Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Aims

The activation of the complement system is accompanied by the occurrence and development of preeclampsia, as well as kidney diseases. Here, the role of complement C3 [C3] in renal injury in preeclampsia was explored, and its potential application as an early diagnostic biomarker or drug target to ameliorate kidney injury induced by preeclampsia was preliminarily evaluated.

Methods

A total of 48 subjects were included in the present study, and the complement C3 levels and renal function were analyzed.

Results

Patients with preeclampsia with severe features [sPe] had poorer renal function compared with the patients with preeclampsia. Urinary C3 levels could be used to distinguish between healthy controls, patients with preeclampsia, and patients with sPe. Increased renal inflammation and oxidative stress were notably increased in the preeclampsia mice with impaired renal function and attenuation of C3 activity using a C3 receptor antagonist, which reduced Pe-like symptoms and renal impairment, decreased serum blood urea nitrogen, creatinine, and urinary albumin levels, and decreased expression of the oxidative stress marker malondialdehyde, whilst increasing superoxide dismutase activity. In addition, activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 ([HO-1) pathway was involved in the inhibition of complement C3 in the kidney.

Conclusion

Higher urinary C3 levels could be used to predict kidney damage in preeclampsia, and inhibition of C3 activity might ameliorate the renal impairment in preeclampsia through activation of Nrf2/HO-1 pathway.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240302343240801105324
2025-01-06
2025-12-26
Loading full text...

Full text loading...

