scholar]
  61. LangJ.D. McArdleP.J. O’ReillyP.J. MatalonS. Oxidant-antioxidant balance in acute lung injury.Chest20021226Suppl.314S320S10.1378/chest.122.6_suppl.314S 12475808
    [Google Scholar]
  62. WardP.A. Oxidative stress: acute and progressive lung injury.Ann. N. Y. Acad. Sci.201012031535910.1111/j.1749‑6632.2010.05552.x 20716283
    [Google Scholar]
  63. FuC. DaiX. YangY. LinM. CaiY. CaiS. Dexmedetomidine attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress, mitochondrial dysfunction and apoptosis in rats.Mol. Med. Rep.201715113113810.3892/mmr.2016.6012 27959438
    [Google Scholar]
  64. LumH. RoebuckK.A. Oxidant stress and endothelial cell dysfunction.Am. J. Physiol. Cell Physiol.20012804C719C74110.1152/ajpcell.2001.280.4.C719 11245588
    [Google Scholar]
  65. LinB. WangM. ChenX. ChaiL. NiJ. HuangJ. Involvement of P2X7R-mediated microglia polarization and neuroinflammation in the response to electroacupuncture on post-stroke memory impairment.Brain Res. Bull.202421211096710.1016/j.brainresbull.2024.110967 38670470
    [Google Scholar]
  66. WangW. ChenC. WangQ. Electroacupuncture pretreatment preserves telomerase reverse transcriptase function and alleviates postoperative cognitive dysfunction by suppressing oxidative stress and neuroinflammation in aged mice.CNS Neurosci. Ther.2024302e1437310.1111/cns.14373 37501354
    [Google Scholar]
  67. LuoW. BuW. ChenH. Electroacupuncture reduces oxidative stress response and improves secondary injury of intracerebral hemorrhage in rats by activating the peroxisome proliferator-activated receptor-γ/nuclear factor erythroid2-related factor 2/γ-glutamylcysteine synthetase pathway.Neuroreport202435849950810.1097/WNR.0000000000002026 38597270
    [Google Scholar]
  68. TongT. HaoC. ShenJ. Electroacupuncture ameliorates chronic unpredictable mild stress-induced depression-like behavior and cognitive impairment through suppressing oxidative stress and neuroinflammation in rats.Brain Res. Bull.202420611083810.1016/j.brainresbull.2023.110838 38123022
    [Google Scholar]
  69. LiuQ. GaoY. CiX. Role of Nrf2 and Its Activators in Respiratory Diseases.Oxid. Med. Cell. Longev.2019201911710.1155/2019/7090534 30728889
    [Google Scholar]
  70. NgD.S.W. LiaoW. TanW.S.D. ChanT.K. LohX.Y. WongW.S.F. Anti-malarial drug artesunate protects against cigarette smoke-induced lung injury in mice.Phytomedicine201421121638164410.1016/j.phymed.2014.07.018 25442271
    [Google Scholar]
  71. AriozB.I. TastanB. TarakciogluE. Melatonin Attenuates LPS-Induced Acute Depressive-Like Behaviors and Microglial NLRP3 Inflammasome Activation Through the SIRT1/Nrf2 Pathway.Front. Immunol.201910151110.3389/fimmu.2019.01511 31327964
    [Google Scholar]
  72. BangH.Y. ParkS.A. SaeidiS. NaH.K. SurhY.J. Docosahexaenoic Acid Induces Expression of Heme Oxygenase-1 and NAD(P)H:quinone Oxidoreductase through Activation of Nrf2 in Human Mammary Epithelial Cells.Molecules201722696910.3390/molecules22060969 28604588
    [Google Scholar]
  73. ZakkarM. GuidaG. SuleimanM.S. AngeliniG.D. Cardiopulmonary bypass and oxidative stress.Oxid. Med. Cell. Longev.201520151810.1155/2015/189863 25722792
    [Google Scholar]
  74. DharR. ZhangL. LiY. Electroacupuncture ameliorates cardiopulmonary bypass induced apoptosis in lung via ROS/Nrf2/NLRP3 inflammasome pathway.Life Sci.201923811696210.1016/j.lfs.2019.116962 31628913
    [Google Scholar]
  75. WareL. JanzD. Biomarkers of ALI/ARDS: pathogenesis, discovery, and relevance to clinical trials.Semin. Respir. Crit. Care Med.201334453754810.1055/s‑0033‑1351124 23934723
