Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Oxidative damage and apoptosis of lens epithelial cells (LECs) are the primary factors contributing to the development of age-related cataracts (ARC). The potential protective effects of epigallocatechin gallate (EGCG) on LECs remain unclear despite its remarkable antioxidant and anti-apoptotic properties. The aim of this study was to explore the role of serine/threonine-protein kinase (PAK1) in EGCG-mediated attenuation of HO-induced apoptosis of LECs and .

Methods

PAK1 expression was assessed in the anterior capsule of the lens from mice and patients with and without ARC using western blotting and immuno-histochemistry. Human lens epithelial B3 (HLE-B3) cells were pre-treated with EGCG+HO or HO only, and PAK1 expression was determined using qRT-PCR and western blotting. Apoptosis (following PAK1 overexpression or silencing) and cell survival were assessed using Hoechst 33342 staining and a cell counting Kit-8 assay, respectively. Cleaved caspase-3 was measured in transected cells, aged/young mice, and mice treated with EGCG western blotting.

Results

PAK1 expression was significantly lower in ARC LECs than in control LECs. In HLE-B3 cells, EGCG+HO treatment upregulated PAK1 mRNA and protein expression when compared with HO alone. PAK1 overexpression alleviated HO-induced apoptosis in LECs, while low expression weakened EGCG’s protective effects. PAK1 overexpression reduced cleaved caspase-3 expression in HO-treated cells, whereas PAK1 silencing increased its expression in EGCG+HO-treated cells. EGCG decreased cleaved caspase-3 expression in HO-treated cells. These results suggest that PAK1 inhibits cleaved caspase-3 expression, thereby enhancing EGCG’s attenuation of HO-induced LEC apoptosis.

Conclusion

The PAK1/cleaved caspase-3 pathway plays a key role in EGCG’s protective effects on the development of ARC. This provides a new therapeutic target for the use of EGCG in preventing and treating ARC.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240334265250213064823
2025-02-13
2025-12-14
Loading full text...

Full text loading...

