Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

The anticancer activity and radiosensitizing effect of Auranofin, an an-tirheumatic and an approved gold metallic drug, have been investigated from multiple perspectives. In this study, the action of the new gold complex compound TPN-Au(I)-MM4 was compared with that of auranofin.

Methods

The inhibitory effect of 10 µM and 50 µM concentrations on cell proliferation was investigated using the human colon cancer cell lines HCT116 and SW480. The radiosensitizing effect of HCT116 cells was evaluated by measuring the ability to induce apoptotic cell death. The mechanism of action was qualitatively determined western blotting analysis of the level of cleaved caspase-3 protein.

Results

Auranofin completely inhibited cell proliferation in both cell lines at both concentrations. In contrast, only 50 µM of TPN-Au(I)-MM4 significantly inhibited the proliferation of SW480 cells, but did not affect the proliferation of HCT116 cells. On the other hand, both compounds effectively increased the apoptotic cell death rate when combined with 4 Gy of X-ray irradiation. This mechanism was caused by a significant increase in the level of caspase-3, which is an apoptosis execution factor, by the combination of these two treatments.

Conclusion

Both compounds promoted the significant expression of caspase-3, an apoptosis execution factor, and exhibited radio-sensitizing effects. In particular, TPN-Au(I)-MM4 showed no inhibitory effect on cell proliferation alone, but had a significant radiosensitising effect on HCT116 cells. Therefore, TPN-Au(I)-MM4 has the potential for use as a new radiosensitizer.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240344867241021043636
2025-01-06
2025-12-26
Loading full text...

Full text loading...