    [Google Scholar]
  76. HeY.Q. ZhouC.C. YuL.Y. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms.Pharmacol. Res.202116310522410.1016/j.phrs.2020.105224 33007416
    [Google Scholar]
  77. DolinayT. KimY.S. HowrylakJ. Inflammasome-regulated cytokines are critical mediators of acute lung injury.Am. J. Respir. Crit. Care Med.2012185111225123410.1164/rccm.201201‑0003OC 22461369
    [Google Scholar]
  78. MasonC. DooleyN. GriffithsM. Acute respiratory distress syndrome.Clin. Med. (Lond.)201717543944310.7861/clinmedicine.17‑5‑439 28974595
    [Google Scholar]
  79. MatthayM.A. ZimmermanG.A. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management.Am. J. Respir. Cell Mol. Biol.200533431932710.1165/rcmb.F305 16172252
    [Google Scholar]
  80. JohnsonE.R. MatthayM.A. Acute lung injury: epidemiology, pathogenesis, and treatment.J. Aerosol Med. Pulm. Drug Deliv.201023424325210.1089/jamp.2009.0775 20073554
    [Google Scholar]
  81. DowneyG.P. DongQ. KrugerJ. DedharS. CherapanovV. Regulation of neutrophil activation in acute lung injury.Chest19991161Suppl.46S54S10.1016/S0012‑3692(15)30668‑1 10424590
    [Google Scholar]
  82. SicaA. MantovaniA. Macrophage plasticity and polarization: in vivo veritas.J. Clin. Invest.2012122378779510.1172/JCI59643 22378047
    [Google Scholar]
  83. ZhouJ. LiL. QuM. Electroacupuncture pretreatment protects septic rats from acute lung injury by relieving inflammation and regulating macrophage polarization.Acupunct. Med.202341317518210.1177/09645284221118588 36039902
    [Google Scholar]
  84. NaglovaH. BucovaM. HMGB1 and its physiological and pathological roles.Bratisl. Med. J.2012113316317110.4149/BLL_2012_039 22428766
    [Google Scholar]
  85. UenoH. MatsudaT. HashimotoS. Contributions of high mobility group box protein in experimental and clinical acute lung injury.Am. J. Respir. Crit. Care Med.2004170121310131610.1164/rccm.200402‑188OC 15374839
    [Google Scholar]
  86. ShimazakiJ. MatsumotoN. OguraH. Systemic involvement of high-mobility group box 1 protein and therapeutic effect of anti-high-mobility group box 1 protein antibody in a rat model of crush injury.Shock201237663463810.1097/SHK.0b013e31824ed6b7 22392147
    [Google Scholar]
  87. SongX.M. WuX.J. LiJ.G. The effect of electroacupuncture at ST36 on severe thermal injury-induced remote acute lung injury in rats.Burns20154171449145810.1016/j.burns.2015.03.004 26188895
    [Google Scholar]
  88. WangZ. HouL. YangH. Electroacupuncture Pretreatment Attenuates Acute Lung Injury Through α7 Nicotinic Acetylcholine Receptor-Mediated Inhibition of HMGB1 Release in Rats After Cardiopulmonary Bypass.Shock201850335135910.1097/SHK.0000000000001050 29117064
    [Google Scholar]
  89. WuJ. XiongX. HuX. Electroacupuncture Alleviates Lung Injury in CpG1826-Challenged Mice via Modulating CD39-NLRP3 Pathway.J. Inflamm. Res.2023163245325810.2147/JIR.S413892 37555014
    [Google Scholar]
  90. WangH. LiaoH. OchaniM. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis.Nat. Med.200410111216122110.1038/nm1124 15502843
    [Google Scholar]
  91. KarinM. GretenF.R. NF-κB: linking inflammation and immunity to cancer development and progression.Nat. Rev. Immunol.200551074975910.1038/nri1703 16175180
    [Google Scholar]
  92. Ben-NeriahY. KarinM. Inflammation meets cancer, with NF-κB as the matchmaker.Nat. Immunol.201112871572310.1038/ni.2060 21772280
    [Google Scholar]
  93. DiDonatoJ.A. MercurioF. KarinM. NF‐κB and the link between inflammation and cancer.Immunol. Rev.2012246137940010.1111/j.1600‑065X.2012.01099.x 22435567
    [Google Scholar]
