Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Inflammation is the natural defense mechanism of the body in response to injury, infection, or other stimuli. Excessive or persistent inflammatory responses can lead to the development of inflammatory diseases. Therefore, elucidating the regulatory mechanisms of inflammatory cells is crucial for understanding the pathogenesis of such diseases and devising novel therapeutic approaches. Moreover, miR-144/451 plays an important role in erythroid maturity and tumour development. Herein, we have reviewed the regulatory role of miR-144/451 in inflammation.

Methods

Papers on miR-144, miR-451, and inflammation were retrieved from PubMed and Web of Science to be analysed and summarised.

Results

miR-144/451 plays a significant role in modulating inflammatory responses. Pro- and anti-inflammatory gene transcription is regulated by miR-144/451 binding to the 3′ untranslated regions. Studies have shown that miR-451 inhibits the activation of various inflammatory cells, including macrophages, neutrophils, and T lymphocytes, thereby reducing the release of inflammatory mediators. However, miR-144 expression varies in different inflammatory diseases. miR-144 expression is downregulated in macrophages after induction by lipopolysaccharide, cysteine, or which promotes the secretion of inflammatory mediators; nonetheless, miR-144-3p overexpression in macrophages can aggravate atherosclerosis. Meanwhile, miR-144 overexpression prevents disruption of the lung endothelial cell barrier, whereas it exacerbates endothelial cell injury in Crohn’s disease.

Conclusion

miR-144/451 may serve as a potential target for the treatment of inflammatory diseases.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240327822241104060015
2024-11-05
2025-10-27
Loading full text...

Full text loading...

References

  1. BartelD.P. MicroRNAs: Genomics, biogenesis, mechanism, and function.Cell2004116228129710.1016/S0092‑8674(04)00045‑5 14744438
    [Google Scholar]
  2. BartelD.P. MicroRNAs: Target recognition and regulatory functions.Cell2009136221523310.1016/j.cell.2009.01.002 19167326
    [Google Scholar]
  3. IborraM. BernuzziF. InvernizziP. DaneseS. MicroRNAs in autoimmunity and inflammatory bowel disease: Crucial regulators in immune response.Autoimmun. Rev.201211530531410.1016/j.autrev.2010.07.002 20627134
    [Google Scholar]
  4. Romero-CordobaS.L. Salido-GuadarramaI. Rodriguez-DorantesM. Hidalgo-MirandaA. miRNA biogenesis: Biological impact in the development of cancer.Cancer Biol. Ther.201415111444145510.4161/15384047.2014.955442 25482951
    [Google Scholar]
  5. SinghR.P. MassachiI. ManickavelS. The role of miRNA in inflammation and autoimmunity.Autoimmun. Rev.201312121160116510.1016/j.autrev.2013.07.003 23860189
    [Google Scholar]
  6. BachaD. WalhaM. Ben SlamaS. Chronic gastritis classifications.Tunis. Med.2018967405410 30430483
    [Google Scholar]
  7. HuangJ. FuX. ChenX. LiZ. HuangY. LiangC. Promising therapeutic targets for treatment of rheumatoid arthritis.Front. Immunol.20211268615510.3389/fimmu.2021.686155 34305919
    [Google Scholar]
  8. SayahA. EnglishJ.C. Rheumatoid arthritis: A review of the cutaneous manifestations.J. Am. Acad. Dermatol.200553219120910.1016/j.jaad.2004.07.023 16021111
    [Google Scholar]
  9. FormosaA. TurgeonP. dos SantosC.C. Role of miRNA dysregulation in sepsis.Mol. Med.20222819910.1186/s10020‑022‑00527‑z 35986237
    [Google Scholar]
  10. YuD. dos SantosC.O. ZhaoG. miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ.Genes Dev.201024151620163310.1101/gad.1942110 20679398
    [Google Scholar]
  11. FangX. ShenF. LechauveC. miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia.Haematologica2018103340641610.3324/haematol.2017.177394 29269522
