Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

The plague caused by has a high case fatality rate. It is often transmitted from person to person through mosquito bites, causing serious disease transmission. Due to its clinical symptoms being very similar to influenza, it is difficult to detect by people. Traditional detection methods for mainly include bacterial culture and serological identification, which are cumbersome and require high experimental conditions. Therefore, a fast and effective detection method is very important. At present, polymerase chain reaction (PCR) is one of the methods for rapid detection of . In this review, we focus on the application, advantages, and disadvantages of multiplex PCR technology in clinical detection.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240321812240918095931
2024-09-24
2025-10-28
Loading full text...

Full text loading...

/deliver/fulltext/cmm/25/8/CMM-25-8-01.html?itemId=/content/journals/cmm/10.2174/0115665240321812240918095931&mimeType=html&fmt=ahah

References

  1. BarbieriR. SignoliM. ChevéD. Yersinia pestis: The natural history of plague.Clin. Microbiol. Rev.2020341e00044e1910.1128/CMR.00044‑19 33298527
    [Google Scholar]
  2. ZietzB.P. DunkelbergH. The history of the plague and the research on the causative agent Yersinia pestis.Int. J. Hyg. Environ. Health2004207216517810.1078/1438‑4639‑00259 15031959
    [Google Scholar]
  3. Hashemi ShahrakiA. CarnielE. MostafaviE. Plague in Iran: Its history and current status.Epidemiol. Health201638e201603310.4178/epih.e2016033
    [Google Scholar]
  4. SunW. Plague vaccines: Status and future.Adv. Exp. Med. Biol.201691831336010.1007/978‑94‑024‑0890‑4_12 27722869
    [Google Scholar]
  5. AnisimovA.P. LindlerL.E. PierG.B. Intraspecific diversity of Yersinia pestis.Clin. Microbiol. Rev.200417243446410.1128/CMR.17.2.434‑464.2004 15084509
    [Google Scholar]
  6. RiedelS. Plague: From natural disease to bioterrorism.Proc. Bayl. Univ. Med. Cent.200518211612410.1080/08998280.2005.11928049 16200159
    [Google Scholar]
  7. BitamI. BazizB. RolainJ.M. BelkaidM. RaoultD. Zoonotic focus of plague, Algeria.Emerg. Infect. Dis.200612121975197710.3201/eid1212.060522 17326957
    [Google Scholar]
  8. GageK.L. KosoyM.Y. Natural history of plague: Perspectives from more than a century of research.Annu. Rev. Entomol.200550150552810.1146/annurev.ento.50.071803.130337 15471529
    [Google Scholar]
  9. SunW. SinghA.K. Plague vaccine: Recent progress and prospects.NPJ Vaccines2019411110.1038/s41541‑019‑0105‑9 30792905
    [Google Scholar]
  10. DrancourtM. RaoultD. Molecular history of plague.Clin. Microbiol. Infect.2016221191191510.1016/j.cmi.2016.08.031 27615720
    [Google Scholar]
  11. YangR. Plague: Recognition, treatment, and prevention.J. Clin. Microbiol.2017561e01519e17 29070654
    [Google Scholar]
  12. McNallyA. ThomsonN.R. ReuterS. WrenB.W. ‘Add, stir and reduce’: Yersinia spp. as model bacteria for pathogen evolution.Nat. Rev. Microbiol.201614317719010.1038/nrmicro.2015.29 26876035
    [Google Scholar]
  13. DemeureC.E. DussurgetO. Mas FiolG. Le GuernA.S. SavinC. Pizarro-CerdáJ. Yersinia pestis and plague: An updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics.Genes Immun.201920535737010.1038/s41435‑019‑0065‑0 30940874