  94. GrivennikovS.I. GretenF.R. KarinM. Immunity, inflammation, and cancer.Cell2010140688389910.1016/j.cell.2010.01.025 20303878
    [Google Scholar]
  95. TerzićJ. GrivennikovS. KarinE. KarinM. Inflammation and colon cancer.Gastroenterology2010138621012114.e510.1053/j.gastro.2010.01.058 20420949
    [Google Scholar]
  96. LiM. YangF. ZhangX. Electroacupuncture attenuates depressive-like behaviors in poststroke depression mice through promoting hippocampal neurogenesis and inhibiting TLR4/NF-κB/NLRP3 signaling pathway.Neuroreport2024351494796010.1097/WNR.0000000000002088 39166408
    [Google Scholar]
  97. BianJ. LiuC. LiX. Electroacupuncture improves the learning and memory abilities of rats with PSCI by attenuating the TLR4/NF-κB/NLRP3 signaling pathway on the hippocampal microglia.Neuroreport2024351278078910.1097/WNR.0000000000002067 38935074
    [Google Scholar]
  98. ZhangyitianFu MimiWan TuoJin Electroacupuncture modulates the TLR4-NF-κB inflammatory signaling pathway to attenuate ocular surface inflammation in dry eyes of type 2 diabetic rats.Cell. Mol. Biol.202470511111810.14715/cmb/2024.70.5.15 38814228
    [Google Scholar]
  99. LuoD. LiuL. ZhangH. Electroacupuncture Pretreatment Exhibits Lung Protective and Anti-Inflammation Effects in Lipopolysaccharide-Induced Acute Lung Injury via SIRT1-Dependent Pathways.Evid. Based Complement. Alternat. Med.202220221810.1155/2022/2252218 35341153
    [Google Scholar]
  100. LiW. LiD. ChenY. Classic Signaling Pathways in Alveolar Injury and Repair Involved in Sepsis-Induced ALI/ARDS: New Research Progress and Prospect.Dis. Markers202220221910.1155/2022/6362344 35726235
    [Google Scholar]
  101. YueJ. LópezJ.M. Understanding MAPK Signaling Pathways in Apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms21072346 32231094
    [Google Scholar]
  102. DavisR.J. Signal transduction by the JNK group of MAP kinases.Cell2000103223925210.1016/S0092‑8674(00)00116‑1 11057897
    [Google Scholar]
  103. KeC. ShanS. TanY. Signaling pathways in the treatment of Alzheimer’s disease with acupuncture: a narrative review.Acupunct. Med.202442421623010.1177/09645284241256669 38859546
    [Google Scholar]
  104. ZhouX. ZhangY.C. LuK.Q. XiaoR. TangW.C. WangF. The Role of p38 Mitogen-Activated Protein Kinase-Mediated F-Actin in the Acupuncture-Induced Mitigation of Inflammatory Pain in Arthritic Rats.Brain Sci.202414438010.3390/brainsci14040380 38672029
    [Google Scholar]
  105. WenQ. ZhaF. ShanL. Electroacupuncture attenuates middle cerebral artery occlusion-induced learning and memory impairment by regulating microglial polarization in hippocampus.Int. J. Neurosci.202411310.1080/00207454.2024.2313664 38315119
    [Google Scholar]
  106. ChenJ.J. ChenZ.B. YinN.N. Effect of electroacupuncture intervention on angiogenesis in psoriasis mice.Zhen Ci Yan Jiu2024496577584 38897801
    [Google Scholar]
  107. ShiT. LiuY. JiB. Acupuncture Relieves Cervical Spondylosis Radiculopathy by Regulating Spinal Microglia Activation Through MAPK Signaling Pathway in Rats.J. Pain Res.2023163945396010.2147/JPR.S419927 38026466
    [Google Scholar]
  108. TsaiY.T. ChengC.Y. Electroacupuncture at the Dazhui and Baihui acupoints and different frequencies (10 and 50 Hz) protects against apoptosis by up-regulating ERK1/2-mediated signaling in rats after global cerebral ischemia.Iran. J. Basic Med. Sci.2024276706716 38645497
    [Google Scholar]
  109. HuangH. LiY. WangX. ZhangQ. ZhaoJ. WangQ. Electroacupuncture pretreatment protects against anesthesia/surgery-induced cognitive decline by activating CREB via the ERK/MAPK pathway in the hippocampal CA1 region in aged rats.Aging (Albany NY)20231520112271124310.18632/aging.205124 37857016