    [Google Scholar]
  12. KeithJ. ChristakopoulosG.E. FernandezA.G. Loss of miR-144/451 alleviates β-thalassemia by stimulating ULK1-mediated autophagy of free α-globin.Blood20231421091893210.1182/blood.2022017265 37339583
    [Google Scholar]
  13. XuL. WuF. YangL. miR‐144/451 inhibits c‐Myc to promote erythroid differentiation.FASEB J.20203410131941321010.1096/fj.202000941R 33319407
    [Google Scholar]
  14. XuP. PalmerL.E. LechauveC. Regulation of gene expression by miR-144/451 during mouse erythropoiesis.Blood2019133232518252810.1182/blood.2018854604 30971389
    [Google Scholar]
  15. DingL. ZhangY. HanL. Activating and sustaining c-Myc by depletion of miR-144/451 gene locus contributes to B-lymphomagenesis.Oncogene201837101293130710.1038/s41388‑017‑0055‑5 29284789
    [Google Scholar]
  16. GitsC.M.M. van KuijkP.F. JonkersM.B.E. MicroRNA expression profiles distinguish liposarcoma subtypes and implicate miR-145 and miR-451 as tumor suppressors.Int. J. Cancer2014135234836110.1002/ijc.28694 24375455
    [Google Scholar]
  17. GaoZ. ZhangP. XieM. GaoH. YinL. LiuR. miR-144/451 cluster plays an oncogenic role in esophageal cancer by inhibiting cell invasion.Cancer Cell Int.201818118410.1186/s12935‑018‑0679‑8 30479563
    [Google Scholar]
  18. Rodrigo-MuñozJ.M. Gil-MartínezM. Lorente-SorollaC. miR-144-3p is a biomarker related to severe corticosteroid-dependent asthma.Front. Immunol.20221385872210.3389/fimmu.2022.858722 35432357
    [Google Scholar]
  19. SunJ. ZhangW. Huc-MSC-derived exosomal miR-144 alleviates inflammation in LPS-induced preeclampsia-like pregnant rats via the FosB/Flt-1 pathway.Heliyon2024102e2457510.1016/j.heliyon.2024.e24575 38304844
    [Google Scholar]
  20. ScottK.M. CohenD.J. HaysM. Regulation of inflammatory and catabolic responses to IL-1β in rat articular chondrocytes by microRNAs miR-122 and miR-451.Osteoarthritis Cartilage202129111312310.1016/j.joca.2020.09.004 33161100
    [Google Scholar]
  21. ZhangJ. XuX. HuangX. Analysis of microRNA expression profiles in porcine PBMCs after LPS stimulation.Innate Immun.202026543544610.1177/1753425920901560 31969027
    [Google Scholar]
  22. WuF. YuanX. LiuW. Deletion of the miR-144/451 cluster aggravates lethal sepsis-induced lung epithelial oxidative stress and apoptosis.Ann. Transl. Med.2022101053810.21037/atm‑22‑1024 35722395
    [Google Scholar]
  23. LinZ. XieX. GuM. microRNA-144/451 decreases dendritic cell bioactivity via targeting interferon-regulatory factor 5 to limit DSS-induced colitis.Front. Immunol.20221392859310.3389/fimmu.2022.928593 35967345
    [Google Scholar]
  24. BartelS. SchulzN. AlessandriniF. Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma.Sci. Rep.2017714602610.1038/srep46026 28383034
    [Google Scholar]
  25. RosenbergerC.M. PodyminoginR.L. DiercksA.H. miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis.PLoS Pathog.2017134e100630510.1371/journal.ppat.1006305 28380049
    [Google Scholar]
  26. WangM. LiuY. ZhangY. ZhangL. LncRNA LOC729178 acts as a sponge of miR-144-3p to mitigate cigarette smoke extract-induced inflammatory injury via regulating PHLPP2 in 16HBE cells.J. Mol. Histol.202152343744710.1007/s10735‑021‑09972‑2 33847879
    [Google Scholar]
  27. ChungS. LeeY.G. KarpurapuM. Depletion of microRNA-451 in response to allergen exposure accentuates asthmatic inflammation by regulating Sirtuin2.Am. J. Physiol. Lung Cell. Mol. Physiol.20203185L921L93010.1152/ajplung.00457.2019 32159972
    [Google Scholar]
  28. PrajzlerováK. KryštůfkováO. HánováP. High miR-451 expression in peripheral blood mononuclear cells from subjects at risk of developing rheumatoid arthritis.Sci. Rep.2021111471910.1038/s41598‑021‑84004‑3 33633196
    [Google Scholar]
