Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Sortilin acts as a key receptor for lipids, growth factors, cytokines, and enzymes and participates in pathological cargo loading and transferring of extracellular vesicles. Emerging evidence suggests a significant role of sortilin in hyperlipidemia and the risk of atherosclerosis. Recent epidemiological evidence demonstrated that sortilin has been implicated in atherosclerosis plaque progression in patients with coronary or peripheral artery disease. The present study presents a comprehensive review of the contribution of sortilin to atherosclerosis progression. Here, recent experimental and clinical findings are summarized to determine the effects of sortilin on atherosclerosis progression and the related underlying mechanisms.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240342078250114165535
2025-01-21
2025-12-13
Loading full text...

Full text loading...

References

  1. NielsenM.S. JacobsenC. OlivecronaG. GliemannJ. PetersenC.M. Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase.J. Biol. Chem.1999274138832883610.1074/jbc.274.13.8832 10085125
    [Google Scholar]
  2. PetersenC.M. NielsenM.S. NykjærA. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography.J. Biol. Chem.199727263599360510.1074/jbc.272.6.3599 9013611
    [Google Scholar]
  3. PetersenC.M. NielsenM.S. JacobsenC. Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding.EMBO J.199918359560410.1093/emboj/18.3.595 9927419
    [Google Scholar]
  4. NielsenM.S. MadsenP. ChristensenE.I. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein.EMBO J.20012092180219010.1093/emboj/20.9.2180 11331584
    [Google Scholar]
  5. HermeyG. The Vps10p-domain receptor family.Cell. Mol. Life Sci.200966162677268910.1007/s00018‑009‑0043‑1 19434368
    [Google Scholar]
  6. QuistgaardE.M. MadsenP. GrøftehaugeM.K. NissenP. PetersenC.M. ThirupS.S. Ligands bind to Sortilin in the tunnel of a ten-bladed β-propeller domain.Nat. Struct. Mol. Biol.2009161969810.1038/nsmb.1543 19122660
    [Google Scholar]
  7. FleckhausJ. BugertP. Al-RashediN. RothschildM.A. Investigation of the impact of biogeographic ancestry on DNA methylation based age predictions comparing two Middle East and central European populations.SSRN443260210.2139/ssrn.4432602
    [Google Scholar]
  8. SaadiM.I. NikandishM. GhahramaniZ. miR-155 and miR-92 levels in ALL, post-transplant aGVHD, and CMV: Possible new treatment options.J. Egypt. Natl. Canc. Inst.20233511810.1186/s43046‑023‑00174‑3 37332027
    [Google Scholar]
  9. Iravani SaadiM. JiangM. BanakarM. Are the costimulatory molecule gene polymorphisms (CTLA-4) associated with infection in organ transplantation? A meta-analysis.Cell Transplant.2023320963689723115157610.1177/09636897231151576 36840462
    [Google Scholar]
  10. NykjaerA. LeeR. TengK.K. Sortilin is essential for proNGF-induced neuronal cell death.Nature2004427697784384810.1038/nature02319 14985763
    [Google Scholar]
  11. DubéJ.B. JohansenC.T. HegeleR.A. Sortilin: An unusual suspect in cholesterol metabolism.BioEssays201133643043710.1002/bies.201100003 21462369
    [Google Scholar]
  12. PallesenL.T. VaegterC.B. Sortilin and SorLA regulate neuronal sorting of trophic and dementia-linked proteins.Mol. Neurobiol.201245237938710.1007/s12035‑012‑8236‑2 22297619
    [Google Scholar]
  13. ReitzC. TokuhiroS. ClarkL.N. SORCS1 alters amyloid precursor protein processing and variants may increase Alzheimer’s disease risk.Ann. Neurol.2011691476410.1002/ana.22308 21280075
    [Google Scholar]
  14. HeY. FangZ. YuG. Sortilin‐related VPS10 domain containing receptor 1 and Alzheimer’s disease‐associated allelic variations preferentially exist in female or type 2 diabetes mellitus patients in southern Han Chinese.Psychogeriatrics201212421522510.1111/j.1479‑8301.2012.00405.x 23279143
    [Google Scholar]