    [Google Scholar]
  110. CongZ. LiD. TaoY. LvX. ZhuX. α 2A ‐AR antagonism by BRL‐44408 maleate attenuates acute lung injury in rats with downregulation of ERK1/2, p38MAPK, and p65 pathway.J. Cell. Physiol.2020235106905691410.1002/jcp.29586 32003020
    [Google Scholar]
  111. FangW. CaiS.X. WangC.L. Modulation of mitogen-activated protein kinase attenuates sepsis-induced acute lung injury in acute respiratory distress syndrome rats.Mol. Med. Rep.20171669652965810.3892/mmr.2017.7811 29039541
    [Google Scholar]
  112. MaW. LiZ. LuZ. Protective Effects of Acupuncture in Cardiopulmonary Bypass-Induced Lung Injury in Rats.Inflammation20174041275128410.1007/s10753‑017‑0570‑0 28493083
    [Google Scholar]
  113. LamkanfiM. Emerging inflammasome effector mechanisms.Nat. Rev. Immunol.201111321322010.1038/nri2936 21350580
    [Google Scholar]
  114. CaiW. WeiX.F. ZhangJ.R. Acupuncture ameliorates depression-like behavior of poststroke depression model rats through the regulation of gut microbiota and NLRP3 inflammasome in the colon.Neuroreport2024351488389410.1097/WNR.0000000000002076 39207304
    [Google Scholar]
  115. ChenY. CaiM. ShenB. FanC. ZhouX. Electroacupuncture at Zusanli regulates the pathological phenotype of inflammatory bowel disease by modulating the NLRP3 inflammasome pathway.Immun. Inflamm. Dis.2024128e136610.1002/iid3.1366 39119947
    [Google Scholar]
  116. HanY.L. KangZ.X. JinS.W. Electroacupuncture improves low-grade duodenal inflammation in FD rats by reshaping intestinal flora through the NF-κB p65/NLRP3 pyroptosis pathway.Heliyon20241010e3119710.1016/j.heliyon.2024.e31197 38807876
    [Google Scholar]
  117. GuoL. HuH. JiangN. Electroacupuncture blocked motor dysfunction and gut barrier damage by modulating intestinal NLRP3 inflammasome in MPTP-induced Parkinson’s disease mice.Heliyon2024109e3081910.1016/j.heliyon.2024.e30819 38774094
    [Google Scholar]
  118. GrailerJ.J. CanningB.A. KalbitzM. Critical role for the NLRP3 inflammasome during acute lung injury.J. Immunol.2014192125974598310.4049/jimmunol.1400368 24795455
    [Google Scholar]
  119. HuangD. ChenM. WangZ. HouL. YuW. Electroacupuncture Pretreatment Attenuates Inflammatory Lung Injury After Cardiopulmonary Bypass by Suppressing NLRP3 Inflammasome Activation in Rats.Inflammation201942389590310.1007/s10753‑018‑0944‑y 30680695
    [Google Scholar]
  120. Rosas-BallinaM. TraceyK.J. Cholinergic control of inflammation.J. Intern. Med.2009265666367910.1111/j.1365‑2796.2009.02098.x 19493060
    [Google Scholar]
  121. WangH. YuM. OchaniM. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation.Nature2003421692138438810.1038/nature01339 12508119
    [Google Scholar]
  122. ZhangC. ChenT. FanM. Electroacupuncture improves gastrointestinal motility through a central-cholinergic pathway-mediated GDNF releasing from intestinal glial cells to protect intestinal neurons in Parkinson’s disease rats.Neurotherapeutics2024214e0036910.1016/j.neurot.2024.e00369 38744625
    [Google Scholar]
  123. WuZ. XiaY. WangC. Electroacupuncture at Neiguan (PC6) attenuates cardiac dysfunction caused by cecal ligation and puncture via the vagus nerve.Biomed. Pharmacother.202316211460010.1016/j.biopha.2023.114600 36996679
    [Google Scholar]
  124. LeiW. ZhaoC. SunJ. JinY. DuanZ. Electroacupuncture Ameliorates Intestinal Barrier Destruction in Mice With Bile Duct Ligation–Induced Liver Injury by Activating the Cholinergic Anti-Inflammatory Pathway.Neuromodulation20222581122113310.1016/j.neurom.2022.02.001 35300921