  29. DienerC. KellerA. MeeseE. Emerging concepts of miRNA therapeutics: From cells to clinic.Trends Genet.202238661362610.1016/j.tig.2022.02.006 35303998
    [Google Scholar]
  30. LiY. LuX. LiW. The circRERE/miR-144-3p/TLR2/MMP9 signaling axis in COPD pulmonary monocytes promotes the EMT of pulmonary epithelial cells.Biochem. Biophys. Res. Commun.20226251810.1016/j.bbrc.2022.07.119 35939870
    [Google Scholar]
  31. ShiX. MaW. LiY. MiR-144-5p limits experimental abdominal aortic aneurysm formation by mitigating M1 macrophage-associated inflammation: Suppression of TLR2 and OLR1.J. Mol. Cell. Cardiol.202014311410.1016/j.yjmcc.2020.04.008 32278833
    [Google Scholar]
  32. ZhouG. LiY. NiJ. JiangP. BaoZ. Role and mechanism of miR-144-5p in LPS-induced macrophages.Exp. Ther. Med.2020191241247 31853295
    [Google Scholar]
  33. WuH. LiZ. YangY. Rap1A accelerates homocysteine-induced ANA-1 cells inflammation via synergy of FoxO1 and DNMT3a.Cell. Signal.202310611062710.1016/j.cellsig.2023.110627 36791985
    [Google Scholar]
  34. ZhangH. HaoY. YangA. TGFB3-AS1 promotes Hcy-induced inflammation of macrophages via inhibiting the maturity of miR-144 and upregulating Rap1a.Mol. Ther. Nucleic Acids2021261318133510.1016/j.omtn.2021.10.031 34853730
    [Google Scholar]
  35. AhluwaliaP.K. PandeyR.K. SehajpalP.K. PrajapatiV.K. Perturbed microRNA expression by Mycobacterium tuberculosis promotes macrophage polarization leading to pro-survival foam cell.Front. Immunol.2017810710.3389/fimmu.2017.00107 28228760
    [Google Scholar]
  36. LiuH.Y. Down-regulation of miR-144 after Mycobacterium tuberculosis infection promotes inflammatory factor secretion from macrophages through the Tpl2/ERK pathway.Cell. Mol. Biol.20166228793 26950457
    [Google Scholar]
  37. ZhangD. WuY. LiZ. MiR-144-5p, an exosomal miRNA from bone marrow-derived macrophage in type 2 diabetes, impairs bone fracture healing via targeting Smad1.J. Nanobiotechnology202119122610.1186/s12951‑021‑00964‑8 34340698
    [Google Scholar]
  38. LibbyP. RidkerP.M. MaseriA. Inflammation and athero-sclerosis.Circulation200210591135114310.1161/hc0902.104353 11877368
    [Google Scholar]
  39. OsterudB. BjorklidE. Role of monocytes in atherogenesis.Physiol. Rev.20038341069111210.1152/physrev.00005.2003 14506301
    [Google Scholar]
  40. TabasI. Consequences of cellular cholesterol accumulation: Basic concepts and physiological implications.J. Clin. Invest.2002110790591110.1172/JCI0216452 12370266
    [Google Scholar]
  41. HuY.W. HuY.R. ZhaoJ.Y. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production.PLoS One201494e9499710.1371/journal.pone.0094997 24733347
    [Google Scholar]
  42. BandresE. BitarteN. AriasF. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells.Clin. Cancer Res.20091572281229010.1158/1078‑0432.CCR‑08‑1818 19318487
    [Google Scholar]
  43. LiuJ. XingF. FuQ. hUC‐MSCs exosomal miR‐451 alleviated acute lung injury by modulating macrophage M2 polarization via regulating MIF‐PI3K‐AKT signaling pathway.Environ. Toxicol.202237122819283110.1002/tox.23639 35997581
    [Google Scholar]
  44. LeeY.G. ReaderB.F. HermanD. Sirtuin 2 enhances allergic asthmatic inflammation.JCI Insight201944e12471010.1172/jci.insight.124710 30668546
    [Google Scholar]
  45. BabadjouniR.M. RadwanskiR.E. WalcottB.P. Neuroprotective strategies following intraparenchymal hemorrhage.J. Neurointerv. Surg.20179121202120710.1136/neurintsurg‑2017‑013197 28710084
    [Google Scholar]
  46. WangX. HongY. WuL. Deletion of microRNA-144/451 cluster aggravated brain injury in intracerebral hemorrhage mice by targeting 14-3-3ζ.Front. Neurol.20211155141110.3389/fneur.2020.551411 33510702
    [Google Scholar]