References

  1. BaidounF. ElshiwyK. ElkeraieY. Colorectal cancer epidemiology: Recent trends and impact on outcomes.Curr. Drug Targets2021229998100910.2174/18735592MTEx9NTk2y 33208072
    [Google Scholar]
  2. BrownK.G.M. KohC.E. Surgical management of recurrent colon cancer.J. Gastrointest. Oncol.202011351352510.21037/jgo‑2019‑ccm‑09 32655930
    [Google Scholar]
  3. ChakrabartiS. PetersonC.Y. SriramD. MahipalA. Early stage colon cancer: Current treatment standards, evolving paradigms, and future directions.World J. Gastrointest. Oncol.202012880883210.4251/wjgo.v12.i8.808 32879661
    [Google Scholar]
  4. HariaP.D. BahetiA.D. PalsetiaD. Follow-up of colorectal cancer and patterns of recurrence.Clin. Radiol.2021761290891510.1016/j.crad.2021.07.016 34474747
    [Google Scholar]
  5. HäfnerM.F. DebusJ. Radiotherapy for colorectal cancer: Current standards and future perspectives.Visc. Med.201632317217710.1159/000446486 27493944
    [Google Scholar]
  6. ChanG.H.J. CheeC.E. Making sense of adjuvant chemotherapy in colorectal cancer.J. Gastrointest. Oncol.20191061183119210.21037/jgo.2019.06.03 31949938
    [Google Scholar]
  7. RothM. EngC. Neoadjuvant chemotherapy for colon cancer.Cancers2020129236810.3390/cancers12092368 32825640
    [Google Scholar]
  8. CarlsenL. HuntingtonK.E. El-DeiryW.S. Immunotherapy for colorectal cancer: Mechanisms and predictive biomarkers.Cancers2022144102810.3390/cancers14041028 35205776
    [Google Scholar]
  9. SiglerJ.W. Parenteral gold in the treatment of rheumatoid arthritis.Am. J. Med.1983756596210.1016/0002‑9343(83)90475‑8 6229181
    [Google Scholar]
  10. KassamY.B. KeanW.F. LockC.J. BuchananW.W. SimonG.T. HarveyD.A. Variation in physical and biological properties of solid gold sodium thiomalate on dissolution: an electron microscopic and energy dispersive spectroscopic study.J. Rheumatol.1987142209215 3110417
    [Google Scholar]
  11. DelafuenteJ.C. OsbornT.G. Review of auranofin, an oral chrysotherapeutic agent.Clin. Pharm.198432121127 6426843
    [Google Scholar]
  12. ChaffmanM. BrogdenR.N. HeelR.C. SpeightT.M. AveryG.S. Auranofin.Drugs198427537842410.2165/00003495‑198427050‑00002 6426923
    [Google Scholar]
  13. LeibfarthJ.H. PersellinR.H. Review: Mechanisms of action of gold.Agents Actions198111545847210.1007/BF02004707 7039267
    [Google Scholar]
  14. HatemE. El BannaN. Heneman-MasurelA. Novel insights into redox-based mechanisms for auranofin-induced rapid cancer cell death.Cancers20221419486410.3390/cancers14194864 36230784
    [Google Scholar]
  15. Hwang-BoH. JeongJ.W. HanM.H. Auranofin, an inhibitor of thioredoxin reductase, induces apoptosis in hepatocellular carcinoma Hep3B cells by generation of reactive oxygen species.Gen. Physiol. Biophys.201736211712810.4149/gpb_2016043 28218611
    [Google Scholar]
  16. SachwehM.C.C. StaffordW.C. DrummondC.J. Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells.Oncotarget2015618164881650610.18632/oncotarget.4108 26029997
    [Google Scholar]
  17. CuiX.Y. ParkS.H. ParkW.H. Anti-cancer effects of auranofin in human lung cancer cells by increasing intracellular ROS levels and depleting GSH levels.Molecules20222716520710.3390/molecules27165207 36014444
    [Google Scholar]
  18. LeeD. XuI.M.J. ChiuD.K.C. Induction of oxidative stress through inhibition of thioredoxin reductase 1 is an effective therapeutic approach for hepatocellular carcinoma.Hepatology20196941768178610.1002/hep.30467 30561826
    [Google Scholar]
  19. FiskusW. SabaN. ShenM. Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia.Cancer Res.20147492520253210.1158/0008‑5472.CAN‑13‑2033 24599128
    [Google Scholar]
  20. LiL. FathM.A. ScarbroughP.M. WatsonW.H. SpitzD.R. Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer.Redox Biol.2015412713510.1016/j.redox.2014.12.001 25560241
    [Google Scholar]
  21. ZoiV. GalaniV. TsekerisP. KyritsisA.P. AlexiouG.A. Radiosensitization and radioprotection by curcumin in glioblastoma and other cancers.Biomedicines202210231210.3390/biomedicines10020312 35203521