References

  1. PartridgeL. DeelenJ. SlagboomP.E. Facing up to the global challenges of ageing.Nature20185617721455610.1038/s41586‑018‑0457‑8 30185958
    [Google Scholar]
  2. HarriesL. Goljanek-WhysallK. The biology of ageing and the omics revolution.Biogerontology201819643543610.1007/s10522‑018‑9776‑2 30288632
    [Google Scholar]
  3. FlynnM.G. MarkofskiM.M. CarrilloA.E. Elevated inflammatory status and increased risk of chronic disease in chronological Aging: Inflamm-aging or Inflamm-inactivity?Aging Dis.201910114715610.14336/AD.2018.0326 30705775
    [Google Scholar]
  4. ChenM. RongR. XiaX. Spotlight on pyroptosis: Role in pathogenesis and therapeutic potential of ocular diseases.J. Neuroinflammation202219118310.1186/s12974‑022‑02547‑2 35836195
    [Google Scholar]
  5. LuA. DuanP. XieJ. Recent progress and research trend of anti-cataract pharmacology therapy: A bibliometric analysis and literature review.Eur. J. Pharmacol.202293417529910.1016/j.ejphar.2022.175299 36181780
    [Google Scholar]
  6. ProkofyevaE. WegenerA. ZrennerE. Cataract prevalence and prevention in Europe: A literature review.Acta Ophthalmol.201391539540510.1111/j.1755‑3768.2012.02444.x 22715900
    [Google Scholar]
  7. XuJ. LiD. LuY. ZhengT.Y. Aβ monomers protect lens epithelial cells against oxidative stress by upregulating CDC25B.Free Radic. Biol. Med.202117516117010.1016/j.freeradbiomed.2021.08.242 34478836
    [Google Scholar]
  8. HuS. SuD. SunL. High-expression of ROCK1 modulates the apoptosis of lens epithelial cells in age-related cataracts by targeting p53 gene.Mol. Med.202026112410.1186/s10020‑020‑00251‑6 33297931
    [Google Scholar]
  9. ImeldaE. IdroesR. KhairanK. Natural antioxidant activities of plants in preventing cataractogenesis.Antioxidants2022117128510.3390/antiox11071285 35883773
    [Google Scholar]
  10. DasS.J. WishartT.F.L. Jandeleit-DahmK. LovicuF.J. Nox4-mediated ROS production is involved, but not essential for TGFβ-induced lens EMT leading to cataract.Exp. Eye Res.202019210791810.1016/j.exer.2020.107918 31926131
    [Google Scholar]
  11. KulbayM. WuK.Y. NirwalG.K. BélangerP. TranS.D. Oxidative stress and cataract formation: Evaluating the efficacy of antioxidant therapies.Biomolecules2024149105510.3390/biom14091055 39334822
    [Google Scholar]
  12. TuY. LiL. QinB. Long noncoding RNA glutathione peroxidase 3-antisense inhibits lens epithelial cell apoptosis by upregulating glutathione peroxidase 3 expression in age-related cataract.Mol. Vis.201925734744 31814699
    [Google Scholar]
  13. XiuC. JiangJ. SongR. Expression of miR 34a in cataract rats and its related mechanism.Exp. Ther. Med.20191921051105710.3892/etm.2019.8295 32010268
    [Google Scholar]
  14. GongX. JiM. XuJ. ZhangC. LiM. Hypoglycemic effects of bioactive ingredients from medicine food homology and medicinal health food species used in China.Crit. Rev. Food Sci. Nutr.202060142303232610.1080/10408398.2019.1634517 31309854
    [Google Scholar]
  15. HajatA KaufmanJS RoseKM SiddiqiA ThomasJC Do the wealthy have a health advantage?Cardiovascular disease risk factors and wealth2010711119354210.1016/j.socscimed.2010.09.02720970902
    [Google Scholar]
  16. YaoR. HeC. XiaoP. ‘Food and medicine continuum’ in the East and West: Old tradition and current regulation.Chin. Herb. Med.202315161410.1016/j.chmed.2022.12.002 36875443
    [Google Scholar]
  17. ZhaoL. XuC. ZhouW. Polygonati Rhizoma with the homology of medicine and food: A review of ethnopharmacology, botany, phytochemistry, pharmacology and applications.J. Ethnopharmacol.202330911629610.1016/j.jep.2023.116296 36841378
    [Google Scholar]
  18. HouY. JiangJ.G. Origin and concept of medicine food homology and its application in modern functional foods.Food Funct.20134121727174110.1039/c3fo60295h 24100549
    [Google Scholar]
  19. HaratifarS. CorredigM. Interactions between tea catechins and casein micelles and their impact on renneting functionality.Food Chem.2014143273210.1016/j.foodchem.2013.07.092 24054208
    [Google Scholar]
  20. TalibW.H. AwajanD. AlqudahA. Targeting cancer hallmarks with epigallocatechin gallate (EGCG): Mechanistic basis and therapeutic targets.Molecules2024296137310.3390/molecules29061373 38543009