  47. SunX. ZhangH. miR-451 elevation relieves inflammatory pain by suppressing microglial activation-evoked inflammatory response via targeting TLR4.Cell Tissue Res.2018374348749510.1007/s00441‑018‑2898‑7 30069596
    [Google Scholar]
  48. HongZ. ChengJ. YeY. ChenX. ZhangF. MicroRNA-451 attenuates the inflammatory response of activated microglia by downregulating nucleotide binding oligomerization domain-like receptor protein 3.World Neurosurg.2022167e1128e113710.1016/j.wneu.2022.08.139 36087911
    [Google Scholar]
  49. JiangJ.M. MoM.L. LongX.P. XieL.H. MiR-144-3p induced by SP1 promotes IL-1β-induced pyroptosis in chondrocytes via PTEN/PINK1/Parkin axis.Autoimmunity2022551213110.1080/08916934.2021.1983802 34730058
    [Google Scholar]
  50. McInnesI.B. SchettG. Cytokines in the pathogenesis of rheumatoid arthritis.Nat. Rev. Immunol.20077642944210.1038/nri2094 17525752
    [Google Scholar]
  51. ZhaoS. WangY. LiangY. MicroRNA‐126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1.Arthritis Rheum.20116351376138610.1002/art.30196 21538319
    [Google Scholar]
  52. BerzatA. HallA. Cellular responses to extracellular guidance cues.EMBO J.201029162734274510.1038/emboj.2010.170 20717143
    [Google Scholar]
  53. ShahraraS. PickensS.R. DorfleutnerA. PopeR.M. IL-17 induces monocyte migration in rheumatoid arthritis.J. Immunol.200918263884389110.4049/jimmunol.0802246 19265168
    [Google Scholar]
  54. MurataK. YoshitomiH. FuruM. MicroRNA-451 down-regulates neutrophil chemotaxis via p38 MAPK.Arthritis Rheumatol.201466354955910.1002/art.38269 24574214
    [Google Scholar]
  55. KukoyiA.T. FanX. StaitiehB.S. MiR-144 mediates Nrf2 inhibition and alveolar epithelial dysfunction in HIV-1 transgenic rats.Am. J. Physiol. Cell Physiol.20193172C390C39710.1152/ajpcell.00038.2019 31091144
    [Google Scholar]
  56. LiH. ShiH. GaoM. MaN. SunR. Long non-coding RNA CASC2 improved acute lung injury by regulating miR-144-3p/AQP1 axis to reduce lung epithelial cell apoptosis.Cell Biosci.2018811510.1186/s13578‑018‑0205‑7 29492259
    [Google Scholar]
  57. ManfrediA.A. CovinoC. Rovere-QueriniP. MaugeriN. Instructive influences of phagocytic clearance of dying cells on neutrophil extracellular trap generation.Clin. Exp. Immunol.20141791242910.1111/cei.12320 24611549
    [Google Scholar]
  58. LeA. WuY. LiuW. MiR‐144‐induced KLF2 inhibition and NF‐kappaB/CXCR1 activation promote neutrophil extracellular trap–induced transfusion‐related acute lung injury.J. Cell. Mol. Med.202125146511652310.1111/jcmm.16650 34120407
    [Google Scholar]
  59. LiR.D. ShenC.H. TaoY.F. MicroRNA-144 suppresses the expression of cytokines through targeting RANKL in the matured immune cells.Cytokine201810819720410.1016/j.cyto.2018.03.043 29684757
    [Google Scholar]
  60. RosenbergerC.M. PodyminoginR.L. NavarroG. miR-451 regulates dendritic cell cytokine responses to influenza infection.J. Immunol.2012189125965597510.4049/jimmunol.1201437 23169590
    [Google Scholar]
  61. GhisiM. CorradinA. BassoK. Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150.Blood2011117267053706210.1182/blood‑2010‑12‑326629 21551231
    [Google Scholar]
  62. RouasR. Fayyad-KazanH. El ZeinN. Human natural Treg microRNA signature: Role of microRNA‐31 and microRNA‐21 in FOXP3 expression.Eur. J. Immunol.20093961608161810.1002/eji.200838509 19408243
    [Google Scholar]
  63. JiangS. LiC. OliveV. Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation.Blood2011118205487549710.1182/blood‑2011‑05‑355644 21972292
    [Google Scholar]
  64. Guenin-MacéL. CarretteF. Asperti-BoursinF. Mycolactone impairs T cell homing by suppressing microRNA control of L-selectin expression.Proc. Natl. Acad. Sci. USA201110831128331283810.1073/pnas.1016496108 21768364
    [Google Scholar]