    [Google Scholar]
  22. BorettiA. Evidence for the use of curcumin in radioprotection and radiosensitization. Phytother Res202338(2)ptr.780310.1002/ptr.7803 36897074
    [Google Scholar]
  23. JavvadiP. HertanL. KosoffR. Thioredoxin reductase-1 mediates curcumin-induced radiosensitization of squamous carcinoma cells.Cancer Res.20107051941195010.1158/0008‑5472.CAN‑09‑3025 20160040
    [Google Scholar]
  24. CalvarusoM. PucciG. MussoR. Nutraceutical compounds as sensitizers for cancer treatment in radiation therapy.Int. J. Mol. Sci.20192021526710.3390/ijms20215267 31652849
    [Google Scholar]
  25. QinH. ZhangH. ZhangX. ZhangS. ZhuS. WangH. Resveratrol attenuates radiation enteritis through the SIRT1/FOXO3a and PI3K/AKT signaling pathways.Biochem. Biophys. Res. Commun.202155419920510.1016/j.bbrc.2021.03.122 33812084
    [Google Scholar]
  26. QinH. ZhangH. ZhangX. ZhangS. ZhuS. WangH. Resveratrol protects intestinal epithelial cells against radiation-induced damage by promoting autophagy and inhibiting apoptosis through SIRT1 activation.J. Radiat. Res. (Tokyo)202162457458110.1093/jrr/rrab035 33912959
    [Google Scholar]
  27. NagD. BhanjaP. RihaR. Auranofin protects intestine against radiation injury by modulating p53/p21 pathway and radiosensitizes human colon tumor.Clin. Cancer Res.201925154791480710.1158/1078‑0432.CCR‑18‑2751 30940656
    [Google Scholar]
  28. SanoN. YoshinoH. SatoY. HonmaH. CordonierC.E.J. KashiwakuraI. Cytotoxic activity of a unique monomeric heterogeneous two-coordinate ligand monovalent gold complex with tiopronin and a heterocyclic mercapto-tetrazole compound.Curr. Med. Chem.202229223973398210.2174/0929867328666211018094206 34666640
    [Google Scholar]
  29. SanoN. YoshinoH. SatoY. HonmaH. CordonierC.E.J. KashiwakuraI. Cytotoxic activity of unique synthesized five-membered heterocyclic compounds coordinated with tiopronin monovalent.Curr. Pharm. Des.2023291295796510.2174/1381612829666230407094658 37032505
    [Google Scholar]
  30. KobayashiY. CordonierC.E.J. NodaY. Tailored cell sheet engineering using microstereolithography and electrochemical cell transfer.Sci. Rep.2019911041510.1038/s41598‑019‑46801‑9
    [Google Scholar]
  31. EndoH. TashiroK. MaH. Direct gold plating selectively on UV modified polymer film using tiopronin-gold.J. Electrochem. Soc.20151626D193D19810.1149/2.0441506jes
    [Google Scholar]
  32. SeddonA.M. CaseyD. LawR.V. GeeA. TemplerR.H. CesO. Drug interactions with lipid membranes.Chem. Soc. Rev.20093892509251910.1039/b813853m 19690732
    [Google Scholar]
  33. BennionB.J. BeN.A. McNerneyM.W. Predicting a drug membrane permeability. A computational model validated with in vitro permeability assay data.J. Phys. Chem. B2017121205228523710.1021/acs.jpcb.7b02914 28453293
    [Google Scholar]
  34. SatoY. YoshinoH. SatoK. KashiwakuraI. TsurugaE. DAP3-mediated cell cycle regulation and its association with radioresistance in human lung adenocarcinoma cell lines.J. Radiat. Res. (Tokyo)202364352052910.1093/jrr/rrad016 37023702
    [Google Scholar]
  35. AsadiM. TaghizadehS. KavianiE. Caspase‐3: Structure, function, and biotechnological aspects.Biotechnol. Appl. Biochem.20226941633164510.1002/bab.2233 34342377
    [Google Scholar]
  36. CrowleyLC WaterhouseNJ Detecting cleaved caspase-3 in apoptotic cells by flow cytometry. Cold Spring Harb Protoc20162016(11)pdb.prot087312.10.1101/pdb.prot08731227803251
    [Google Scholar]
  37. FransoletM. NoëlL. HenryL. Evaluation of Z-VAD-FMK as an anti-apoptotic drug to prevent granulosa cell apoptosis and follicular death after human ovarian tissue transplantation.J. Assist. Reprod. Genet.201936234935910.1007/s10815‑018‑1353‑8 30390176
    [Google Scholar]
  38. LeeS. ChoH.W. KimB. LeeJ.K. KimT. The effectiveness of anti-apoptotic agents to preserve primordial follicles and prevent tissue damage during ovarian tissue cryopreservation and xenotransplantation.Int. J. Mol. Sci.2021225253410.3390/ijms22052534 33802539
