Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Insulin-like growth factor-I (IGF-I) is crucial in controlling cell growth, proliferation, and apoptosis. Its strong link to the development of cancers such as breast, prostate, lung, thyroid, and colorectal has positioned the IGF-1 signalling pathway as a promising target for novel cancer therapies. When activated, the IGF-1 receptor (IGF-1R) binds to IGF-I, playing a central role in promoting tumour cell growth and survival.

Methods

In this study, we combined evolutionary sequences with structural and functional data of IGF-1 to reconstruct ancestral sequences and design novel IGF-1 peptide variants.

Results

The insulin-like growth factor system exhibits a vast sequence diversity, yet it shares a similar structural topology with conserved three pairs of disulfide linkages. Our study reveals that IGF-1 is associated with the IGF system of cell surface receptors through protein-protein interactions. Reconstructed IGF-1 variants show similar structure fold to reported viral IGF-1 competitive antagonists.

Conclusion

This new insight guides the design of novel natural IGF-1 mimic peptides. It enhances our understanding of IGF-1's functionality and opens new avenues for the development of therapeutic peptides and small molecules as anti-cancer agents.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240333309241010123744
2024-10-18
2025-12-27
Loading full text...

Full text loading...

References

  1. GusscottS. JenkinsC.E. LamS.H. GiambraV. PollakM. WengA.P. IGF1R derived PI3K/AKT signaling maintains growth in a subset of human T-cell acute lymphoblastic leukemias.PLoS One2016118e016115810.1371/journal.pone.0161158 27532210
    [Google Scholar]
  2. ZhangX. YuD. SunJ. Visualization of ligand-bound ectodomain assembly in the full-length human IGF-1 receptor by Cryo-EM single-particle analysis.Structure2020285555561.e410.1016/j.str.2020.03.007 32275863
    [Google Scholar]
  3. YoonY.S. KeumN. ZhangX. ChoE. GiovannucciE.L. Circulating levels of IGF-1, IGFBP-3, and IGF-1/IGFBP-3 molar ratio and colorectal adenomas: A meta-analysis.Cancer Epidemiol.20153961026103510.1016/j.canep.2015.09.004 26388613
    [Google Scholar]
  4. MurphyN. Carreras-TorresR. SongM. Circulating levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 associate with risk of colorectal cancer based on serologic and mendelian randomization analyses.Gastroenterology2020158513001312.e2010.1053/j.gastro.2019.12.020 31884074
    [Google Scholar]
  5. ZhangY. GaoC. CaoF. Pan-cancer analysis of IGF-1 and IGF-1R as potential prognostic biomarkers and immunotherapy targets.Front. Oncol.20211175534110.3389/fonc.2021.755341 34804946
    [Google Scholar]
  6. LaronZ. WernerH. Congenital IGF-1 deficiency protects from cancer: Lessons from Laron syndrome.Endocr. Relat. Cancer2023309e22039410.1530/ERC‑22‑0394 37343154
    [Google Scholar]
  7. RaviP. WangV. FichorovaR.N. IGF-1 axis changes with ADT and docetaxel in metastatic prostate cancer.Endocr. Relat. Cancer20233011e23024110.1530/ERC‑23‑0241
    [Google Scholar]
  8. PerksC.M. Role of the insulin-like growth factor (IGF) axis in diseases.Int. J. Mol. Sci.202324231696910.3390/ijms242316969 38069291
    [Google Scholar]
  9. JonesJ. ClemmonsD.R. Insulin-like growth factors and their binding proteins: Biological actions.Endocr. Rev.199516133410.1210/edrv‑16‑1‑3 7758431
    [Google Scholar]
  10. MaciasH. HinckL. Mammary gland development.Wiley Interdiscip. Rev. Dev. Biol.20121453355710.1002/wdev.35 22844349
    [Google Scholar]
  11. YuH. RohanT. Role of the insulin-like growth factor family in cancer development and progression.J. Natl. Cancer Inst.200092181472148910.1093/jnci/92.18.1472 10995803
    [Google Scholar]
  12. GennigensC. Menetrier-CauxC. DrozJ.P. Insulin-Like Growth Factor (IGF) family and prostate cancer.Crit. Rev. Oncol. Hematol.200658212414510.1016/j.critrevonc.2005.10.003 16387509
    [Google Scholar]
  13. GoraiS. MulaS. JonnalgaddaP.N. PatroB.S. ChakrabortyG. In house synthesized novel distyryl-BODIPY dye and polymer assembly as deep-red emitting probe for protamine detection.Talanta202326512491510.1016/j.talanta.2023.124915 37442005
    [Google Scholar]
  14. RinderknechtE. HumbelR.E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin.J. Biol. Chem.197825382769277610.1016/S0021‑9258(17)40889‑1 632300
    [Google Scholar]