  65. LuT.X. HartnerJ. LimE.J. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity.J. Immunol.201118763362337310.4049/jimmunol.1101235 21849676
    [Google Scholar]
  66. LiX. SandaT. LookA.T. NovinaC.D. von BoehmerH. Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL.J. Exp. Med.2011208466367510.1084/jem.20102384 21464222
    [Google Scholar]
  67. Smigielska-CzepielK. van den BergA. JellemaP. Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs.Genes Immun.201415211512510.1038/gene.2013.69 24401767
    [Google Scholar]
  68. MorandiF. PistoiaV. Soluble HLA-G modulates miRNA-210 and miRNA-451 expression in activated CD4+ T lymphocytes.Int. Immunol.201325527928510.1093/intimm/dxs108 23220581
    [Google Scholar]
  69. ChapmanL.M. TureS.K. FieldD.J. MorrellC.N. miR-451 limits CD4+ T cell proliferative responses to infection in mice.Immunol. Res.201765482884010.1007/s12026‑017‑8919‑x 28378118
    [Google Scholar]
  70. AmadoT. AmorimA. EnguitaF.J. MicroRNA-181a regulates IFN-γ expression in effector CD8+ T cell differentiation.J. Mol. Med. (Berl.)202098230932010.1007/s00109‑019‑01865‑y 32002568
    [Google Scholar]
  71. Hernández-WaliasF. Ruiz-de-LeónM.J. Rosado-SánchezI. New signatures of poor CD4 cell recovery after suppressive antiretroviral therapy in HIV-1-infected individuals: Involvement of miR-192, IL-6, sCD14 and miR-144.Sci. Rep.2020101293710.1038/s41598‑020‑60073‑8 32076107
    [Google Scholar]
  72. LiuY. WangX. JiangJ. CaoZ. YangB. ChengX. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis.Mol. Immunol.2011489-101084109010.1016/j.molimm.2011.02.001 21367459
    [Google Scholar]
  73. ZhaoC. LiX. YangY. An analysis of Treg/Th17 cells imbalance associated microRNA networks regulated by moxibustion therapy on Zusanli (ST36) and Shenshu (BL23) in mice with collagen induced arthritis.Am. J. Transl. Res.201911740294045 31396316
    [Google Scholar]
  74. LiuR. JiangC. LiJ. Serum-derived exosomes containing NEAT1 promote the occurrence of rheumatoid arthritis through regulation of miR-144-3p/ROCK2 axis.Ther. Adv. Chronic Dis.202112204062232199170510.1177/2040622321991705 33995991
    [Google Scholar]
  75. SiddiquiM.R. AkhtarS. ShahidM. TauseefM. McDonoughK. ShanleyT.P. miR-144–mediated inhibition of ROCK1 protects against LPS-induced lung endothelial hyperpermeability.Am. J. Respir. Cell Mol. Biol.201961225726510.1165/rcmb.2018‑0235OC 30811958
    [Google Scholar]
  76. QuP. XieX. ChiJ. Circulating exosomal miR-144-3p from Crohn’s Disease patients inhibits human umbilical vein endothelial cell function by targeting FN1.Dis. Markers2022202211210.1155/2022/8219557 35692876
    [Google Scholar]
  77. LiuY. XuJ. GuR. Circulating exosomal miR-144-3p inhibits the mobilization of endothelial progenitor cells post myocardial infarction via regulating the MMP9 pathway.Aging (Albany NY)20201216162941630310.18632/aging.103651 32843584
    [Google Scholar]
  78. FengL. YangX. LiangS. Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway.Part. Fibre Toxicol.20191611610.1186/s12989‑019‑0300‑x 30975181
    [Google Scholar]
  79. TangW. ShenZ. GuoJ. SunS. Screening of long non-coding RNA and TUG1 inhibits proliferation with TGF-β induction in patients with COPD.Int. J. Chron. Obstruct. Pulmon. Dis.2016112951296410.2147/COPD.S109570 27932875
    [Google Scholar]
  80. SongB. ChenY. Long non-coding RNA SNHG4 aggravates cigarette smoke-induced COPD by regulating miR-144-3p/EZH2 axis.BMC Pulm. Med.202323151310.1186/s12890‑023‑02818‑5 38114929
    [Google Scholar]
  81. XuR. ShaoZ. CaoQ. MicroRNA-144-3p enhances LPS induced septic acute lung injury in mice through downregulating Caveolin-2.Immunol. Lett.2021231182510.1016/j.imlet.2020.12.015 33418009
    [Google Scholar]
  82. McGrathK. EdiR. Diabetic kidney disease: Diagnosis, treatment, and prevention.Am. Fam. Physician20199912751759 31194487