References

  1. VyasV. GoyalA. Acute Pulmonary Embolism.In:StatPearls.Treasure Island StatPearls Publishing2023
    [Google Scholar]
  2. TomimatsuT. MimuraK. EndoM. KumasawaK. KimuraT. Pathophysiology of preeclampsia: an angiogenic imbalance and long-lasting systemic vascular dysfunction.Hypertens. Res.201740430531010.1038/hr.2016.152 27829661
    [Google Scholar]
  3. PhippsE.A. ThadhaniR. BenzingT. KarumanchiS.A. Pre-eclampsia: pathogenesis, novel diagnostics and therapies.Nat. Rev. Nephrol.201915527528910.1038/s41581‑019‑0119‑6 30792480
    [Google Scholar]
  4. RanaS. BurkeSD. KarumanchiS.A. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders.Am. J. Obstet. Gynecol.20222262Suppl.S1019S103410.1016/j.ajog.2020.10.022 33096092
    [Google Scholar]
  5. ZhangY. LiZ. WuH. WangJ. ZhangS. Esculetin alleviates murine lupus nephritis by inhibiting complement activation and enhancing Nrf2 signaling pathway.J. Ethnopharmacol.202228811500410.1016/j.jep.2022.115004 35051603
    [Google Scholar]
  6. WangW. ShengL. ChenY,et al Total coumarin derivates from Hydrangea paniculata attenuate renal injuries in cationized-BSA induced membranous nephropathy by inhibiting complement activation and interleukin 10-mediated interstitial fibrosis.Phytomedicine20229615388610.1016/j.phymed.2021.153886 35026512
    [Google Scholar]
  7. ReisE.S. MastellosD.C. HajishengallisG. LambrisJ.D. New insights into the immune functions of complement.Nat. Rev. Immunol.201919850351610.1038/s41577‑019‑0168‑x
    [Google Scholar]
  8. PierikE. PrinsJR. van GoorH,et al Dysregulation of complement activation and placental dysfunction: A potential target to treat preeclampsia?Front. Immunol.202010309810.3389/fimmu.2019.03098 32010144
    [Google Scholar]
  9. BurwickRM. FeinbergB.B. Complement activation and regulation in preeclampsia and hemolysis, elevated liver enzymes, and low platelet count syndrome.Am. J. Obstet. Gynecol.20222262S1059S107010.1016/j.ajog.2020.09.038 32986992
    [Google Scholar]
  10. RegalJ.F. BurwickRM. FlemingS.D. The complement system and preeclampsia.Curr. Hypertens. Rep.201719118710.1007/s11906‑017‑0784‑4 29046976
    [Google Scholar]
  11. GirardiG. LingoJJ. FlemingSD. RegalJF. Essential role of complement in pregnancy: From implantation to parturition and beyond.Front. Immunol.202011168110.3389/fimmu.2020.01681 32849586
    [Google Scholar]
  12. WuM. JiaB. LiM. Complement C3 and activated fragment C3a are involved in complement activation and anti-bacterial immunity.Front. Immunol.20221381317310.3389/fimmu.2022.813173 35281048
    [Google Scholar]
  13. BlakeyH. SunR. XieL, et al Pre-eclampsia is associated with complement pathway activation in the maternal and fetal circulation, and placental tissue.Pregnancy Hypertens.202332434910.1016/j.preghy.2023.04.001 37088032
    [Google Scholar]
  14. LokkiAI. KaartokallioT. HolmbergV,et al Analysis of complement C3 gene reveals susceptibility to severe preeclampsia.Front. Immunol.2017858910.3389/fimmu.2017.00589 28611769
    [Google Scholar]
  15. SarweenN. DraysonM.T. HodsonJ,et al Humoral immunity in late-onset Pre-eclampsia and linkage with angiogenic and inflammatory markers.Am. J. Reprod. Immunol.2018805e1304110.1111/aji.13041 30168226
    [Google Scholar]
  16. LillegardKE. Loeks-JohnsonAC. OpacichJ.W,et al Differential effects of complement activation products c3a and c5a on cardiovascular function in hypertensive pregnant rats.J. Pharmacol. Exp. Ther.2014351234435110.1124/jpet.114.218123 25150279
    [Google Scholar]
  17. ChenL. FukudaN. MatsumotoT. AbeM. Role of complement 3 in the pathogenesis of hypertension.Hypertens. Res.202043425526210.1038/s41440‑019‑0371‑y
    [Google Scholar]
  18. ChenL. FukudaN. ShimizuS,et al Role of complement 3 in renin generation during the differentiation of mesenchymal stem cells to smooth muscle cells.Am. J. Physiol. Cell Physiol.20203185C981C99010.1152/ajpcell.00461.2019 32208992
    [Google Scholar]
  19. MerleN.S. GrunenwaldA. RajaratnamH,et al Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles.JCI Insight2018312e9691010.1172/jci.insight.96910 29925688
    [Google Scholar]
  20. TimmermansSAMEG Abdul-HamidMA. PotjewijdJ,et al C5b9 formation on endothelial cells reflects complement defects among patients with renal thrombotic microangiopathy and severe hypertension.J. Am. Soc. Nephrol.20182982234224310.1681/ASN.2018020184 29858281
    [Google Scholar]
  21. CookH.T. Evolving complexity of complement-related diseases.Curr. Opin. Nephrol. Hypertens.201827316517010.1097/MNH.0000000000000412 29517501
    [Google Scholar]
  22. OmatsuK. KobayashiT. MurakamiY,et al Phosphatidylserine/phosphatidylcholine microvesicles can induce preeclampsia-like changes in pregnant mice.Semin. Thromb. Hemost.200531331432010.1055/s‑2005‑872438 16052403