    [Google Scholar]
  21. ZhuangY. QuanW. WangX. ChengY. JiaoY. Comprehensive review of egcg modification: Esterification methods and their impacts on biological activities.Foods2024138123210.3390/foods13081232 38672904
    [Google Scholar]
  22. XieL.W. CaiS. ZhaoT.S. LiM. TianY. Green tea derivative (−)-epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo.Free Radic. Biol. Med.202016117518610.1016/j.freeradbiomed.2020.10.012 33069855
    [Google Scholar]
  23. PengX. McClementsD.J. LiuX. LiuF. EGCG-based nanoparticles: Synthesis, properties, and applications.Crit. Rev. Food Sci. Nutr.202412210.1080/10408398.2024.2328184 38520117
    [Google Scholar]
  24. FalsiniB. MarangoniD. SalgarelloT. Effect of epigallocatechin-gallate on inner retinal function in ocular hypertension and glaucoma: A short-term study by pattern electroretinogram.Graefes Arch. Clin. Exp. Ophthalmol.200924791223123310.1007/s00417‑009‑1064‑z 19290537
    [Google Scholar]
  25. ShiD.D. GuoJ. ZhouL. WangN. Epigallocatechin gallate enhances treatment efficacy of oral nifedipine against pregnancy-induced severe pre-eclampsia: A double-blind, randomized and placebo-controlled clinical study.J. Clin. Pharm. Ther.2018431212510.1111/jcpt.12597 28726273
    [Google Scholar]
  26. ZhaoH. ZhuW. ZhaoX. Efficacy of epigallocatechin-3-gallate in preventing dermatitis in patients with breast cancer receiving postoperative radiotherapy.JAMA Dermatol.2022158777978610.1001/jamadermatol.2022.1736 35648426
    [Google Scholar]
  27. ZhangL. LiuW. YouH. ChenZ. XuL. HeH. Assessing the analgesic efficacy of oral epigallocatechin-3-gallate on epidural catheter analgesia in patients after surgical stabilisation of multiple rib fractures: A prospective double-blind, placebo-controlled clinical trial.Pharm. Biol.202058174174410.1080/13880209.2020.1797123 32749173
    [Google Scholar]
  28. LiuS. SuD. SunZ. Epigallocatechin gallate delays age-related cataract development via the RASSF2/AKT pathway.Eur. J. Pharmacol.202396117620410.1016/j.ejphar.2023.176204 37979829
    [Google Scholar]
  29. LeeC.W. KimS.M. SaS. HongM. NamS.M. HanH.W. Relationship between drug targets and drug-signature networks: A network-based genome-wide landscape.BMC Med. Genomics20231611710.1186/s12920‑023‑01444‑8 36717817
    [Google Scholar]
  30. BrownT.L. HashimotoH. FinsethL.T. WoodT.L. MacklinW.B. PAK1 positively regulates oligodendrocyte morphology and myelination.J. Neurosci.20214191864187710.1523/JNEUROSCI.0229‑20.2021 33478987
    [Google Scholar]
  31. AmirthalingamM. PalanisamyS. TawataS. p21-Activated kinase 1 (PAK1) in aging and longevity: An overview.Ageing Res. Rev.20217110144310.1016/j.arr.2021.101443 34390849
    [Google Scholar]
  32. LiC.F. ChanT.C. FangF.M. YuS.C. HuangH.Y. PAK1 overexpression promotes myxofibrosarcoma angiogenesis through STAT5B-mediated CSF2 transactivation: Clinical and therapeutic relevance of amplification and nuclear entry.Int. J. Biol. Sci.202319123920393610.7150/ijbs.83467 37564209
    [Google Scholar]
  33. LiM.Y. ZhangJ. LuX. Ivermectin induces nonprotective autophagy by downregulating PAK1 and apoptosis in lung adenocarcinoma cells.Cancer Chemother. Pharmacol.2024931415410.1007/s00280‑023‑04589‑6 37741955
    [Google Scholar]
  34. GuoP. LiuY. FengJ. TangS. WeiF. FengJ. p21-activated kinase 1 (PAK1) as a therapeutic target for cardiotoxicity.Arch. Toxicol.202296123143316210.1007/s00204‑022‑03384‑1 36116095
    [Google Scholar]
  35. ZhaoG.L. ZhouH. GuoY.H. Modulation of Rac1/PAK1/connexin43‐mediated ATP release from astrocytes contributes to retinal ganglion cell survival in experimental glaucoma.Glia20237161502152110.1002/glia.24354 36794533
    [Google Scholar]
  36. EskandariE. EavesC.J. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis.J. Cell Biol.20222216e20220115910.1083/jcb.202201159 35551578
    [Google Scholar]
  37. WangR. SongF. LiS. WuB. GuY. YuanY. Salvianolic acid A attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways.Drug Des. Devel. Ther.2019131889190010.2147/DDDT.S194787 31213776
    [Google Scholar]