    [Google Scholar]
  14. EasterdayW.R. KausrudK.L. StarB. An additional step in the transmission of Yersinia pestis?ISME J.20126223123610.1038/ismej.2011.105 21833036
    [Google Scholar]
  15. SkurnikM. JaakkolaS. MattinenL. Bacteriophages fEV-1 and fD1 Infect Yersinia pestis.Viruses2021137138410.3390/v13071384 34372590
    [Google Scholar]
  16. SchofieldD.A. MolineuxI.J. WestwaterC. Diagnostic bioluminescent phage for detection of Yersinia pestis.J. Clin. Microbiol.200947123887389410.1128/JCM.01533‑09 19828743
    [Google Scholar]
  17. ButlerT. Plague gives surprises in the first decade of the 21st century in the United States and worldwide.Am. J. Trop. Med. Hyg.201389478879310.4269/ajtmh.13‑0191 24043686
    [Google Scholar]
  18. SaeedA.A.B. Al-HamdanN.A. FontaineR.E. Plague from eating raw camel liver.Emerg. Infect. Dis.20051191456145710.3201/eid1109.050081 16229781
    [Google Scholar]
  19. NyirendaS.S. Hang’ombeB.M. MulengaE. KilonzoB.S. Serological and PCR investigation of Yersinia pestis in potential reservoir hosts from a plague outbreak focus in Zambia.BMC Res. Notes201710134510.1186/s13104‑017‑2667‑9 28754138
    [Google Scholar]
  20. ChouikhaI. HinnebuschB.J. Yersinia–flea interactions and the evolution of the arthropod-borne transmission route of plague.Curr. Opin. Microbiol.201215323924610.1016/j.mib.2012.02.003 22406208
    [Google Scholar]
  21. MunyenyiwaA. ZimbaM. NhiwatiwaT. BarsonM. Plague in Zimbabwe from 1974 to 2018: A review article.PLoS Negl. Trop. Dis.20191311e000776110.1371/journal.pntd.0007761 31751348
    [Google Scholar]
  22. GlatterK.A. FinkelmanP. History of the plague: An ancient pandemic for the age of COVID-19.Am. J. Med.2021134217618110.1016/j.amjmed.2020.08.019 32979306
    [Google Scholar]
  23. AndrianaivoarimananaV. WagnerD.M. BirdsellD.N. Transmission of antimicrobial resistant Yersinia pestis during a pneumonic plague outbreak.Clin. Infect. Dis.202274469570210.1093/cid/ciab606 34244722
    [Google Scholar]
  24. WalløeL. Medieval and modern bubonic plague: Some clinical continuities.Med. Hist.200852S27597310.1017/S0025727300072094 18575082
    [Google Scholar]
  25. LaytonR.C. BraselT. GigliottiA. Primary pneumonic plague in the African Green monkey as a model for treatment efficacy evaluation.J. Med. Primatol.201140161710.1111/j.1600‑0684.2010.00443.x 20722770
    [Google Scholar]
  26. WickremesingheR.S. Bubonic plague - A clinical case with typical microscopic morphology.Ceylon Med. J.1997423143144 9357126
    [Google Scholar]
  27. DrummondW.K. NelsonC.A. FowlerJ. EpsonE.E. MeadP.S. LawaczeckE.W. Plague in a pediatric patient: Case report and use of polymerase chain reaction as a diagnostic aid.J. Pediatric Infect. Dis. Soc.201434e38e4110.1093/jpids/piu001 26625461
    [Google Scholar]
  28. KaneS.R. ShahS.R. AlfaroT.M. Development of a rapid viability polymerase chain reaction method for detection of Yersinia pestis.J. Microbiol. Methods2019162212710.1016/j.mimet.2019.05.005 31095987
    [Google Scholar]
  29. SplettstoesserW.D. RahalisonL. GrunowR. NeubauerH. ChanteauS. Evaluation of a standardized F1 capsular antigen capture ELISA test kit for the rapid diagnosis of plague.FEMS Immunol. Med. Microbiol.200441214915510.1016/j.femsim.2004.02.005 15145459