    [Google Scholar]
  125. GeJ. TianJ. YangH. Alpha7 Nicotine Acetylcholine Receptor Agonist PNU-282987 Attenuates Acute Lung Injury in a Cardiopulmonary Bypass Model in Rats.Shock201747447447910.1097/SHK.0000000000000744 27661000
    [Google Scholar]
  126. ZhangY. ZhengL. DengH. Electroacupuncture Alleviates LPS-Induced ARDS Through α7 Nicotinic Acetylcholine Receptor-Mediated Inhibition of Ferroptosis.Front. Immunol.20221383243210.3389/fimmu.2022.832432 35222419
    [Google Scholar]
  127. GalluzziL. VitaleI. AaronsonS.A. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.Cell Death Differ.201825348654110.1038/s41418‑017‑0012‑4 29362479
    [Google Scholar]
  128. HirschhornT. StockwellB.R. The development of the concept of ferroptosis.Free Radic. Biol. Med.201913313014310.1016/j.freeradbiomed.2018.09.043 30268886
    [Google Scholar]
  129. NagataS. Apoptosis and Clearance of Apoptotic Cells.Annu. Rev. Immunol.201836148951710.1146/annurev‑immunol‑042617‑053010 29400998
    [Google Scholar]
  130. O’NeillK.L. HuangK. ZhangJ. ChenY. LuoX. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane.Genes Dev.201630897398810.1101/gad.276725.115 27056669
    [Google Scholar]
  131. LopezJ. TaitS.W.G. Mitochondrial apoptosis: killing cancer using the enemy within.Br. J. Cancer2015112695796210.1038/bjc.2015.85 25742467
    [Google Scholar]
  132. AcehanD. JiangX. MorganD.G. HeuserJ.E. WangX. AkeyC.W. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation.Mol. Cell20029242343210.1016/S1097‑2765(02)00442‑2 11864614
    [Google Scholar]
  133. MessmerM.N. SnyderA.G. OberstA. Comparing the effects of different cell death programs in tumor progression and immunotherapy.Cell Death Differ.201926111512910.1038/s41418‑018‑0214‑4 30341424
    [Google Scholar]
  134. D’ArcyM.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy.Cell Biol. Int.201943658259210.1002/cbin.11137 30958602
    [Google Scholar]
  135. YangJ.K. Death effecter domain for the assembly of death-inducing signaling complex.Apoptosis201520223523910.1007/s10495‑014‑1060‑6 25451007
    [Google Scholar]
  136. BedouiS. HeroldM.J. StrasserA. Emerging connectivity of programmed cell death pathways and its physiological implications.Nat. Rev. Mol. Cell Biol.2020211167869510.1038/s41580‑020‑0270‑8 32873928
    [Google Scholar]
  137. BosurgiL. HughesL.D. RothlinC.V. GhoshS. Death begets a new beginning.Immunol. Rev.2017280182510.1111/imr.12585 29027219
    [Google Scholar]
  138. FrankD. VinceJ.E. Pyroptosis versus necroptosis: similarities, differences, and crosstalk.Cell Death Differ.20192619911410.1038/s41418‑018‑0212‑6 30341423
    [Google Scholar]
  139. BauernfeindF.G. HorvathG. StutzA. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression.J. Immunol.2009183278779110.4049/jimmunol.0901363 19570822
    [Google Scholar]
  140. Del ReD.P. AmgalanD. LinkermannA. LiuQ. KitsisR.N. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease.Physiol. Rev.20199941765181710.1152/physrev.00022.2018 31364924
    [Google Scholar]
  141. BoucherD. MonteleoneM. CollR.C. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity.J. Exp. Med.2018215382784010.1084/jem.20172222 29432122
    [Google Scholar]
  142. KayagakiN. WarmingS. LamkanfiM. Non-canonical inflammasome activation targets caspase-11.Nature2011479737111712110.1038/nature10558 22002608
    [Google Scholar]
  143. ShiJ. ZhaoY. WangY. Inflammatory caspases are innate immune receptors for intracellular LPS.Nature2014514752118719210.1038/nature13683 25119034
    [Google Scholar]