  15. GustafsenC. GlerupS. PallesenL.T. Sortilin and SorLA display distinct roles in processing and trafficking of amyloid precursor protein.J. Neurosci.2013331647110.1523/JNEUROSCI.2371‑12.2013 23283322
    [Google Scholar]
  16. HuF. PadukkavidanaT. VægterC.B. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin.Neuron201068465466710.1016/j.neuron.2010.09.034 21092856
    [Google Scholar]
  17. DemeuleM. CharfiC. CurrieJ.C. TH1902, a new docetaxel‐peptide conjugate for the treatment of sortilin‐positive triple‐negative breast cancer.Cancer Sci.2021112104317433410.1111/cas.15086 34314556
    [Google Scholar]
  18. AlmoyadM.A.A. WahabS. MohantoS. KhanN.J. Repurposing drugs to modulate sortilin: Structure-guided strategies against atherogenesis, coronary artery disease, and neurological disorders.ACS Omega2024916184381844810.1021/acsomega.4c00470 38680294
    [Google Scholar]
  19. ZhuangW. ZhangW. XieL. Generation and characterization of SORT1-targeted antibody–drug conjugate for the treatment of SORT1-positive breast tumor.Int. J. Mol. Sci.202324241763110.3390/ijms242417631 38139459
    [Google Scholar]
  20. Ira WinerM.D.P. Sortilin targeted peptide-drug conjugates: A new mechanism to extend clinical benefit.Oncology202355
    [Google Scholar]
  21. CharfiC. DemeuleM. CurrieJ.C. New peptide-drug conjugates for precise targeting of SORT1-mediated vasculogenic mimicry in the tumor microenvironment of TNBC-derived MDA-MB-231 breast and ovarian ES-2 clear cell carcinoma cells.Front. Oncol.20211176078710.3389/fonc.2021.760787 34751242
    [Google Scholar]
  22. ObeidR.Z. SalmanD.A. Abdul Ameer JaafarZ. Maternal mortality in an Iraqi tertiary hospital: Lessons from the years of the crisis.Int. J. Women’s Health Reprod. Sci.20208436236710.15296/ijwhr.2020.58
    [Google Scholar]
  23. Iravani SaadiM. MoayediJ. HosseiniF. The effects of resveratrol, gallic acid, and piperine on the expression of miR-17, miR-92b, miR-181a, miR-222, BAX, BCL-2, MCL-1, WT1, c-Kit, and CEBPA in human acute myeloid leukemia cells and their roles in apoptosis.Biochem. Genet.20246242958297410.1007/s10528‑023‑10582‑8 38062274
    [Google Scholar]
  24. NilssonS.K. ChristensenS. RaarupM.K. RyanR.O. NielsenM.S. OlivecronaG. Endocytosis of apolipoprotein A-V by members of the low density lipoprotein receptor and the VPS10p domain receptor families.J. Biol. Chem.200828338259202592710.1074/jbc.M802721200 18603531
    [Google Scholar]
  25. Abdulmalek JaafarJ. Al-RashediN.A.M. Evaluation of the association of transferrin receptor type 2 gene mutation (Y250X) with iron overload in major β- Thalassemia.Arch. Razi Inst.202176515511554 35355750
    [Google Scholar]
  26. Al-GhanmyH.S.G. Al-RashediN.A.M. AyiedA.Y. Age estimation by DNA methylation levels in Iraqi subjects.Gene Rep.20212310102210.1016/j.genrep.2021.101022
    [Google Scholar]
  27. JabbarS.M. Al-RashediN.A.M. Mitochondrial DNA control region variation in an Iraqi population sample.Int. J. Legal Med.2021135242142510.1007/s00414‑020‑02452‑4 33150489
    [Google Scholar]
  28. MusunuruK. StrongA. Frank-KamenetskyM. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus.Nature2010466730771471910.1038/nature09266 20686566
    [Google Scholar]
  29. Dawood Aasi Al-MehmdiM. Fakhri Abdul-Qader Al-RawiD. Determination of optimal conditions for the production of single cell protein (SCP) by pseudomonas aeruginosa bacteria using hydrocarbon residues (used motor oil).2019Available from: https://www.researchgate.net/publication/338802794_DETERMINATION_OF_OPTIMAL_CONDITIONS_FOR_THE_PRODUCTION_OF_SINGLE_CELL_PROTEIN_SCP_BY_PSEUDOMONAS_AERUGINOSA_BACTERIA_USING_HYDROCARBON_RESIDUES_USED_MOTOR_OIL
  30. Abdulameer JafaarZ Zeki ObeidR Akeel SalmanD. Serum zinc: A noninvasive biomarker for the prediction of invasive placentation.Int J Women’s Health Reprod Sci2020910354110.15296/ijwhr.2021.07
    [Google Scholar]
