Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Neuropathological diseases involve the death of neurons and the aggregation of proteins with altered properties in the brain. Proteins are used at the molecular level to categorize neurodegenerative disorders, emphasizing the importance of protein-processing mechanisms in their development. Natural herbal phytoconstituents, such as icariin, have addressed these neurological complications. Icariin, the principal compound in Epimedium, has been studied for its anti-neuroinflammatory, anti-oxidative, and antiapoptotic properties. Recent scientific investigations have shown that icariin exhibits promising therapeutic and preventive properties for mental and neurodegenerative disorders. In preclinical, icariin has been shown to inhibit amyloid development and reduce the expression of APP and BACE-1. Previous preclinical studies have demonstrated that icariin can regulate proinflammatory responses in neurological conditions like Parkinson's disease, depression, cerebral ischemia, ALS, and multiple sclerosis. Studies have shown that icariin possesses neuroprotective properties by modulating signaling pathways and crossing the blood-brain barrier, suggesting its potential to address various neurocomplications. This review aims to establish a foundation for future clinical investigations by examining the existing literature on icariin and exploring its potential therapeutic implications in treating neurodegenerative disorders and neuropsychiatric conditions. Future research may address numerous concerns and yield captivating findings with far-reaching implications for various aspects of icariin.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240317650240924041923
2024-09-26
2025-10-28
Loading full text...

Full text loading...

References

  1. LiC. LiQ. MeiQ. LuT. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii.Life Sci.2015126576810.1016/j.lfs.2015.01.006 25634110
    [Google Scholar]
  2. KovacsG.G. Concepts and classification of neurodegenerative diseases.Handb. Clin. Neurol.201714530130710.1016/B978‑0‑12‑802395‑2.00021‑3
    [Google Scholar]
  3. PrajapatiA. MehanS. KhanZ. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders.Biogerontology202324449353110.1007/s10522‑023‑10034‑1 37097427
    [Google Scholar]
  4. SurguchovA. BernalL. SurguchevA.A. Phytochemicals as Regulators of Genes Involved in Synucleinopathies.Biomolecules202111562410.3390/biom11050624 33922207
    [Google Scholar]
  5. CongH. ZhangM. ChangH. DuL. ZhangX. YinL. Icariin ameliorates the progression of experimental autoimmune encephalomyelitis by down-regulating the major inflammatory signal pathways in a mouse relapse-remission model of multiple sclerosis.Eur. J. Pharmacol.20208851017352310.1016/j.ejphar.2020.173523 32871176
    [Google Scholar]
  6. XuC.Q. LiuB.J. WuJ.F. Icariin attenuates LPS-induced acute inflammatory responses: Involvement of PI3K/Akt and NF-κB signaling pathway.Eur. J. Pharmacol.20106421-314615310.1016/j.ejphar.2010.05.012 20519138
    [Google Scholar]
  7. ZhengJ. HuS. WangJ. Icariin improves brain function decline in aging rats by enhancing neuronal autophagy through the AMPK/mTOR/ULK1 pathway.Pharm. Biol.202159118118910.1080/13880209.2021.1878238 33556283
    [Google Scholar]
  8. WangG.Q. LiD.D. HuangC. RETRACTED: Icariin reduces dopaminergic neuronal loss and microglia-mediated inflammation in vivo and in vitro.Front. Mol. Neurosci.20181044110.3389/fnmol.2017.00441 29375304
    [Google Scholar]