  144. LiM. WangZ.W. FangL.J. ChengS.Q. WangX. LiuN.F. Programmed cell death in atherosclerosis and vascular calcification.Cell Death Dis.202213546710.1038/s41419‑022‑04923‑5 35585052
    [Google Scholar]
  145. MeiJ.L. YangZ.X. LiX.N. Effect of electroacupuncture of “Jiaji” (EX-B2) on NOD-like receptor protein 3 mediated pyroptosis in spinal cord tissue of rats with acute spinal cord injury.Zhen Ci Yan Jiu2024492110118 38413031
    [Google Scholar]
  146. ZhangX.L. HuM.N. RongZ. LiY.N. WangY. MaJ. Effect of electroacupuncture on Nrf2/NLRP3/Caspase-1 pathway mediated-pyroptosis in mice with Parkinson’s disease.Zhen Ci Yan Jiu20244911522 38239134
    [Google Scholar]
  147. TangB. LiY. XuX. DuG. WangH. Electroacupuncture Ameliorates Neuronal Injury by NLRP3/ASC/Caspase-1 Mediated Pyroptosis in Cerebral Ischemia-Reperfusion.Mol. Neurobiol.20246142357236610.1007/s12035‑023‑03712‑1 37874480
    [Google Scholar]
  148. YangZ. KlionskyD.J. Mammalian autophagy: core molecular machinery and signaling regulation.Curr. Opin. Cell Biol.201022212413110.1016/j.ceb.2009.11.014 20034776
    [Google Scholar]
  149. BodasM. PehoteG. SilverbergD. GulbinsE. VijN. Autophagy augmentation alleviates cigarette smoke-induced CFTR-dysfunction, ceramide-accumulation and COPD-emphysema pathogenesis.Free Radic. Biol. Med.2019131819710.1016/j.freeradbiomed.2018.11.023 30500419
    [Google Scholar]
  150. GalluzziL. GreenD.R. Autophagy-Independent Functions of the Autophagy Machinery.Cell201917771682169910.1016/j.cell.2019.05.026 31199916
    [Google Scholar]
  151. Maria FimiaG. StoykovaA. RomagnoliA. Ambra1 regulates autophagy and development of the nervous system.Nature200744771481121112510.1038/nature05925 17589504
    [Google Scholar]
  152. SatooK. NodaN.N. KumetaH. The structure of Atg4B–LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy.EMBO J.20092891341135010.1038/emboj.2009.80 19322194
    [Google Scholar]
  153. TanidaI. UenoT. KominamiE. LC3 and Autophagy.Methods Mol. Biol.2008445778810.1007/978‑1‑59745‑157‑4_4 18425443
    [Google Scholar]
  154. ChenM. XiongH.R. HuY. Electroacupuncture alleviates sciatic nerve injury and inhibits autophagy in rats.Acupunct. Med.202442526827410.1177/09645284241280074 39340157
    [Google Scholar]
  155. LiuJ. ZhouJ. WangJ. Electroacupuncture ameliorates senile osteoporosis by promoting bone remodeling and regulating autophagy.Acupunct. Med.202442526026710.1177/09645284241265872 39068547
    [Google Scholar]
  156. ZhangY. HuangS. ShiX. Zhongguo Zhenjiu202444676684[Effect of electroacupuncture on autophagy of ovarian granulosa cells in rats with premature ovarian insufficiency
    [Google Scholar]
  157. ZhangZ. LuT. LiS. Acupuncture Extended the Thrombolysis Window by Suppressing Blood–Brain Barrier Disruption and Regulating Autophagy–Apoptosis Balance after Ischemic Stroke.Brain Sci.202414439910.3390/brainsci14040399 38672048
    [Google Scholar]
  158. LuoJ. LangJ. XuW. Electroacupuncture Alleviates Post-stroke Cognitive Impairment Through Inhibiting miR-135a-5p/mTOR/NLRP3 Axis-mediated Autophagy.Neuroscience202454518519510.1016/j.neuroscience.2024.03.008 38522660
    [Google Scholar]
  159. SunG. ZengY. LuoF. Electroacupuncture Preconditioning Alleviates Lipopolysaccharides-Induced Acute Lung Injury by Downregulating LC3‐II/I and Beclin 1 Expression.Evid. Based Complement. Alternat. Med.202220221910.1155/2022/8997173 36310624
    [Google Scholar]
  160. GaoM. MonianP. PanQ. ZhangW. XiangJ. JiangX. Ferroptosis is an autophagic cell death process.Cell Res.20162691021103210.1038/cr.2016.95 27514700