  38. LuW. QuJ.J. LiB.L. Overexpression of p21-activated kinase 1 promotes endometrial cancer progression.Oncol. Rep.20132941547155510.3892/or.2013.2237 23338047
    [Google Scholar]
  39. XieQ. XueL. CaoX. HuangL. SongY. Apoptosis of lens epithelial cells and expression of NLRP3-related proteins in patients with diabetes and cataract.Ocul. Immunol. Inflamm.20233151103111010.1080/09273948.2022.2079537 35708312
    [Google Scholar]
  40. WangZ. SuD. SunZ. MDM2 phosphorylation mediates H2O2-induced lens epithelial cells apoptosis and age-related cataract.Biochem. Biophys. Res. Commun.2020528111211910.1016/j.bbrc.2020.05.060 32471716
    [Google Scholar]
  41. LiuS. SuD. SunZ. High MST2 expression regulates lens epithelial cell apoptosis in age-related cataracts through YAP1 targeting GLUT1.Arch. Biochem. Biophys.202272310925510.1016/j.abb.2022.109255 35452623
    [Google Scholar]
  42. Abdul NasirN.A. AgarwalR. Sheikh Abdul KadirS.H. Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats.PLoS One2017123e017454210.1371/journal.pone.0174542 28350848
    [Google Scholar]
  43. GaliH.E. SellaR. AfshariN.A. Cataract grading systems: A review of past and present.Curr. Opin. Ophthalmol.2019303131810.1097/ICU.0000000000000542 30489359
    [Google Scholar]
  44. MicunZ. FalkowskaM. MłynarczykM. KochanowiczJ. SochaK. KonopińskaJ. Levels of trace elements in the lens, aqueous humour, and plasma of cataractous patients—a narrative review.Int. J. Environ. Res. Publ Heal202219161037610.3390/ijerph191610376 36012010
    [Google Scholar]
  45. ThompsonJ. LakhaniN. Cataracts.Prim. Care201542340942310.1016/j.pop.2015.05.012 26319346
    [Google Scholar]
  46. Díez-MonteroC. López-de la RosaA. López-MiguelA. MaldonadoM.J. Relationship between the main components of the crystalline lens and the anterior chamber depth after cataract formation.Graefes Arch. Clin. Exp. Ophthalmol.2023261102853286110.1007/s00417‑023‑06080‑7 37115266
    [Google Scholar]
  47. FichtnerJ.E. PatnaikJ. ChristopherK.L. PetrashJ.M. Cataract inhibitors: Present needs and future challenges.Chem. Biol. Interact.202134910967910.1016/j.cbi.2021.109679 34600869
    [Google Scholar]
  48. WangW. YanW. FotisK. Cataract surgical rate and socioeconomics: A global study.Invest. Ophthalmol. Vis. Sci.201757145872588110.1167/iovs.16‑19894 27802517
    [Google Scholar]
  49. FukuokaH. AfshariN.A. The impact of age-related cataract on measures of frailty in an aging global population.Curr. Opin. Ophthalmol.2017281939710.1097/ICU.0000000000000338 27820747
    [Google Scholar]
  50. MiY. WeiC. SunL. Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways.Biomed. Pharmacother.202315711404810.1016/j.biopha.2022.114048 36463827
    [Google Scholar]
  51. AsbellP. DualanI. MindelJ. BrocksD. AhmadM. EpsteinS. Age-related cataract.Lancet2005365945959960910.1016/S0140‑6736(05)70803‑5 15708105
    [Google Scholar]
  52. ShenD. FengY. ZhangX. Antiosteoporosis studies of 20 medicine food homology plants containing quercetin, rutin, and kaempferol: TCM characteristics, in vivo and in vitro activities, potential mechanisms, and food functions.Evid. Based Complement. Alternat. Med.2022202212010.1155/2022/5902293 35399639
    [Google Scholar]
  53. TianT. KoC.N. LuoW. LiD. YangC. The anti-aging mechanism of ginsenosides with medicine and food homology.Food Funct.202314209123913610.1039/D3FO02580B 37766674
    [Google Scholar]
  54. Bahena CulhuacE. BelloM. Unveiling the mechanisms of egcg–p53 interactions through molecular dynamics simulations.ACS Omega2024918200662008510.1021/acsomega.3c10523 38737068
    [Google Scholar]
  55. BlasiakJ. ChojnackiJ. SzczepanskaJ. Epigallocatechin-3-gallate, an active green tea component to support anti-vegfa therapy in wet age-related macular degeneration.Nutrients20231515335810.3390/nu15153358 37571296
    [Google Scholar]
  56. NgT.K. ChuK.O. WangC.C. PangC.P. Green tea catechins as therapeutic antioxidants for glaucoma treatment.Antioxidants2023127132010.3390/antiox12071320 37507860
    [Google Scholar]
  57. ChaudhuryS. BagS. BoseM. DasA.K. GhoshA.K. DasguptaS. Protection of human γB-crystallin from UV-induced damage by epigallocatechin gallate: Spectroscopic and docking studies.Mol. Biosyst.20161292901290910.1039/C6MB00256K 27410057