  9. NabiS.U. KhanA. SiddiquiE.M. Mechanisms of mitochondrial malfunction in Alzheimer’s disease: New therapeutic hope.Oxid. Med. Cell. Longev.2022202212810.1155/2022/4759963 35607703
    [Google Scholar]
  10. ChenW.F. WuL. DuZ.R. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways.Phytomedicine201725939910.1016/j.phymed.2016.12.017 28190476
    [Google Scholar]
  11. KhezriM.R. Ghasemnejad-BerenjiM. Icariin: A potential neuroprotective agent in Alzheimer’s disease and Parkinson’s disease.Neurochem. Res.202247102954296210.1007/s11064‑022‑03667‑0 35802286
    [Google Scholar]
  12. JinJ. WangH. HuaX. ChenD. HuangC. ChenZ. An outline for the pharmacological effect of icariin in the nervous system.Eur. J. Pharmacol.2019842203210.1016/j.ejphar.2018.10.006 30342950
    [Google Scholar]
  13. LiL.R. SethiG. ZhangX. The neuroprotective effects of icariin on ageing, various neurological, neuropsychiatric disorders, and brain injury induced by radiation exposure.Aging (Albany NY)20221431562158810.18632/aging.203893 35165207
    [Google Scholar]
  14. ZlokovicB.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders.Nat. Rev. Neurosci.2011121272373810.1038/nrn3114 22048062
    [Google Scholar]
  15. Mehmood SiddiquiE. MehanS. UpadhayayS. Neuroprotective efficacy of 4-Hydroxyisoleucine in experimentally induced intracerebral hemorrhage.Saudi J. Biol. Sci.202128116417643110.1016/j.sjbs.2021.07.010 34764759
    [Google Scholar]
  16. MinjE. YadavR.K. MehanS. Targeting abnormal Nrf2/HO-1 signaling in amyotrophic lateral sclerosis: current insights on drug targets and influences on neurological disorders.Curr. Mol. Med.202121863064410.2174/18755666MTEz5MTUw0 33430731
    [Google Scholar]
  17. ShandilyaA. MehanS. KumarS. Activation of IGF-1/GLP-1 signalling via 4-hydroxyisoleucine prevents motor neuron impairments in experimental ALS-rats exposed to methylmercury-induced neurotoxicity.Molecules20222712387810.3390/molecules27123878 35745001
    [Google Scholar]
  18. KumarN. SharmaN. KheraR. GuptaR. MehanS. Guggulsterone ameliorates ethidium bromide-induced experimental model of multiple sclerosis via restoration of behavioral, molecular, neurochemical and morphological alterations in rat brain.Metab. Brain Dis.202136591192510.1007/s11011‑021‑00691‑x 33635478
    [Google Scholar]
  19. DonohueC. GrayL.T. AndersonA. DiBiaseL. WymerJ.P. PlowmanE.K. Profiles of dysarthria and dysphagia in individuals with amyotrophic lateral sclerosis.J. Speech Lang. Hear. Res.202366115416210.1044/2022_JSLHR‑22‑00312 36525626
    [Google Scholar]
  20. AlamM.M. MinjE. YadavR.K. MehanS. Neuroprotective potential of adenyl cyclase/cAMP/CREB and mitochondrial CoQ10 activator in amyotrophic lateral sclerosis rats.Curr. Bioact. Compd.202010.2174/1573407216999200723113054
    [Google Scholar]
  21. SharmaS. MehanS. KhanZ. GuptaG.D. NarulaA.S. Icariin prevents methylmercury-induced experimental neurotoxicity: Evidence from cerebrospinal fluid, blood plasma, brain samples, and in-silico investigations.Heliyon2024101e2405010.1016/j.heliyon.2024.e24050 38226245
    [Google Scholar]
  22. ZhouQ. WangY. ZhangJ. Fingerprint analysis of Huolingshengji Formula and its neuroprotective effects in SOD1G93A mouse model of amyotrophic lateral sclerosis.Sci. Rep.201881166810.1038/s41598‑018‑19923‑9 29374221
    [Google Scholar]
  23. IadecolaC. Rescuing troubled vessels in Alzheimer disease.Nat. Med.200511992392410.1038/nm0905‑923 16145570
    [Google Scholar]
  24. WoodH. A novel human–mouse chimaeric model of Alzheimer disease.Nat. Rev. Neurol.201713419310.1038/nrneurol.2017.37 28281533
    [Google Scholar]