  31. KjolbyM. NielsenM.S. PetersenC.M. Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease.Curr. Atheroscler. Rep.20151741810.1007/s11883‑015‑0496‑7 25702058
    [Google Scholar]
  32. StrongA. DingQ. EdmondsonA.C. Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism.J. Clin. Invest.201212282807281610.1172/JCI63563 22751103
    [Google Scholar]
  33. MortensenM.B. KjolbyM. GunnersenS. Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis.J. Clin. Invest.2014124125317532210.1172/JCI76002 25401472
    [Google Scholar]
  34. PatelK.M. StrongA. TohyamaJ. Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis.Circ. Res.2015116578979610.1161/CIRCRESAHA.116.305811 25593281
    [Google Scholar]
  35. Khalafi-NezhadA. SaadiM.I. NoshadiN. JalaliH. AhmadyanM. KheradmandN. Change in programmed death-1 and inducible costimulator expression in patients with acute myeloid leukemia following chemotherapy and its cytogenetic abnormalities.Galen Med. J.202211e23941010.31661/gmj.v11i.2394
    [Google Scholar]
  36. KjolbyM. AndersenO.M. BreiderhoffT. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export.Cell Metab.201012321322310.1016/j.cmet.2010.08.006 20816088
    [Google Scholar]
  37. GoettschC. HutchesonJ.D. AikawaM. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles.J. Clin. Invest.201612641323133610.1172/JCI80851 26950419
    [Google Scholar]
  38. KleberM.E. RennerW. GrammerT.B. Association of the single nucleotide polymorphism rs599839 in the vicinity of the sortilin 1 gene with LDL and triglyceride metabolism, coronary heart disease and myocardial infarction.Atherosclerosis2010209249249710.1016/j.atherosclerosis.2009.09.068 19837406
    [Google Scholar]
  39. OgawaK. UenoT. IwasakiT. Soluble sortilin is released by activated platelets and its circulating levels are associated with cardiovascular risk factors.Atherosclerosis201624911011510.1016/j.atherosclerosis.2016.03.041 27085161
    [Google Scholar]
  40. OhT.J. AhnC.H. KimB.R. Circulating sortilin level as a potential biomarker for coronary atherosclerosis and diabetes mellitus.Cardiovasc. Diabetol.20171619210.1186/s12933‑017‑0568‑9 28728579
    [Google Scholar]
  41. BiscettiF. NardellaE. RandoM.M. Sortilin levels correlate with major cardiovascular events of diabetic patients with peripheral artery disease following revasculari-zation: A prospective study.Cardiovasc. Diabetol.202019114710.1186/s12933‑020‑01123‑3 32977814
    [Google Scholar]
  42. BiscettiF. BonadiaN. SantiniF. Sortilin levels are associated with peripheral arterial disease in type 2 diabetic subjects.Cardiovasc. Diabetol.2019181510.1186/s12933‑019‑0805‑5 30634965
    [Google Scholar]
  43. GoettschC. IwataH. HutchesonJ.D. Serum sortilin associates with aortic calcification and cardiovascular risk in men.Arterioscler. Thromb. Vasc. Biol.20173751005101110.1161/ATVBAHA.116.308932 28279970
    [Google Scholar]
  44. AtakM. Sevim NalkiranH. BostanM. UyduH.A. The association of Sort1 expression with LDL subfraction and inflammation in patients with coronary artery disease.Acta Cardiol.202479215916610.1080/00015385.2023.2285534 38095557
    [Google Scholar]
  45. SkeyniA. PradignacA. MatzR.L. TerrandJ. BoucherP. Cholesterol trafficking, lysosomal function, and atherosclero-sis.Am. J. Physiol. Cell Physiol.20243262C473C48610.1152/ajpcell.00415.2023 38145298
    [Google Scholar]
  46. ChistiakovD.A. BobryshevY.V. OrekhovA.N. Macrophage‐mediated cholesterol handling in atherosclerosis.J. Cell. Mol. Med.2016201172810.1111/jcmm.12689 26493158
    [Google Scholar]
  47. FisherE.A. Regression of Atherosclerosis.Arterioscler. Thromb. Vasc. Biol.201636222623510.1161/ATVBAHA.115.301926 26681754
    [Google Scholar]
  48. JiaJ. QinY. ZhangL. Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis.Mol. Med. Rep.20161354461446810.3892/mmr.2016.5073 27035431
    [Google Scholar]