    [Google Scholar]
  39. JiaoY. CaoF. LiuH. Radiation-induced cell death and its mechanisms.Health Phys.20221235376386 36069830
    [Google Scholar]
  40. ErikssonD. StigbrandT. Radiation-induced cell death mechanisms.Tumour Biol.201031436337210.1007/s13277‑010‑0042‑8 20490962
    [Google Scholar]
  41. VerheijM. BartelinkH. Radiation-induced apoptosis.Cell Tissue Res.2000301113314210.1007/s004410000188 10928286
    [Google Scholar]
  42. AngelucciF. SayedA.A. WilliamsD.L. Inhibition of Schistosoma mansoni thioredoxin-glutathione reductase by auranofin: Structural and kinetic aspects.J. Biol. Chem.200928442289772898510.1074/jbc.M109.020701 19710012
    [Google Scholar]
  43. GabaS. JamalS. Drug Discovery Consortium OS, Scaria V. Cheminformatics models for inhibitors of Schistosoma mansoni thioredoxin glutathione reductase.ScientificWorldJournal201420141910.1155/2014/957107 25629082
    [Google Scholar]
  44. LeeS. KimS.M. LeeR.T. Thioredoxin and thioredoxin target proteins: From molecular mechanisms to functional significance.Antioxid. Redox Signal.201318101165120710.1089/ars.2011.4322 22607099
    [Google Scholar]
  45. StecozaC.E. NitulescuG.M. DraghiciC. Synthesis of 1,3,4-thiadiazole derivatives and their anticancer evaluation.Int. J. Mol. Sci.202324241747610.3390/ijms242417476 38139304
    [Google Scholar]
  46. JanowskaS. KhylyukD. BielawskaA. New 1,3,4-thiadiazole derivatives with anticancer activity.Molecules2022276181410.3390/molecules27061814 35335177
    [Google Scholar]
  47. KumarD. AggarwalN. KumarV. ChopraH. MarwahaR.K. SharmaR. Emerging synthetic strategies and pharmacological insights of 1,3,4-thiadiazole derivatives: A comprehensive review.Future Med. Chem.202416656358110.4155/fmc‑2023‑0203 38353003
    [Google Scholar]
  48. YuC.Y. YeungT.K. FuW.K. PoonR.Y.C. BCL-XL regulates the timing of mitotic apoptosis independently of BCL2 and MCL1 compensation.Cell Death Dis.2024151210.1038/s41419‑023‑06404‑9 38172496
    [Google Scholar]
  49. StevensM. OlteanS. Modulation of the apoptosis gene Bcl-x function through alternative splicing.Front. Genet.20191080410.3389/fgene.2019.00804 31552099
    [Google Scholar]
  50. SuleimenovM. BekbayevS. TenM. Bcl-xL activity influences outcome of the mitotic arrest.Front. Pharmacol.20221393311210.3389/fphar.2022.933112 36188556
    [Google Scholar]
  51. DuT. XiaoJ. QiuZ. WuK. The effectiveness of intensity-modulated radiation therapy versus 2D-RT for the treatment of nasopharyngeal carcinoma: A systematic review and meta-analysis.PLoS One2019147e021961110.1371/journal.pone.0219611 31291379
    [Google Scholar]
  52. Hörner-RieberJ. ForsterT. HommertgenA. Intensity modulated radiation therapy (IMRT) with simultaneously integrated boost shortens treatment time and is noninferior to conventional radiation therapy followed by sequential boost in adjuvant breast cancer treatment: Results of a large randomized Phase III trial (IMRT-MC2 trial).Int. J. Radiat. Oncol. Biol. Phys.202110951311132410.1016/j.ijrobp.2020.12.005 33321192
    [Google Scholar]
  53. JeterM.D. GomezD. NguyenQ.N. Simultaneous integrated boost for radiation dose escalation to the gross tumor volume with intensity modulated (photon) radiation therapy or intensity modulated proton therapy and concurrent chemotherapy for Stage II to III non-small cell lung cancer: A phase 1 study.Int. J. Radiat. Oncol. Biol. Phys.2018100373073710.1016/j.ijrobp.2017.10.042 29248169
    [Google Scholar]
  54. ChoB. Intensity-modulated radiation therapy: A review with a physics perspective.Radiat. Oncol. J.201836111010.3857/roj.2018.00122 29621869
    [Google Scholar]
  55. NakamuraK. SasakiT. OhgaS. Recent advances in radiation oncology: Intensity-modulated radiotherapy, a clinical perspective.Int. J. Clin. Oncol.201419456456910.1007/s10147‑014‑0718‑y 24981775
    [Google Scholar]
  56. GrégoireV. GuckenbergerM. HaustermansK. Image guidance in radiation therapy for better cure of cancer.Mol. Oncol.20201471470149110.1002/1878‑0261.12751 32536001