  25. HodsonR. Alzheimer’s disease.Nature20185597715S1S110.1038/d41586‑018‑05717‑6 30046078
    [Google Scholar]
  26. MehanS. MeenaH. SharmaD. SankhlaR. JNK: A stress-activated protein kinase therapeutic strategies and involvement in Alzheimer’s and various neurodegenerative abnormalities.J. Mol. Neurosci.201143337639010.1007/s12031‑010‑9454‑6 20878262
    [Google Scholar]
  27. ZhangH. JiangX. MaL. Role of Aβ in Alzheimer’s-related synaptic dysfunction.Front. Cell Dev. Biol.202210396407510.3389/fcell.2022.964075 36092715
    [Google Scholar]
  28. SabayanB. ZamiriN. FarshchizarabiS. SabayanB. Phosphodiesterase-5 inhibitors: Novel weapons against Alzheimer’s disease?Int. J. Neurosci.20101201274675110.3109/00207454.2010.520381 20942592
    [Google Scholar]
  29. NatunenT. TakaloM. KemppainenS. Relationship between ubiquilin-1 and BACE1 in human Alzheimer’s disease and APdE9 transgenic mouse brain and cell-based models.Neurobiol. Dis.20168518720510.1016/j.nbd.2015.11.005 26563932
    [Google Scholar]
  30. NatarajanC. BrightJ.J. Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes.J. Immunol.2002168126506651310.4049/jimmunol.168.12.6506 12055272
    [Google Scholar]
  31. MehanS. BhallaS. SiddiquiE.M. SharmaN. ShandilyaA. KhanA. Potential roles of glucagon-like peptide-1 and its analogues in dementia targeting impaired insulin secretion and neurodegeneration.Degener. Neurol. Neuromuscul. Dis.202212315910.2147/DNND.S247153 35300067
    [Google Scholar]
  32. AlDakheelA. KaliaL.V. LangA.E. Pathogenesis-targeted, disease-modifying therapies in Parkinson disease.Neurotherapeutics201411162310.1007/s13311‑013‑0218‑1 24085420
    [Google Scholar]
  33. ChungB.H. KimJ.D. KimC.K. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells.Biochem. Biophys. Res. Commun.2008376240440810.1016/j.bbrc.2008.09.001 18789310
    [Google Scholar]
  34. ZhangZ.Y. LiC. ZugC. SchluesenerH.J. Icariin ameliorates neuropathological changes, TGF-β1 accumulation and behavioral deficits in a mouse model of cerebral amyloidosis.PLoS One201498e10461610.1371/journal.pone.0104616 25101849
    [Google Scholar]
  35. WuL FengX LiT SunB KhanMZ HeL Risperidone ameliorated Aβ1-42-induced cognitive and hippocampal synaptic impairments in mice. Behav Brain Res2017322(Pt A)145610.1016/j.bbr.2017.01.020 28093254
    [Google Scholar]
  36. ShaD. LiL. YeL. LiuR. XuY. Icariin inhibits neurotoxicity of β-amyloid by upregulating cocaine-regulated and amphetamine-regulated transcripts.Neuroreport200920171564156710.1097/WNR.0b013e328332d345 19858766
    [Google Scholar]
  37. ZengK.W. FuH. LiuG.X. WangX.M. Icariin attenuates lipopolysaccharide-induced microglial activation and resultant death of neurons by inhibiting TAK1/IKK/NF-κB and JNK/p38 MAPK pathways.Int. Immunopharmacol.201010666867810.1016/j.intimp.2010.03.010 20347053
    [Google Scholar]
  38. WangK. ZhangH. KugathasanS. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease.Am. J. Hum. Genet.200984339940510.1016/j.ajhg.2009.01.026 19249008
    [Google Scholar]
  39. SethiP. MehanS. KhanZ. ChhabraS. Acetyl-11-keto-beta boswellic acid(AKBA) modulates CSTC-pathway by activating SIRT-1/Nrf2-HO-1 signalling in experimental rat model of obsessive-compulsive disorder: Evidenced by CSF, blood plasma and histopathological alterations.Neurotoxicology202398618510.1016/j.neuro.2023.08.001 37549874
    [Google Scholar]
  40. MullenR.J. BuckC.R. SmithA.M. NeuN, a neuronal specific nuclear protein in vertebratesxs.Development1992116120121110.1242/dev.116.1.201 1483388
    [Google Scholar]