    [Google Scholar]
  30. ThullierP. RajerisonM. GuglielmoV. ChanteauS. Short report: Serodiagnosis of plague in humans and rats using a rapid test.Am. J. Trop. Med. Hyg.200369445045110.4269/ajtmh.2003.69.450 14640508
    [Google Scholar]
  31. TavaresD.H.C. BezerraM.F. MagalhãesF.B. A new recombinant F1 antigen as a cost and time-effective tool for plague diagnosis.J. Microbiol. Methods202017210590310.1016/j.mimet.2020.105903 32229265
    [Google Scholar]
  32. HauD. WadeB. LovejoyC. Development of a dual antigen lateral flow immunoassay for detecting Yersinia pestis.PLoS Negl. Trop. Dis.2022163e001028710.1371/journal.pntd.0010287 35320275
    [Google Scholar]
  33. NikiforovV.V. GaoH. ZhouL. AnisimovA. Plague: Clinics, diagnosis and treatment.Adv. Exp. Med. Biol.201691829331210.1007/978‑94‑024‑0890‑4_11 27722868
    [Google Scholar]
  34. JullienS. DissanayakeH.A. ChaplinM. Rapid diagnostic tests for plague.Cochrane Database Syst. Rev.202066CD013459 32597510
    [Google Scholar]
  35. MullisK.B. FaloonaF.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol19871553355010.1016/0076‑6879(87)55023‑6 3431465
    [Google Scholar]
  36. NorkinaO.V. KulichenkoA.N. GintsburgA.L. Development of a diagnostic test for Yersinia pestis by the polymerase chain reaction.J. Appl. Bacteriol.199476324024510.1111/j.1365‑2672.1994.tb01622.x 8157543
    [Google Scholar]
  37. FeketeA. BantleJ.A. HallingS.M. SanbornM.R. Preliminary development of a diagnostic test for Brucella using polymerase chain reaction.J. Appl. Bacteriol.199069221622710.1111/j.1365‑2672.1990.tb01512.x 2272943
    [Google Scholar]
  38. JanseI. HamidjajaR.A. BokJ.M. van RotterdamB.J. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification.BMC Microbiol.201010131410.1186/1471‑2180‑10‑314 21143837
    [Google Scholar]
  39. Safari ForoshaniN. KaramiA. PouraliF. Simultaneous and rapid detection of Salmonella typhi, Bacillus anthracis, and Yersinia pestis by using multiplex Polymerase Chain Reaction (PCR).Iran. Red Crescent Med. J.20131511e920810.5812/ircmj.9208 24719692
    [Google Scholar]
  40. EngelthalerD.M. GageK.L. MontenieriJ.A. ChuM. CarterL.G. PCR detection of Yersinia pestis in fleas: comparison with mouse inoculation.J. Clin. Microbiol.19993761980198410.1128/JCM.37.6.1980‑1984.1999 10325359
    [Google Scholar]
  41. IqbalS.S. ChambersJ.P. GoodeM.T. ValdesJ.J. BrubakerR.R. Detection of Yersinia pestis by pesticin fluorogenic probe-coupled PCR.Mol. Cell. Probes200014210911410.1006/mcpr.2000.0295 10799272
    [Google Scholar]
  42. NeubauerH. MeyerH. PriorJ. AleksicS. HenselA. SplettstösserW. A combination of different polymerase chain reaction (PCR) assays for the presumptive identification of Yersinia pestis.J. Vet. Med. B Infect. Dis. Vet. Public Health200047857358010.1046/j.1439‑0450.2000.00384.x 11075545
    [Google Scholar]
  43. RahalisonL. VololonirinaE. RatsitorahinaM. ChanteauS. Diagnosis of bubonic plague by PCR in Madagascar under field conditions.J. Clin. Microbiol.200038126026310.1128/JCM.38.1.260‑263.2000 10618097
    [Google Scholar]