    [Google Scholar]
  83. ZhangZ. LuoX. DingS. MicroRNA‐451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy.FEBS Lett.20125861202610.1016/j.febslet.2011.07.042 21827757
    [Google Scholar]
  84. SunY. PengR. PengH. miR-451 suppresses the NF-kappaB-mediated proinflammatory molecules expression through inhibiting LMP7 in diabetic nephropathy.Mol. Cell. Endocrinol.2016433758610.1016/j.mce.2016.06.004 27264074
    [Google Scholar]
  85. WeiH. LiJ. LiY. SongJ. MicroRNA-451 inhibits inflammation and proliferation of glomerular mesangial cells through down-regulating PSMD11 and NF-κB p65.Biosci. Rep.20193910BSR2019145510.1042/BSR20191455 31652441
    [Google Scholar]
  86. LiJ. WangR. GeY. ChenD. WuB. FangF. Assessment of microRNA‐144‐5p and its putative targets in inflamed gingiva from chronic periodontitis patients.J. Periodontal Res.201954326627710.1111/jre.12627 30450635
    [Google Scholar]
  87. LiQ. HuZ. YangF. PengY. Circ_0066881 targets miR-144-5p/RORA axis to alleviate LPS-induced apoptotic and inflammatory damages in human periodontal ligament cells.Innate Immun.202228516417310.1177/17534259221079812 35635221
    [Google Scholar]
  88. LinY.Y. KoC.Y. LiuS.C. miR‐144‐3p ameliorates the progression of osteoarthritis by targeting IL‐1β: Potential therapeutic implications.J. Cell. Physiol.2021236106988700010.1002/jcp.30361 33772768
    [Google Scholar]
  89. WangZ.C. LuH. ZhouQ. MiR-451 inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion in rheumatoid arthritis through mediating p38MAPK signaling pathway.Int. J. Clin. Exp. Pathol.20158111456214567 26823778
    [Google Scholar]
  90. GlémainA. NéelM. NéelA. Neutrophil-derived extracellular vesicles induce endothelial inflammation and damage through the transfer of miRNAs.J. Autoimmun.202212910282610.1016/j.jaut.2022.102826 35378380
    [Google Scholar]
  91. MengS. TangC. DengM. Tropoelastin-pretreated exosomes from adipose-derived stem cells improve the synthesis of cartilage matrix and alleviate osteoarthritis.J. Funct. Biomater.202314420310.3390/jfb14040203 37103293
    [Google Scholar]
  92. LamL.K.M. MurphyS. KokkinakiD. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia.Sci. Transl. Med.202113616eabj100810.1126/scitranslmed.abj1008 34669439
    [Google Scholar]
  93. AshrafizadehM. ZarrabiA. MostafaviE. Non-coding RNA-based regulation of inflammation.Semin. Immunol.20225910160610.1016/j.smim.2022.101606 35691882
    [Google Scholar]
  94. BashiA. LekporC. HoodJ.L. ThompsonW.E. StilesJ.K. DrissA. Modulation of heme-induced inflammation using microRNA-loaded liposomes: Implications for hemolytic disorders such as malaria and sickle cell disease.Int. J. Mol. Sci.202324231693410.3390/ijms242316934 38069257
    [Google Scholar]
  95. LeeS.W.L. PaolettiC. CampisiM. MicroRNA delivery through nanoparticles.J. Control. Release2019313809510.1016/j.jconrel.2019.10.007 31622695
    [Google Scholar]
  96. LaiJ.J. ChauZ.L. ChenS.Y. Exosome processing and characterization approaches for research and technology development.Adv. Sci. (Weinh.)2022915210322210.1002/advs.202103222 35332686
    [Google Scholar]
  97. FeiQ. ShaloskyE.M. BarnesR. Macrophage-targeted lipid nanoparticle delivery of microRNA-146a to mitigate hemorrhagic shock-induced acute respiratory distress syndrome.ACS Nano20231717165391655210.1021/acsnano.3c01814 37595605
    [Google Scholar]
  98. ZhuJ. YangS. QiY. Stem cell–homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model.Sci. Adv.2022813eabk001110.1126/sciadv.abk0011 35353555
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240327822241104060015
Loading
/content/journals/cmm/10.2174/0115665240327822241104060015
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test