    [Google Scholar]
  161. SunY. ChenP. ZhaiB. The emerging role of ferroptosis in inflammation.Biomed. Pharmacother.202012711010810.1016/j.biopha.2020.110108 32234642
    [Google Scholar]
  162. QiuY. CaoY. CaoW. JiaY. LuN. The Application of Ferroptosis in Diseases.Pharmacol. Res.202015910491910.1016/j.phrs.2020.104919 32464324
    [Google Scholar]
  163. LiuF. ChenY. HuangK. Electro-acupuncture Suppresses Ferroptosis to Alleviate Cerebral Ischemia–Reperfusion Injury Through KAT3B-Mediated Succinylation of ACSL4.Appl. Biochem. Biotechnol.202410.1007/s12010‑024‑05063‑6 39340629
    [Google Scholar]
  164. YueJ.I. Xin-yuanZ.H.A.N.G. Yun-mingX.I.A.O. Zi-haoZ.H.U.A.N.G. Xiao-huiY.A.N.G. Xin-juL.I. Acupuncture improve proteinuria in diabetic kidney disease rats by inhibiting ferroptosis and epithelial-mesenchymal transition.Heliyon20241013e3367510.1016/j.heliyon.2024.e33675 39071725
    [Google Scholar]
  165. LangJ. LuoJ. WangL. Electroacupuncture Suppresses Oxidative Stress and Ferroptosis by Activating the mTOR/SREBP1 Pathway in Ischemic Stroke.Crit. Rev. Immunol.20244469911010.1615/CritRevImmunol.2024051934 38848297
    [Google Scholar]
  166. YeT. ZhangN. ZhangA. SunX. PangB. WuX. Electroacupuncture pretreatment alleviates rats cerebral ischemia-reperfusion injury by inhibiting ferroptosis.Heliyon2024109e3041810.1016/j.heliyon.2024.e30418 38807610
    [Google Scholar]
  167. GodboleN.M. ChowdhuryA.A. ChatautN. AwasthiS. Tight junctions, the epithelial barrier, and toll-like receptor-4 during lung injury.Inflammation20224562142216210.1007/s10753‑022‑01708‑y 35779195
    [Google Scholar]
  168. NovaZ. SkovierovaH. CalkovskaA. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury.Int. J. Mol. Sci.201920483110.3390/ijms20040831 30769918
    [Google Scholar]
  169. CapaldoC.T. NusratA. Cytokine regulation of tight junctions.Biochim. Biophys. Acta Biomembr.20091788486487110.1016/j.bbamem.2008.08.027 18952050
    [Google Scholar]
  170. PetecchiaL. SabatiniF. UsaiC. CaciE. VaresioL. RossiG.A. Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway.Lab. Invest.20129281140114810.1038/labinvest.2012.67 22584669
    [Google Scholar]
  171. HuY. LouJ. MaoY.Y. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury.Autophagy201612122286229910.1080/15548627.2016.1230584 27658023
    [Google Scholar]
  172. LiuM. GuC. WangY. Upregulation of the tight junction protein occludin: Effects on ventilation-induced lung injury and mechanisms of action.BMC Pulm. Med.20141419410.1186/1471‑2466‑14‑94 24884662
    [Google Scholar]
  173. WangW.B. LiJ.T. HuiY. ShiJ. WangX.Y. YanS.G. Combination of pseudoephedrine and emodin ameliorates LPS-induced acute lung injury by regulating macrophage M1/M2 polarization through the VIP/cAMP/PKA pathway.Chin. Med.20221711910.1186/s13020‑021‑00562‑8 35123524
    [Google Scholar]
  174. TaoZ. JieY. MingruZ. The Elk1/MMP-9 axis regulates E-cadherin and occludin in ventilator-induced lung injury.Respir. Res.202122123310.1186/s12931‑021‑01829‑2 34425812
    [Google Scholar]
  175. WangL. ShanY. YeY. COX-2 inhibition attenuates lung injury induced by skeletal muscle ischemia reperfusion in rats.Int. Immunopharmacol.20163111612210.1016/j.intimp.2015.12.019 26724476
    [Google Scholar]
  176. UlloaL. Electroacupuncture activates neurons to switch off inflammation.Nature2021598788257357410.1038/d41586‑021‑02714‑0 34646023
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240334516241123130753
Loading
/content/journals/cmm/10.2174/0115665240334516241123130753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test