  44. LoïezC. HerweghS. WalletF. ArmandS. GuinetF. CourcolR.J. Detection of Yersinia pestis in sputum by real-time PCR.J. Clin. Microbiol.200341104873487510.1128/JCM.41.10.4873‑4875.2003 14532247
    [Google Scholar]
  45. ZhangY. WangZ. WangW. YuH. JinM. Applications of polymerase chain reaction based methods for the diagnosis of plague. [Review]Exp. Ther. Med.202224251110.3892/etm.2022.11438 35837060
    [Google Scholar]
  46. BrubakerR.R. Factors promoting acute and chronic diseases caused by yersiniae.Clin. Microbiol. Rev.19914330932410.1128/CMR.4.3.309 1889045
    [Google Scholar]
  47. HammerlJ.A. FreytagB. LankaE. AppelB. HertwigS. The pYV virulence plasmids of Yersinia pseudotuberculosis and Y. pestis contain a conserved DNA region responsible for the mobilization by the self‐transmissible plasmid pYE854.Environ. Microbiol. Rep.20124443343810.1111/j.1758‑2229.2012.00353.x 23760829
    [Google Scholar]
  48. ZaubermanA. TidharA. LevyY. Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague.PLoS One200946e593810.1371/journal.pone.0005938 19529770
    [Google Scholar]
  49. KamanW.E. HawkeyS. van der KleijD. BroekhuijsenM.P. SilmanN.J. BikkerF.J. A comprehensive study on the role of the Yersinia pestis virulence markers in an animal model of pneumonic plague.Folia Microbiol. (Praha)20115629510210.1007/s12223‑011‑0027‑z 21468758
    [Google Scholar]
  50. BeesleyE.D. BrubakerR.R. JanssenW.A. SurgallaM.J. Pesticins. 3. Expression of coagulase and mechanism of fibrinolysis.J. Bacteriol.1967941192610.1128/jb.94.1.19‑26.1967 6027989
    [Google Scholar]
  51. SebbaneF. UverskyV.N. AnisimovA.P. Yersinia pestis plasminogen activator.Biomolecules20201011155410.3390/biom10111554 33202679
    [Google Scholar]
  52. BacotA.W. MartinC.J. LXVII. Observations on the mechanism of the transmission of plague by fleas.J. Hyg. (Lond.)191413423439 20474555
    [Google Scholar]
  53. SodeindeO.A. GoguenJ.D. Genetic analysis of the 9.5-kilobase virulence plasmid of Yersinia pestis.Infect. Immun.198856102743274810.1128/iai.56.10.2743‑2748.1988 2843470
    [Google Scholar]
  54. SodeindeO.A. SubrahmanyamY.V.B.K. StarkK. QuanT. BaoY. GoguenJ.D. A surface protease and the invasive character of plague.Science199225850841004100710.1126/science.1439793 1439793
    [Google Scholar]
  55. ArmougomF. BitamI. CroceO. Genomic insights into a new Citrobacter koseri strain revealed gene exchanges with the virulence-associated Yersinia pestis pPCP1 plasmid.Front. Microbiol.2016734010.3389/fmicb.2016.00340 27014253
    [Google Scholar]
  56. HänschS. CilliE. CatalanoG. The pla gene, encoding plasminogen activator, is not specific to Yersinia pestis.BMC Res. Notes20158153510.1186/s13104‑015‑1525‑x 26438258
    [Google Scholar]
  57. ButlerT. Plague into the 21st century.Clin. Infect. Dis.200949573674210.1086/604718 19606935
    [Google Scholar]
  58. HinnebuschB.J. RudolphA.E. CherepanovP. DixonJ.E. SchwanT.G. ForsbergÅ. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector.Science2002296556873373510.1126/science.1069972 11976454
    [Google Scholar]
  59. ChenT.H. ElbergS.S. Scanning electron microscopic study of virulent Yersinia pestis and Yersinia pseudotuberculosis type 1.Infect. Immun.197715397297710.1128/iai.15.3.972‑977.1977 858647
    [Google Scholar]