  49. PengL. ZhangZ. ZhangM. Macrophage-activating lipopeptide-2 downregulates the expression of ATP-binding cassette transporter A1 by activating the TLR2/NF-кB/ZNF202 pathway in THP-1 macrophages.Acta Biochim. Biophys. Sin.201648436337010.1093/abbs/gmw013 26922321
    [Google Scholar]
  50. LvY. YangJ. GaoA. Sortilin promotes macrophage cholesterol accumulation and aortic atherosclerosis through lysosomal degradation of ATP-binding cassette transporter A1 protein.Acta Biochim. Biophys. Sin.201951547148310.1093/abbs/gmz029 30950489
    [Google Scholar]
  51. ChengmaoX. LiL. YanL. ABCA1 affects placental function via trophoblast and macrophage.Life Sci.201719115015610.1016/j.lfs.2017.10.031 29066252
    [Google Scholar]
  52. HafianeA. GenestJ. ATP binding cassette A1 (ABCA1) mediates microparticle formation during high-density lipoprotein (HDL) biogenesis.Atherosclerosis2017257909910.1016/j.atherosclerosis.2017.01.013 28129550
    [Google Scholar]
  53. OramJ.F. LawnR.M. ABCA1: The gatekeeper for eliminating excess tissue cholesterol.J. Lipid Res.20014281173117910.1016/S0022‑2275(20)31566‑2 11483617
    [Google Scholar]
  54. MoZ.C. XiaoJ. LiuX.H. AOPPs inhibits cholesterol efflux by down-regulating ABCA1 expression in a JAK/STAT signaling pathway-dependent manner.J. Atheroscler. Thromb.201118979680710.5551/jat.6569 21670559
    [Google Scholar]
  55. LvY.C. TangY.Y. PengJ. MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1.Atherosclerosis2014236121522610.1016/j.atherosclerosis.2014.07.005 25084135
    [Google Scholar]
  56. LvY. YinK. FuY. ZhangD. ChenW. TangC. Posttrans-criptional regulation of ATP-binding cassette transporter A1 in lipid metabolism.DNA Cell Biol.201332734835810.1089/dna.2012.1940 23705956
    [Google Scholar]
  57. OtsukaF. SakakuraK. YahagiK. JonerM. VirmaniR. Has our understanding of calcification in human coronary atherosclerosis progressed?Arterioscler. Thromb. Vasc. Biol.201434472473610.1161/ATVBAHA.113.302642 24558104
    [Google Scholar]
  58. BoströmK.I. RajamannanN.M. TowlerD.A. The regulation of valvular and vascular sclerosis by osteogenic morphogens.Circ. Res.2011109556457710.1161/CIRCRESAHA.110.234278 21852555
    [Google Scholar]
  59. ShanahanC.M. CrouthamelM.H. KapustinA. GiachelliC.M. Arterial calcification in chronic kidney disease: Key roles for calcium and phosphate.Circ. Res.2011109669771110.1161/CIRCRESAHA.110.234914 21885837
    [Google Scholar]
  60. NewS.E.P. GoettschC. AikawaM. Macrophage-derived matrix vesicles: An alternative novel mechanism for microcalcification in atherosclerotic plaques.Circ. Res.20131131727710.1161/CIRCRESAHA.113.301036 23616621
    [Google Scholar]
  61. O’DonnellC.J. KavousiM. SmithA.V. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction.Circulation2011124252855286410.1161/CIRCULATIONAHA.110.974899 22144573
    [Google Scholar]
  62. HuangS. YuX. WangH. ZhengJ. Elevated serum sortilin is related to carotid plaque concomitant with calcification.Biomarkers Med.202014538138910.2217/bmm‑2019‑0472 32077308
    [Google Scholar]
  63. Kelly-ArnoldA. MaldonadoN. LaudierD. AikawaE. CardosoL. WeinbaumS. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries.Proc. Natl. Acad. Sci. USA201311026107411074610.1073/pnas.1308814110 23733926
    [Google Scholar]
  64. HutchesonJ.D. GoettschC. BertazzoS. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques.Nat. Mater.201615333534310.1038/nmat4519 26752654
    [Google Scholar]
  65. JanssenR. Magnesium to counteract elastin degradation and vascular calcification in chronic obstructive pulmonary disease.Med. Hypotheses2017107747710.1016/j.mehy.2017.08.014 28915968
    [Google Scholar]
  66. NakaharaT. DweckM.R. NarulaN. PisapiaD. NarulaJ. StraussH.W. Coronary artery calcification: From mechanism to molecular imaging.JACC Cardiovasc. Imaging201710558259310.1016/j.jcmg.2017.03.005 28473100
    [Google Scholar]
  67. MeniniS. IacobiniC. RicciC. The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis.Cardiovasc. Res.2013100347248010.1093/cvr/cvt206 23975852