  15. KasikJ.W. LuC. MenonR.K. The expanding insulin family: Structural, genomic, and functional considerations.Pediatr. Diabetes20001316917710.1034/j.1399‑5448.2000.010308.x 15016228
    [Google Scholar]
  16. AkshintalaS. SundbyR.T. BernsteinD. Phase I trial of ganitumab plus dasatinib to cotarget the insulin-like growth factor 1 receptor and src family kinase YES in rhabdomyosarcoma.Clin. Cancer Res.202329173329333910.1158/1078‑0432.CCR‑23‑0709 37398992
    [Google Scholar]
  17. FuL. NiuB. ZhuZ. WuS. LiW. CD-HIT: Accelerated for clustering the next-generation sequencing data.Bioinformatics201228233150315210.1093/bioinformatics/bts565 23060610
    [Google Scholar]
  18. TamuraK. StecherG. KumarS. MEGA11: Molecular evolutionary genetics analysis version 11.Mol. Biol. Evol.20213873022302710.1093/molbev/msab120 33892491
    [Google Scholar]
  19. AshkenazyH. AbadiS. MartzE. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules.Nucleic Acids Res.201644W1W344-5010.1093/nar/gkw408 27166375
    [Google Scholar]
  20. SzklarczykD. GableA.L. LyonD. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  21. TörönenP. HolmL. PANNZER —A practical tool for protein function prediction.Protein Sci.202231111812810.1002/pro.4193 34562305
    [Google Scholar]
  22. PettersenE.F. GoddardT.D. HuangC.C. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  23. ZhangF. AltindisE. KahnC.R. DiMarchiR.D. GelfanovV. A viral insulin-like peptide is a natural competitive antagonist of the human IGF-1 receptor.Mol. Metab.20215310131610.1016/j.molmet.2021.101316 34400347
    [Google Scholar]
  24. NguyenL.T. SchmidtH.A. von HaeselerA. MinhB.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Mol. Biol. Evol.201532126827410.1093/molbev/msu300 25371430
    [Google Scholar]
  25. JumperJ. EvansR. PritzelA. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  26. CraigD.B. DombkowskiA.A. Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins.BMC Bioinformatics201314134610.1186/1471‑2105‑14‑346 24289175
    [Google Scholar]
  27. RotweinP. Diversification of the insulin-like growth factor 1 gene in mammals.PLoS One20171212e018964210.1371/journal.pone.0189642 29240807
    [Google Scholar]
  28. BailesJ. SolovievM. Insulin-like growth factor-1 (IGF-1) and its monitoring in medical diagnostic and in sports.Biomolecules202111221710.3390/biom11020217 33557137
    [Google Scholar]
  29. HakunoF. TakahashiS.I. 40 YEARS OF IGF1: IGF1 receptor signaling pathways.J. Mol. Endocrinol.2018611T69T8610.1530/JME‑17‑0311 29535161
    [Google Scholar]
  30. MoreauF. KirkN.S. ZhangF. Interaction of a viral insulin-like peptide with the IGF-1 receptor produces a natural antagonist.Nat. Commun.2022131670010.1038/s41467‑022‑34391‑6 36335114
    [Google Scholar]
  31. TakahashiY. The role of growth hormone and insulin-like growth factor-i in the liver.Int. J. Mol. Sci.2017187144710.3390/ijms18071447 28678199
    [Google Scholar]
  32. VitaleG. PellegrinoG. VolleryM. HoflandL.J. Role of IGF-1 system in the modulation of longevity: Controversies and new insights from a centenarians’ perspective.Front. Endocrinol. (Lausanne)2019102710.3389/fendo.2019.00027 30774624
    [Google Scholar]
  33. Al-SamerriaS. RadovickS. The role of Insulin-like Growth Factor-1 (IGF-1) in the control of neuroendocrine regulation of growth.Cells20211010266410.3390/cells10102664 34685644
    [Google Scholar]
  34. MaglioL.E. Noriega-PrietoJ.A. MarotoI.B. IGF-1 facilitates extinction of conditioned fear.eLife202110e6726710.7554/eLife.67267 33792539
    [Google Scholar]
  35. SpenceM.A. KaczmarskiJ.A. SaundersJ.W. JacksonC.J. Ancestral sequence reconstruction for protein engineers.Curr. Opin. Struct. Biol.20216913114110.1016/j.sbi.2021.04.001 34023793
    [Google Scholar]
  36. PintoG.P. Corbella MoratóM. DemkivA.O. KamerlinS.C.L. Exploiting enzyme evolution for computational protein design. TIBS -.Trends Biochem. Sci.2022475375389
    [Google Scholar]
  37. ZhangW. GustafsonT.A. RutterW.J. JohnsonJ.D. Positively charged side chains in the insulin-like growth factor-1 C- and D-regions determine receptor binding specificity.J. Biol. Chem.199426914106091061310.1016/S0021‑9258(17)34103‑0 8144650
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240333309241010123744
Loading
/content/journals/cmm/10.2174/0115665240333309241010123744
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ASR; cancer; Homo sapiens; IGF-IR; insulin; Insulin-like growth factor-I
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test