  60. RuncoL.M. MyrczekS. BliskaJ.B. ThanassiD.G. Biogenesis of the fraction 1 capsule and analysis of the ultrastructure of Yersinia pestis.J. Bacteriol.200819093381338510.1128/JB.01840‑07 18310330
    [Google Scholar]
  61. FriedlanderA.M. WelkosS.L. WorshamP.L. Relationship between virulence and immunity as revealed in recent studies of the F1 capsule of Yersinia pestis.Clin. Infect. Dis.199521S178S18110.1093/clinids/21.Supplement_2.S178 8845449
    [Google Scholar]
  62. YangR. DuZ. HanY. Omics strategies for revealing Yersinia pestis virulence.Front. Cell. Infect. Microbiol.2012215710.3389/fcimb.2012.00157 23248778
    [Google Scholar]
  63. DuY. RosqvistR. ForsbergÅ. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis.Infect. Immun.20027031453146010.1128/IAI.70.3.1453‑1460.2002 11854232
    [Google Scholar]
  64. SebbaneF. JarrettC. GardnerD. LongD. HinnebuschB.J. The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague.Infect. Immun.20097731222122910.1128/IAI.00950‑08 19103769
    [Google Scholar]
  65. IsbergR.R. VoorhisD.L. FalkowS. Identification of invasin: A protein that allows enteric bacteria to penetrate cultured mammalian cells.Cell198750576977810.1016/0092‑8674(87)90335‑7 3304658
    [Google Scholar]
  66. MillerV.L. FarmerJ.J.III HillW.E. FalkowS. The ail locus is found uniquely in Yersinia enterocolitica serotypes commonly associated with disease.Infect. Immun.198957112113110.1128/iai.57.1.121‑131.1989 2642465
    [Google Scholar]
  67. FerberD.M. BrubakerR.R. Plasmids in Yersinia pestis.Infect. Immun.198131283984110.1128/iai.31.2.839‑841.1981 7216478
    [Google Scholar]
  68. Centers for Disease Control and Prevention (CDC) Fatal laboratory-acquired infection with an attenuated Yersinia pestis strain - Chicago, Illinois, 2009.MMWR Morb. Mortal. Wkly. Rep.2011607201205 21346706
    [Google Scholar]
  69. WilliamsJ.E. HarrisonD.N. CavanaughD.C. Cryptic infection of rats with non-encapsulated variants of Yersinia pestis.Trans. R. Soc. Trop. Med. Hyg.197569117117210.1016/0035‑9203(75)90039‑5 1145712
    [Google Scholar]
  70. TsukanoH. ItohK.I. SuzukiS. WatanabeH. Detection and identification of Yersinia pestis by polymerase chain reaction (PCR) using multiplex primers.Microbiol. Immunol.1996401077377510.1111/j.1348‑0421.1996.tb01140.x 8981352
    [Google Scholar]
  71. HigginsJ.A. EzzellJ. HinnebuschB.J. ShipleyM. HenchalE.A. IbrahimM.S. 5′ nuclease PCR assay to detect Yersinia pestis.J. Clin. Microbiol.19983682284228810.1128/JCM.36.8.2284‑2288.1998 9666006
    [Google Scholar]
  72. HinnebuschJ. SchwanT.G. New method for plague surveillance using polymerase chain reaction to detect Yersinia pestis in fleas.J. Clin. Microbiol.19933161511151410.1128/jcm.31.6.1511‑1514.1993 8314993
    [Google Scholar]
  73. ZasadaA.A. FormińskaK. ZacharczukK. Fast identification of Yersinia pestis, Bacillus anthracis and Francisella tularensis based on conventional PCR.Pol. J. Microbiol.201362445345510.33073/pjm‑2013‑062 24730142
    [Google Scholar]
  74. McDonaldR. CaoT. BorschelR. Multiplexing for the detection of multiple biowarfare agents shows promise in the field.Mil. Med.2001166323723910.1093/milmed/166.3.237 11263027
    [Google Scholar]