  41. XuanA.G. ChenY. LongD.H. PPARα agonist fenofibrate ameliorates learning and memory deficits in rats following global cerebral ischemia.Mol. Neurobiol.201552160160910.1007/s12035‑014‑8882‑7 25241646
    [Google Scholar]
  42. ColeyA.A. GaoW.J. PSD95: A synaptic protein implicated in schizophrenia or autism?Prog. Neuropsychopharmacol. Biol. Psychiatry20188218719410.1016/j.pnpbp.2017.11.016 29169997
    [Google Scholar]
  43. StahlK. RahmaniS. PrydzA. Targeted deletion of the aquaglyceroporin AQP9 is protective in a mouse model of Parkinson’s disease.PLoS One2018133e019489610.1371/journal.pone.0194896 29566083
    [Google Scholar]
  44. TanseyM.G. McCoyM.K. Frank-CannonT.C. Neuroinflammatory mechanisms in Parkinson’s disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention.Exp. Neurol.2007208112510.1016/j.expneurol.2007.07.004 17720159
    [Google Scholar]
  45. KaurR. MehanS. SinghS. Understanding multifactorial architecture of Parkinson’s disease: Pathophysiology to management.Neurol. Sci.2019401132310.1007/s10072‑018‑3585‑x 30267336
    [Google Scholar]
  46. ZhangB. WangG. HeJ. Icariin attenuates neuroinflammation and exerts dopamine neuroprotection via an Nrf2-dependent manner.J. Neuroinflammation20191619210.1186/s12974‑019‑1472‑x 31010422
    [Google Scholar]
  47. RuizS. PergolaP.E. ZagerR.A. VaziriN.D. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease.Kidney Int.20138361029104110.1038/ki.2012.439 23325084
    [Google Scholar]
  48. DingN. SunS. ZhouS. LvZ. WangR. Icariin alleviates renal inflammation and tubulointerstitial fibrosis via Nrf2‐mediated attenuation of mitochondrial damage.Cell Biochem. Funct.2024423e400510.1002/cbf.4005 38583082
    [Google Scholar]
  49. XiangS. ZhaoL. TangC. Icariin inhibits osteoblast ferroptosis via Nrf2/HO-1 signaling and enhances healing of osteoporotic fractures.Eur. J. Pharmacol.202496517624410.1016/j.ejphar.2023.176244 38092316
    [Google Scholar]
  50. NorwitzN.G. MotaA.S. NorwitzS.G. ClarkeK. Multi-loop model of Alzheimer disease: An integrated perspective on the Wnt/GSK3β, α-synuclein, and type 3 diabetes hypotheses.Front. Aging Neurosci.20191118410.3389/fnagi.2019.00184 31417394
    [Google Scholar]
  51. YanX. UronenR.L. HuttunenH.J. The interaction of α-synuclein and Tau: A molecular conspiracy in neurodegeneration?Semin. Cell Dev. Biol.202099556410.1016/j.semcdb.2018.05.005 29738880
    [Google Scholar]
  52. FerrariG. AvilaM. MedinaM. Perez-PalmaE. BustosB. AlarconM. Wnt/β-catenin signaling in Alzheimer’s disease.CNS Neurol. Disord. Drug Targets201413574575410.2174/1871527312666131223113900 24365184
    [Google Scholar]
  53. MoZ. LiW. ZhaiY. GongQ. Icariin attenuates OGD/R-induced autophagy via Bcl-2-dependent cross talk between apoptosis and autophagy in PC12 cells.Evid. Based Complement. Alternat. Med.201620161434308410.1155/2016/4343084 27610184
    [Google Scholar]
  54. LarreaA. ElexpeA. Díez-MartínE. TorrecillaM. AstigarragaE. Barreda-GómezG. Neuroinflammation in the evolution of motor function in stroke and trauma patients: Treatment and potential biomarkers.Curr. Issues Mol. Biol.202345118552858510.3390/cimb45110539 37998716
    [Google Scholar]
  55. CaoL.H. QiaoJ.Y. HuangH.Y. PI3K-AKT signaling activation and icariin: The potential effects on the perimenopausal depression-like rat model.Molecules20192420370010.3390/molecules24203700 31618892
    [Google Scholar]
  56. NingK. GaoR. Icariin protects cerebral neural cells from ischemia reperfusion injury in an in vitro model by lowering ROS production and intracellular calcium concentration.Exp. Ther. Med.202325415110.3892/etm.2023.11849 36911386
    [Google Scholar]