    [Google Scholar]
  57. HerrmannH. SeppenwooldeY. GeorgD. WidderJ. Image guidance: Past and future of radiotherapy.Radiologe201959S1Suppl. 1212710.1007/s00117‑019‑0573‑y 31346650
    [Google Scholar]
  58. KorremanS.S. Image-guided radiotherapy and motion management in lung cancer.Br. J. Radiol.20158810512015010010.1259/bjr.20150100 25955231
    [Google Scholar]
  59. JaffrayD.A. Image-guided radiotherapy: From current concept to future perspectives.Nat. Rev. Clin. Oncol.201291268869910.1038/nrclinonc.2012.194 23165124
    [Google Scholar]
  60. SterzingF. Engenhart-CabillicR. FlentjeM. DebusJ. Image-guided radiotherapy: A new dimension in radiation oncology.Dtsch. Arztebl. Int.201110816274280 21603562
    [Google Scholar]
  61. RoederF. MeldolesiE. GerumS. ValentiniV. RödelC. Recent advances in (chemo-)radiation therapy for rectal cancer: A comprehensive review.Radiat. Oncol.202015126210.1186/s13014‑020‑01695‑0 33172475
    [Google Scholar]
  62. GerardJ.P. Glynne-JonesR. BlackstockW. AscheleC. Van De VeldeC. Radiochemotherapy in rectal cancer: The role of oxaliplatin. >.Colorectal Dis.200353293010.1046/j.1463‑1318.5.s3.4.x
    [Google Scholar]
  63. GrabenbauerA. AignerT. GöbelH. Preoperative radiochemotherapy in rectal cancer: Is there an impact of oxaliplatin on pathologic complete response and survival rates under “real world” conditions?Cells202312339910.3390/cells12030399 36766741
    [Google Scholar]
  64. AlianO.M. AzmiA.S. MohammadR.M. Network insights on oxaliplatin anti‐cancer mechanisms.Clin. Transl. Med.201211e2610.1186/2001‑1326‑1‑26 23369220
    [Google Scholar]
  65. AlcindorT. BeaugerN. Oxaliplatin: A review in the era of molecularly targeted therapy.Curr. Oncol.2011181182510.3747/co.v18i1.708 21331278
    [Google Scholar]
  66. HuangR.X. ZhouP.K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer.Signal Transduct. Target. Ther.2020516010.1038/s41392‑020‑0150‑x 32355263
    [Google Scholar]
  67. DengS. VlatkovicT. LiM. ZhanT. VeldwijkM.R. HerskindC. Targeting the DNA damage response and DNA repair pathways to enhance radiosensitivity in colorectal cancer.Cancers20221419487410.3390/cancers14194874 36230796
    [Google Scholar]
  68. KöberleB. SchochS. Platinum complexes in colorectal cancer and other solid tumors.Cancers2021139207310.3390/cancers13092073 33922989
    [Google Scholar]
  69. GalluzziL. SenovillaL. VitaleI. Molecular mechanisms of cisplatin resistance.Oncogene201231151869188310.1038/onc.2011.384 21892204
    [Google Scholar]
  70. TengY. MaD. YanY. Retrospective cohort study for thrombocytopenia during concurrent chemoradiotherapy for rectal cancer.Front. Oncol.202413128982410.3389/fonc.2023.1289824 38230393
    [Google Scholar]
  71. KuterD.J. Treatment of chemotherapy-induced thrombocytopenia in patients with non-hematologic malignancies.Haematologica202210761243126310.3324/haematol.2021.279512 35642485
    [Google Scholar]
  72. AbdalbariF.H. TelleriaC.M. The gold complex auranofin: New perspectives for cancer therapy.Discover Oncology20211214210.1007/s12672‑021‑00439‑0 35201489
    [Google Scholar]
  73. MasudaT. TsurudaY. MatsumotoY. UchidaH. NakayamaK.I. MimoriK. Drug repositioning in cancer: The current situation in Japan.Cancer Sci.202011141039104610.1111/cas.14318 31957175
    [Google Scholar]
  74. JourdanJ.P. BureauR. RochaisC. DallemagneP. Drug repositioning: A brief overview.J. Pharm. Pharmacol.20207291145115110.1111/jphp.13273 32301512
    [Google Scholar]
  75. SiddiquiS. DeshmukhA.J. MudaliarP. NalawadeA.J. IyerD. AichJ. Drug repurposing: Re-inventing therapies for cancer without re-entering the development pipeline—a review.J. Egypt. Natl. Canc. Inst.20223413310.1186/s43046‑022‑00137‑0 35934727
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240344867241021043636
Loading
/content/journals/cmm/10.2174/0115665240344867241021043636
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test