  75. MeloA.C. AlmeidaA.M.P. LealN.C. Retrospective study of a plague outbreak by multiplex-PCR.Lett. Appl. Microbiol.200337536136410.1046/j.1472‑765X.2003.01377.x 14633104
    [Google Scholar]
  76. LindlerL.E. FanW. JahanN. Detection of ciprofloxacin-resistant Yersinia pestis by fluorogenic PCR using the LightCycler.J. Clin. Microbiol.200139103649365510.1128/JCM.39.10.3649‑3655.2001 11574586
    [Google Scholar]
  77. BaiY. MotinV. EnscoreR.E. Pentaplex real‐time PCR for differential detection of Yersinia pestis and Y. pseudotuberculosis and application for testing fleas collected during plague epizootics.MicrobiologyOpen2020910e110510.1002/mbo3.1105 32783386
    [Google Scholar]
  78. SouzaG. AlmeidaA. FariasA. LealN. AbathF. Development and evaluation of a single tube nested PCR based approach (STNPCR) for the diagnosis of plague.Adv. Exp. Med. Biol.200760335135910.1007/978‑0‑387‑72124‑8_32 17966431
    [Google Scholar]
  79. CampbellJ. LoweJ. WalzS. EzzellJ. Rapid and specific identification of Yersinia pestis by using a nested polymerase chain reaction procedure.J. Clin. Microbiol.199331375875910.1128/jcm.31.3.758‑759.1993 8458980
    [Google Scholar]
  80. LealN.C. AlmeidaA.M.P. Diagnosis of plague and identi-fication of virulence markers in Yersinia pestis by multiplex-PCR.Rev. Inst. Med. Trop. São Paulo199941633934210.1590/S0036‑46651999000600002 10671286
    [Google Scholar]
  81. RiehmJ.M. RahalisonL. ScholzH.C. Detection of Yersinia pestis using real-time PCR in patients with sus-pected bubonic plague.Mol. Cell. Probes201125181210.1016/j.mcp.2010.09.002 20933595
    [Google Scholar]
  82. StewartA. SatterfieldB. CohenM. O’NeillK. RobisonR. A quadruplex real-time PCR assay for the detection of Yersinia pestis and its plasmids.J. Med. Microbiol.200857332433110.1099/jmm.0.47485‑0 18287295
    [Google Scholar]
  83. MateroP. PasanenT. LaukkanenR. Real‐time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.Acta Pathol Microbiol Scand Suppl20091171344410.1111/j.1600‑0463.2008.00013.x 19161535
    [Google Scholar]
  84. VanlalhmuakaT.K. ThavachelvamK. TutejaU. SarikaK. NagendraS. KumarS. Reverse line blot macroarray for simultaneous detection and characterization of four biological warfare agents.Indian J. Microbiol.2013531414710.1007/s12088‑012‑0330‑7 24426077
    [Google Scholar]
  85. MateroP. HemmiläH. TomasoH. Rapid field detection assays for Bacillus anthracis, Brucella spp., Francisella tularensis and Yersinia pestis.Clin. Microbiol. Infect.2011171344310.1111/j.1469‑0691.2010.03178.x 20132255
    [Google Scholar]
  86. WoubitA. YehualaeshetT. HabtemariamT. SamuelT. Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens.J. Food Prot.201275466067010.4315/0362‑028X.JFP‑11‑480 22488053
    [Google Scholar]
  87. TuringanR.S. ThomannH.U. ZolotovaA. TanE. SeldenR.F. Rapid focused sequencing: A multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.PLoS One201382e5609310.1371/journal.pone.0056093 23418519
    [Google Scholar]
  88. KuskeC.R. BarnsS.M. GrowC.C. MerrillL. DunbarJ. Environmental survey for four pathogenic bacteria and closely related species using phylogenetic and functional genes.J. Forensic Sci.200651354855810.1111/j.1556‑4029.2006.00131.x 16696701
    [Google Scholar]