  57. ZhangH. WangP. YuH. Aluminum trichloride-induced hippocampal inflammatory lesions are associated with IL-1β-activated IL-1 signaling pathway in developing rats.Chemosphere201820317017810.1016/j.chemosphere.2018.03.162 29614410
    [Google Scholar]
  58. PatelR.K. PrasadN. KuwarR. HaldarD. Abdul-MuneerP.M. Transforming growth factor-beta 1 signaling regulates neuroinflammation and apoptosis in mild traumatic brain injury.Brain Behav. Immun.20176424425810.1016/j.bbi.2017.04.012 28433746
    [Google Scholar]
  59. LuoJ. TGF-β as a key modulator of astrocyte reactivity: Disease relevance and therapeutic implications.Biomedicines2022105120610.3390/biomedicines10051206 35625943
    [Google Scholar]
  60. RabchevskyA.G. PatelS.P. LyttleT.S. Effects of gabapentin on muscle spasticity and both induced as well as spontaneous autonomic dysreflexia after complete spinal cord injury.Front. Physiol.20123132910.3389/fphys.2012.00329 22934077
    [Google Scholar]
  61. SharmaN. UpadhayayS. ShandilyaA. Neuroprotection by solanesol against ethidium bromide-induced multiple sclerosis-like neurobehavioral, molecular, and neurochemical alterations in experimental rats.Phytomed. Plus20211410005110.1016/j.phyplu.2021.100051
    [Google Scholar]
  62. PanY. WangF.M. QiangL.Q. ZhangD.M. KongL.D. Icariin attenuates chronic mild stress-induced dysregulation of the LHPA stress circuit in rats.Psychoneuroendocrinology201035227228310.1016/j.psyneuen.2009.06.020 19631474
    [Google Scholar]
  63. XiongD. DengY. HuangB. Icariin attenuates cerebral ischemia–reperfusion injury through inhibition of inflammatory response mediated by NF-κB, PPARα and PPARγ in rats.Int. Immunopharmacol.20163015716210.1016/j.intimp.2015.11.035 26679678
    [Google Scholar]
  64. ZhuH. WangZ. ZhuX. WuX. LiE. XuY. Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1α Expression in experimental stroke.Neuropharmacology2010591-2707610.1016/j.neuropharm.2010.03.017 20381504
    [Google Scholar]
  65. LiH. ZhangX. QiX. ZhuX. ChengL. Icariin inhibits endoplasmic reticulum stress-induced neuronal apoptosis after spinal cord injury through modulating the PI3K/AKT signaling pathway.Int. J. Biol. Sci.201915227728610.7150/ijbs.30348 30745820
    [Google Scholar]
  66. JiaG. ZhangY. LiW. DaiH. Neuroprotective role of icariin in experimental spinal cord injury via its antioxidant, anti neuroinflammatory and anti apoptotic properties.Mol. Med. Rep.20192043433343910.3892/mmr.2019.10537 31432160
    [Google Scholar]
  67. KhanZ. GuptaG.D. MehanS. Cellular and molecular evidence of multiple sclerosis diagnosis and treatment challenges.J. Clin. Med.20231213427410.3390/jcm12134274 37445309
    [Google Scholar]
  68. SteinmanL. Immunology of relapse and remission in multiple sclerosis.Annu. Rev. Immunol.201432125728110.1146/annurev‑immunol‑032713‑120227 24438352
    [Google Scholar]
  69. BeboB.F.Jr AllegrettaM. LandsmanD. Pathways to cures for multiple sclerosis: A research roadmap.Mult. Scler.202228333134510.1177/13524585221075990 35236198
    [Google Scholar]
  70. DejbakhtM. AkhzariM. JaliliS. FarajiF. BarazeshM. Multiple sclerosis: New insights into molecular pathogenesis and novel platforms for disease treatment.Curr. Drug Res. Rev.202416217519710.2174/2589977516666230915103730 37724675
    [Google Scholar]
  71. ZhangZ. WangX. ZaiJ. SunC. YanB. Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation.Chin. J. Integr. Med.201824536637110.1007/s11655‑018‑2823‑z 29327125
    [Google Scholar]