    [Google Scholar]
  58. CaesaryA.G. SujutiH. SujutiH. Effect of epigallocatechin gallate in green tea on preventing lens opacity and αB-crystallin aggregation in rat model of diabetes.Int. J. Ophthalmol.202316334234710.18240/ijo.2023.03.02 36935798
    [Google Scholar]
  59. Cieuta-WaltiC. Cuenca-RoyoA. LangohrK. Safety and preliminary efficacy on cognitive performance and adaptive functionality of epigallocatechin gallate (egcg) in children with down syndrome. a randomized phase ib clinical trial (PERSEUS study).Genet. Med.202224102004201310.1016/j.gim.2022.06.011 35951014
    [Google Scholar]
  60. SibliniH. Al-HendyA. SegarsJ. Assessing the hepatic safety of epigallocatechin gallate (egcg) in reproductive-aged Women.Nutrients202315232010.3390/nu15020320 36678191
    [Google Scholar]
  61. IsbruckerR.A. BauschJ. EdwardsJ.A. WolzE. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 1: Genotoxicity.Food Chem. Toxicol.200644562663510.1016/j.fct.2005.07.005 16364532
    [Google Scholar]
  62. FuH. ZhangW. YuanQ. PAK1 promotes the proliferation and inhibits apoptosis of human spermatogonial stem cells via PDK1/KDR/ZNF367 and ERK1/2 and AKT pathways.Mol. Ther. Nucleic Acids20181276978610.1016/j.omtn.2018.06.006 30141410
    [Google Scholar]
  63. CampbellW.A. Fritsch-KelleherA. PalazzoI. HoangT. BlackshawS. FischerA.J. Midkine is neuroprotective and influences glial reactivity and the formation of Müller glia‐derived progenitor cells in chick and mouse retinas.Glia20216961515153910.1002/glia.23976 33569849
    [Google Scholar]
  64. KhareV. DammannK. AsbothM. KrnjicA. JambrichM. GascheC. Overexpression of PAK1 promotes cell survival in inflammatory bowel diseases and colitis-associated cancer.Inflamm. Bowel Dis.201521228729610.1097/MIB.0000000000000281 25569743
    [Google Scholar]
  65. WangY. GuX. LiW. ZhangQ. ZhangC. PAK1 overexpression promotes cell proliferation in cutaneous T cell lymphoma via suppression of PUMA and p21.J. Dermatol. Sci.2018901606710.1016/j.jdermsci.2017.11.019 29307600
    [Google Scholar]
  66. DouH. YuP. LiuY. Recent advances in caspase-3, breast cancer, and traditional Chinese medicine: A review.J. Chemother.202436537038810.1080/1120009X.2023.2278014 37936479
    [Google Scholar]
  67. TanakaN. HondaY. KajiwaraY. Myonuclear apoptosis via cleaved caspase‐3 upregulation is related to macrophage accumulation underlying immobilization‐induced muscle fibrosis.Muscle Nerve202265334134910.1002/mus.27473 34890049
    [Google Scholar]
  68. LossiL. CastagnaC. MerighiA. Caspase-3 mediated cell death in the normal development of the mammalian cerebellum.Int. J. Mol. Sci.20181912399910.3390/ijms19123999 30545052
    [Google Scholar]
  69. AsadiM. TaghizadehS. KavianiE. Caspase-3: Structure, function, and biotechnological aspects.Biotechnol. Appl. Biochem.20226941633164510.1002/bab.2233 34342377
    [Google Scholar]
  70. SrivastavaN. SaxenaA.K. Caspase-3 activators as anticancer agents.Curr. Protein Pept. Sci.2023241078380410.2174/1389203724666230227115305 36843371
    [Google Scholar]
  71. LiYong-ning. Jing-jingX.I.A.O. Jian-yongZ.H.A.O. Expression of caspase-3 and cleaved-caspase-3 in the liver of rats with fluorosis.Guiz Medic20164003239240
    [Google Scholar]
  72. LiuL. YanM. YangR. Adiponectin attenuates lipopolysaccharide-induced apoptosis by regulating the Cx43/PI3K/AKT pathway.Front. Pharmacol.20211264422510.3389/fphar.2021.644225 34084134
    [Google Scholar]
  73. ZhangY. YangX. GeX. ZhangF. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice.Biomed. Pharmacother.201910972673310.1016/j.biopha.2018.10.161 30551525
    [Google Scholar]
  74. CrowleyLC WaterhouseNJ Detecting cleaved caspase-3 in apoptotic cells by flow cytometry.Cold Spring Harb Protoc2016201611pdb.prot08731210.1101/pdb.prot08731227803251
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240334265250213064823
Loading
/content/journals/cmm/10.2174/0115665240334265250213064823
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Age-related cataract; apoptosis; cleaved caspase-3; EGCG; lens epithelial cells; PAK1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test