  89. SkottmanT. PiiparinenH. HyytiäinenH. MyllysV. SkurnikM. NikkariS. Simultaneous real-time PCR detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis.Eur. J. Clin. Microbiol. Infect. Dis.200726320721110.1007/s10096‑007‑0262‑z 17294160
    [Google Scholar]
  90. YangS. RothmanR.E. HardickJ. Rapid polymerase chain reaction-based screening assay for bacterial biothreat agents.Acad. Emerg. Med.200815438839210.1111/j.1553‑2712.2008.00061.x 18370996
    [Google Scholar]
  91. ElsholzB. NitscheA. AchenbachJ. Electrical microarrays for highly sensitive detection of multiplex PCR products from biological agents.Biosens. Bioelectron.20092461737174310.1016/j.bios.2008.09.003 18954971
    [Google Scholar]
  92. ReganJ.F. MakarewiczA.J. HindsonB.J. Environmental monitoring for biological threat agents using the autonomous pathogen detection system with multiplexed polymerase chain reaction.Anal. Chem.200880197422742910.1021/ac801125x 18763806
    [Google Scholar]
  93. WilsonW.J. ErlerA.M. NasarabadiS.L. SkowronskiE.W. ImbroP.M. A multiplexed PCR-coupled liquid bead array for the simultaneous detection of four biothreat agents.Mol. Cell. Probes200519213714410.1016/j.mcp.2004.10.005 15680215
    [Google Scholar]
  94. DeshpandeA. GansJ. GravesS.W. A rapid multiplex assay for nucleic acid-based diagnostics.J. Microbiol. Methods201080215516310.1016/j.mimet.2009.12.001 20006656
    [Google Scholar]
  95. IiA.N. LinS.C. LepeneB. ZhouW. Kehn-HallK. van HoekM.L. Use of magnetic nanotrap particles in capturing Yersinia pestis virulence factors, nucleic acids and bacteria.J. Nanobiotechnology202119118610.1186/s12951‑021‑00859‑8 34154629
    [Google Scholar]
  96. TranT.N.N. SignoliM. FozzatiL. AboudharamG. RaoultD. DrancourtM. High throughput, multiplexed pathogen detection authenticates plague waves in medieval Venice, Italy.PLoS One201163e1673510.1371/journal.pone.0016735 21423736
    [Google Scholar]
  97. Hang’ombeB.M. NakamuraI. SamuiK.L. Evidence of Yersinia pestis DNA from fleas in an endemic plague area of Zambia.BMC Res. Notes2012517210.1186/1756‑0500‑5‑72 22280795
    [Google Scholar]
  98. PappasG. PanagopoulouP. AkritidisN. Reclassifying bioterrorism risk: Are we preparing for the proper pathogens?J. Infect. Public Health200922556110.1016/j.jiph.2009.03.002 20701862
    [Google Scholar]
  99. BrandaJ.A. RuoffK. Bioterrorism. Clinical recognition and primary management.Am. J. Clin. Pathol.2002117S116S123 14569808
    [Google Scholar]
  100. JacobD. SauerU. HousleyR. Rapid and high-throughput detection of highly pathogenic bacteria by Ibis PLEX-ID technology.PLoS One201276e3992810.1371/journal.pone.0039928 22768173
    [Google Scholar]
  101. BatraS.A. KrupanidhiS. TutejaU. A sensitive & specific multiplex PCR assay for simultaneous detection of Bacillus anthracis, Yersinia pestis, Burkholderia pseudomallei & Brucella species.Indian J. Med. Res.20131381111116 24056564
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240321812240918095931
Loading
/content/journals/cmm/10.2174/0115665240321812240918095931
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): fatality rate; mosquito bites; Multiplex PCR; plague; Yersinia pestis; zoonotic bacteria
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test