  72. UpadhayayS. MehanS. PrajapatiA. Nrf2/HO-1 signaling stimulation through acetyl-11-keto-beta-boswellic acid (AKBA) provides neuroprotection in ethidium bromide-induced experimental model of multiple sclerosis.Genes (Basel)2022138132410.3390/genes13081324 35893061
    [Google Scholar]
  73. ShengC. XuP. ZhouK. DengD. ZhangC. WangZ. Icariin attenuates synaptic and cognitive deficits in an A β1–42 -induced rat model of Alzheimer’s disease.BioMed Res. Int.201720173311210.1155/2017/7464872 29057264
    [Google Scholar]
  74. WangQ. DingH. ChenS. Hypertonic saline mediates the NLRP3/IL-1β signaling axis in microglia to alleviate ischemic blood-brain barrier permeability by downregulating astrocyte-derived VEGF in rats.CNS Neurosci. Ther.202026101045105710.1111/cns.13427 32529750
    [Google Scholar]
  75. SongL.J. HanQ.X. DingZ.B. Icariin ameliorates the cuprizone-induced demyelination associated with antioxidation and anti-inflammation.Inflammopharmacology202432180982310.1007/s10787‑023‑01388‑6 38177566
    [Google Scholar]
  76. RenB. ZhangY. ZhouH. Tanshinone IIA prevents the loss of nigrostriatal dopaminergic neurons by inhibiting NADPH oxidase and iNOS in the MPTP model of Parkinson’s disease.J. Neurol. Sci.20153481-214215210.1016/j.jns.2014.11.026 25491263
    [Google Scholar]
  77. ZhangJ. KramerE.G. AspL. Promoting myelin repair and return of function in multiple sclerosis.FEBS Lett.2011585233813382010.1016/j.febslet.2011.08.017 21864535
    [Google Scholar]
  78. ZhouS-Y. JinF. YanF. Icariin ameliorates memory deficits through regulating brain insulin signaling and glucose transporters in 3×Tg-AD mice.Neural Regen. Res.202318118318810.4103/1673‑5374.344840 35799540
    [Google Scholar]
  79. JinF. GongQ.H. XuY.S. Icariin, a phoshphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling.Int. J. Neuropsychopharmacol.201417687188110.1017/S1461145713001533 24513083
    [Google Scholar]
  80. NieJ. LuoY. HuangX.N. GongQ.H. WuQ. ShiJ.S. Icariin inhibits beta-amyloid peptide segment 25–35 induced expression of β-secretase in rat hippocampus.Eur. J. Pharmacol.20106262-321321810.1016/j.ejphar.2009.09.039 19782061
    [Google Scholar]
  81. ZhuZ.J. WuK.C. YungW.H. QianZ.M. KeY. Differential interaction between iron and mutant alpha-synuclein causes distinctive Parkinsonian phenotypes in Drosophila.Biochim. Biophys. Acta Mol. Basis Dis.20161862451852510.1016/j.bbadis.2016.01.002 26769358
    [Google Scholar]
  82. ChenF. WangW. DingH. YangQ. DongQ. CuiM. The glucagon-like peptide-1 receptor agonist exendin-4 ameliorates warfarin-associated hemorrhagic transformation after cerebral ischemia.J. Neuroinflammation201613120410.1186/s12974‑016‑0661‑0 27566245
    [Google Scholar]
  83. GumbarS. BhardwajS. MehanS. Renal mitochondrial restoration by gymnemic acid in gentamicin-mediated experimental nephrotoxicity: Evidence from serum, kidney and histopathological alterations.Front. Pharmacol.202314121850610.3389/fphar.2023.1218506 37521462
    [Google Scholar]
  84. DengY. XiongD. YinC. LiuB. ShiJ. GongQ. Icariside II protects against cerebral ischemia–reperfusion injury in rats via nuclear factor-κB inhibition and peroxisome proliferator-activated receptor up-regulation.Neurochem. Int.2016968566110.1016/j.neuint.2016.02.015 26939761
    [Google Scholar]
  85. RenX.S. DingW. YangX.Y. Neuroprotective effect of icariin on spinal cord injury in rats.Zhongguo Gu Shang201831111054106010.3969/j.issn.1003‑0034.2018.11.014 30514049
    [Google Scholar]
  86. XuR.X. WuQ. LuoY. Protective effects of icariin on cognitive deficits induced by chronic cerebral hypoperfusion in rats.Clin. Exp. Pharmacol. Physiol.200936881081510.1111/j.1440‑1681.2009.05149.x 19215241