    [Google Scholar]
  23. Chinese guidelines for the diagnosis and treatment of pregnancy induced hypertension (2015).Zhonghua Fu Chan Ke Za Zhi20155010721728 26675569
    [Google Scholar]
  24. Diagnosis and treatment of hypertension and pre-eclampsia in pregnancy: a clinical practice guideline in China(2020).Zhonghua Fu Chan Ke Za Zhi2020554227238 32375429
    [Google Scholar]
  25. MezőB. HeilosA. BöhmigG.A,et al Complement markers in blood and urine: no diagnostic value in late silent antibody-mediated rejection.Transplant. Direct201957e47010.1097/TXD.0000000000000915 31334344
    [Google Scholar]
  26. MaR. CuiZ. LiaoY. ZhaoM. Complement activation contributes to the injury and outcome of kidney in human anti-glomerular basement membrane disease.J. Clin. Immunol.201333117217810.1007/s10875‑012‑9772‑2 22941511
    [Google Scholar]
  27. WakerCA. KaufmanMR. BrownT.L. Current state of preeclampsia mouse models: approaches, relevance, and standardization.Front. Physiol.20211268163210.3389/fphys.2021.681632 34276401
    [Google Scholar]
  28. AmesR.S. LeeD. FoleyJ.J,et al Identification of a selective nonpeptide antagonist of the anaphylatoxin C3a receptor that demonstrates antiinflammatory activity in animal models.J. Immunol.2001166106341634810.4049/jimmunol.166.10.6341 11342658
    [Google Scholar]
  29. TaguchiS. AzushimaK. YamajiT.et al Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy.Sci. Rep.20211112358710.1038/s41598‑021‑02864‑1 34880315
    [Google Scholar]
  30. KitadaM. OguraY. SuzukiT,et al A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity.Diabetologia20165961307131710.1007/s00125‑016‑3925‑4 27020449
    [Google Scholar]
  31. RollemanE.J. KrenningE.P. BernardB.F,et al Long-term toxicity of [177Lu-DOTA0,Tyr3]octreotate in rats.Eur. J. Nucl. Med. Mol. Imaging200734221922710.1007/s00259‑006‑0232‑1 17021812
    [Google Scholar]
  32. SağolS. ÖzkinayE. ÖzşenerS. Impaired antioxidant activity in women with pre-eclampsia.Int. J. Gynaecol. Obstet.199964212112710.1016/S0020‑7292(98)00217‑3 10189019
    [Google Scholar]
  33. KweiderN. HuppertzB. KadyrovM. RathW. PufeT. WruckC.J. A possible protective role of Nrf2 in preeclampsia.Ann. Anat.2014196526827710.1016/j.aanat.2014.04.002 24954650
    [Google Scholar]
  34. TossettaG. FantoneS. PianiF,et al Modulation of NRF2/KEAP1 signaling in preeclampsia.Cells20231211154510.3390/cells12111545 37296665
    [Google Scholar]
  35. BurwickRM. FichorovaRN. DawoodHY. YamamotoHS. FeinbergB.B. Urinary excretion of C5b-9 in severe preeclampsia: tipping the balance of complement activation in pregnancy.Hypertension20136261040104510.1161/HYPERTENSIONAHA.113.01420
    [Google Scholar]
  36. IsakssonGL. NielsenLH. PalarasahY,et al Urine excretion of C3dg and sC5b-9 coincide with proteinuria and development of preeclampsia in pregnant women with type-1 diabetes.J. Hypertens.202341222323210.1097/HJH.0000000000003288 36583350
    [Google Scholar]
  37. WongEKS. KavanaghD. Diseases of complement dysregulation—an overview.Semin. Immunopathol.2018401496410.1007/s00281‑017‑0663‑8 29327071
    [Google Scholar]
  38. GirardiG. Complement activation, a threat to pregnancy.Semin. Immunopathol.201840110311110.1007/s00281‑017‑0645‑x
    [Google Scholar]
  39. HeY. XuB. WangM,et al Dysregulation of complement system during pregnancy in patients with preeclampsia: A prospective study.Mol. Immunol.2020122697910.1016/j.molimm.2020.03.021 32305690
    [Google Scholar]
  40. HeY. XuB. SongD. YuF. ChenQ. ZhaoM. Correlations between complement system’s activation factors and anti-angiogenesis factors in plasma of patients with early/late-onset severe preeclampsia.Hypertens. Pregnancy201635449950910.1080/10641955.2016.1190845 27315511
    [Google Scholar]
  41. QingX. RedechaPB. BurmeisterM.A,et al Targeted inhibition of complement activation prevents features of preeclampsia in mice.Kidney Int.201179333133910.1038/ki.2010.393 20944547
    [Google Scholar]
  42. NezuM. SoumaT. YuL. et al Nrf2 inactivation enhances placental angiogenesis in a preeclampsia mouse model and improves maternal and fetal outcomes.Sci. Signal.201710479eaam571110.1126/scisignal.aam5711 28512147
    [Google Scholar]
  43. KuangB. WangZ. HouS et al Methyl eugenol protects the kidney from oxidative damage in mice by blocking the Nrf2 nuclear export signal through activation of the AMPK/GSK3β axis.Acta Pharmacol. Sin.202344236738010.1038/s41401‑022‑00942‑2 35794373
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240302343240801105324
Loading
/content/journals/cmm/10.2174/0115665240302343240801105324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test