    [Google Scholar]
  68. WangZ. LiL. DuR. CML/RAGE signal induces calcification cascade in diabetes.Diabetol. Metab. Syndr.2016818310.1186/s13098‑016‑0196‑7 28035243
    [Google Scholar]
  69. ZhouZ. ImmelD. XiC.X. Regulation of osteoclast function and bone mass by RAGE.J. Exp. Med.200620341067108010.1084/jem.20051947 16606672
    [Google Scholar]
  70. StockM. SchäferH. StrickerS. GrossG. MundlosS. OttoF. Expression of galectin-3 in skeletal tissues is controlled by Runx2.J. Biol. Chem.200327819173601736710.1074/jbc.M207631200 12604608
    [Google Scholar]
  71. PuglieseG. IacobiniC. PesceC.M. MeniniS. Galectin-3: An emerging all-out player in metabolic disorders and their complications.Glycobiology201525213615010.1093/glycob/cwu111 25303959
    [Google Scholar]
  72. SunZ. WangZ. LiL. RAGE/galectin-3 yields intraplaque calcification transformation via sortilin.Acta Diabetol.201956445747210.1007/s00592‑018‑1273‑1 30603868
    [Google Scholar]
  73. KathiresanS. MelanderO. GuiducciC. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans.Nat. Genet.200840218919710.1038/ng.75 18193044
    [Google Scholar]
  74. ChasmanD.I. ParéG. ZeeR.Y.L. Genetic loci associated with plasma concentration of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein A1, and Apolipoprotein B among 6382 white women in genome-wide analysis with replication.Circ. Cardiovasc. Genet.200811213010.1161/CIRCGENETICS.108.773168 19802338
    [Google Scholar]
  75. WillerC.J. SannaS. JacksonA.U. Newly identified loci that influence lipid concentrations and risk of coronary artery disease.Nat. Genet.200840216116910.1038/ng.76 18193043
    [Google Scholar]
  76. KathiresanS. WillerC.J. PelosoG.M. Common variants at 30 loci contribute to polygenic dyslipidemia.Nat. Genet.2009411566510.1038/ng.291 19060906
    [Google Scholar]
  77. NakayamaK. BayasgalanT. YamanakaK. Large scale replication analysis of loci associated with lipid concen-trations in a Japanese population.J. Med. Genet.200946637037410.1136/jmg.2008.064063 19487539
    [Google Scholar]
  78. Linsel-NitschkeP. HeerenJ. AherrahrouZ. Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease.Atherosclerosis2010208118318910.1016/j.atherosclerosis.2009.06.034 19660754
    [Google Scholar]
  79. SchadtE.E. MolonyC. ChudinE. Mapping the genetic architecture of gene expression in human liver.PLoS Biol.200865e10710.1371/journal.pbio.0060107 18462017
    [Google Scholar]
  80. TallA.R. AiD. Sorting out sortilin.Circ. Res.2011108215816010.1161/RES.0b013e31820d7daa 21252148
    [Google Scholar]
  81. AiD. BaezJ.M. JiangH. Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice.J. Clin. Invest.201212251677168710.1172/JCI61248 22466652
    [Google Scholar]
  82. BiL. ChiangJ.Y.L. DingW.X. DunnW. RobertsB. LiT. Saturated fatty acids activate ERK signaling to downregulate hepatic sortilin 1 in obese and diabetic mice.J. Lipid Res.201354102754276210.1194/jlr.M039347 23904453
    [Google Scholar]
  83. ChamberlainJ.M. O’DellC. SparksC.E. SparksJ.D. Insulin suppression of apolipoprotein B in McArdle RH7777 cells involves increased sortilin 1 interaction and lysosomal targeting.Biochem. Biophys. Res. Commun.20134301667110.1016/j.bbrc.2012.11.022 23159624
    [Google Scholar]
  84. TvetenK. StrømT.B. CameronJ. BergeK.E. LerenT.P. Mutations in the SORT1 gene are unlikely to cause autosomal dominant hypercholesterolemia.Atherosclerosis2012225237037510.1016/j.atherosclerosis.2012.10.026 23102784
    [Google Scholar]
  85. KlingenbergR. GerdesN. BadeauR.M. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis.J. Clin. Invest.201312331323133410.1172/JCI63891 23426179
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240342078250114165535
Loading
/content/journals/cmm/10.2174/0115665240342078250114165535
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test