    [Google Scholar]
  87. DuA. CaiR. ShiJ. WuQ. Protective effects of icariin on traumatic brain injury.Curr. Neurovasc. Res.202118550851410.2174/1567202619666211223125628 34951380
    [Google Scholar]
  88. RethorstC.D. ToupsM.S. GreerT.L. Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder.Mol. Psychiatry201318101119112410.1038/mp.2012.125 22925832
    [Google Scholar]
  89. ShadrinaM. BondarenkoE.A. SlominskyP.A. Genetics factors in major depression disease.Front. Psychiatry2018933410.3389/fpsyt.2018.00334 30083112
    [Google Scholar]
  90. MaX.R. ZhuX. XiaoY. Restoring nuclear entry of Sirtuin 2 in oligodendrocyte progenitor cells promotes remyelination during ageing.Nat. Commun.2022131122510.1038/s41467‑022‑28844‑1 35264567
    [Google Scholar]
  91. GongM. HanB. WangS. LiangS. ZouZ. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.J. Pharm. Biomed. Anal.2016123637310.1016/j.jpba.2016.02.001
    [Google Scholar]
  92. YanC. WuL-L. ZengN-X. Exploration of the mechanism by which icariin modulates hippocampal neurogenesis in a rat model of depression.Neural Regen. Res.202217363264210.4103/1673‑5374.320993 34380904
    [Google Scholar]
  93. BaliU. PhillipsT. HuntH. UnittJ. FKBP5 mRNA expression is a biomarker for GR antagonism.J. Clin. Endocrinol. Metab.2016101114305431210.1210/jc.2016‑1624 27459525
    [Google Scholar]
  94. ZhangX. SunH. SuQ. Antidepressant-like activity of icariin mediated by group I mGluRs in prenatally stressed offspring.Brain Dev.201739759360010.1016/j.braindev.2017.03.021 28395974
    [Google Scholar]
  95. JavittD.C. Balancing therapeutic safety and efficacy to improve clinical and economic outcomes in schizophrenia: A clinical overview.Am. J. Manag. Care2014208Suppl.S160S165 25180705
    [Google Scholar]
  96. MehanS. JadaunK.S. SharmaA. SiddiquiE.M. Targeting abnormal PI3K/AKT/mTOR signaling in intracerebral hemorrhage: a systematic review on potential drug targets and influences of signaling modulators on other neurological disorders.Curr. Rev. Clin. Exp. Pharmacol.202217317419110.2174/1574884716666210726110021 34455956
    [Google Scholar]
  97. PanB. XuL. WengJ. Effects of icariin on alleviating schizophrenia-like symptoms by regulating the miR-144-3p/ATP1B2/mTOR signalling pathway.Neurosci. Lett.2022791213691810.1016/j.neulet.2022.136918 36261079
    [Google Scholar]
  98. LiuB. WangC. LiuR. XiangW. YangC. LiD. Function and mechanism exploring of icariin in schizophrenia through network pharmacology.Brain Res.2024183514893110.1016/j.brainres.2024.148931 38604555
    [Google Scholar]
  99. KouY. JiangB. ChenB. Local administration of icariin contributes to peripheral nerve regeneration and functional recovery.Neural Regen. Res.2015101848910.4103/1673‑5374.150711 25788925
    [Google Scholar]
  100. KawaboriM. YenariM. Inflammatory responses in brain ischemia.Curr. Med. Chem.201522101258127710.2174/0929867322666150209154036 25666795
    [Google Scholar]
  101. BakerD.A. XiZ.X. ShenH. SwansonC.J. KalivasP.W. The origin and neuronal function of in vivo nonsynaptic glutamate.J. Neurosci.200222209134914110.1523/JNEUROSCI.22‑20‑09134.2002 12388621
    [Google Scholar]
  102. LiaoX. GaoY. LiuJ. RETRACTED: Combination of tanshinone IIA and cisplatin inhibits esophageal cancer by downregulating NF-κB/COX-2/VEGF pathway.Front. Oncol.202010175610.3389/fonc.2020.01756 33014864
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240317650240924041923
Loading
/content/journals/cmm/10.2174/0115665240317650240924041923
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test