Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Oxidative stress is a consequence of the disruption of the balance between the generation of reactive nitrogen and oxygen species and the biological system’s ability to neutralize those reactive products. Oxidative stress is involved in the generation of many disorders, including epilepsy, which is a prevalent chronic neurological disease that affects the lives of millions of people around the world. Epilepsy is characterized by unforeseeable and repeated seizures that can be very disturbing. Studies have reported that oxidative stress occurs before and after seizures. A transcription factor named Nuclear factor erythroid-derived 2-related factor 2 (Nrf2) controls genes related to the induction of oxidative stress and defends cells against oxidative stress. The Nrf2 protein has seven different domains, ranging from Neh1 to Neh7. Each domain is responsible for a distinctive function of this protein. Keap1 binds to Nrf2, but during oxidative stress, Nrf2 detaches from the Keap1 protein, moves to the nucleus, and binds to DNA. The result of this translocation and binding is the initiation of transcription of detoxifying genes to control the harmful effects of oxidative stress. There is some evidence of oxidative stress involvement in epilepsy. In this review, we have listed potential Nrf2-related therapeutic targets for treating and controlling epilepsy, such as Berberis alkaloids, pentoxifylline, lovastatin, progesterone, and chrysin nanoparticles. These activators were tested in animals () and cells (), and most of these experiments showed promising results in different epilepsy models. Finally, the results have suggested that the activation of Nrf2 can be an option for controlling epilepsy.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240305987240918103602
2024-09-27
2025-10-28
Loading full text...

Full text loading...

References

  1. FarkhondehT. SamarghandianS. Azimin-NezhadM. SaminiF. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats.Int. J. Clin. Exp. Med.2015822465
    [Google Scholar]
  2. SurguchovA. SurguchevaI. SharmaM. SharmaR. SinghV. Pore-forming proteins as mediators of novel epigenetic mechanism of epilepsy.Front. Neurol.20178310.3389/fneur.2017.00003 28149289
    [Google Scholar]
  3. DevinskyO. VezzaniA. JetteN. De CurtisM. PeruccaP. Epilepsy.Nat. Rev. Dis. Primers201841802410.1038/nrdp.2018.24
    [Google Scholar]
  4. TejadaJ. CostaK.M. BerttiP. Garcia-CairascoN. The epilepsies: Complex challenges needing complex solutions.Epilepsy Behav.201326321222810.1016/j.yebeh.2012.09.029 23146364
    [Google Scholar]
  5. SchmidtD SchachterSC Drug treatment of epilepsy in adults. BMJ2014348 (feb28 2)g25410.1136/bmj.g254 24583319
    [Google Scholar]
  6. EngelborghsS. BrusselV.U. HoogeR.D. PaulD.D.P. Pathophysiology of epilepsy.Acta Neurol. Belg.20011004201213
    [Google Scholar]
  7. AguiarC.C.T. AlmeidaA.B. AraújoP.V.P. Oxidative stress and epilepsy: literature review.Oxid. Med. Cell. Longev.2012201211210.1155/2012/795259 22848783
    [Google Scholar]
  8. FarkhondehT. MehrpourO. BuhrmannC. Pourbagher-ShahriA.M. ShakibaeiM. SamarghandianS. Organophosphorus compounds and MAPK signaling pathways.Int. J. Mol. Sci.20202112425810.3390/ijms21124258
    [Google Scholar]
  9. SamarghandianS. FarkhondehT. SaminiF. A review on possible therapeutic effect of nigella sativa and thymoquinone in neurodegenerative diseases.CNS Neurol. Disord. Drug Targets201817641242010.2174/1871527317666180702101455
    [Google Scholar]
  10. KohandelZ. FarkhondehT. AschnerM. SamarghandianS. Nrf2 a molecular therapeutic target for Astaxanthin.Biomed. Pharmacother.202113711137410.1016/j.biopha.2021.111374
    [Google Scholar]
  11. AshrafizadehM. AhmadiZ. FarkhondehT. SamarghandianS. Autophagy as a molecular target of quercetin underlying its protective effects in human diseases.Arch. Physiol. Biochem.2022128120020810.1080/13813455.2019.1671458
    [Google Scholar]
  12. da FonsêcaD.V. da Silva Maia Bezerra FilhoC. LimaT.C. de AlmeidaR.N. de SousaD.P. Anticonvulsant essential oils and their relationship with oxidative stress in epilepsy.Biomolecules201991283510.3390/biom9120835 31817682
    [Google Scholar]
  13. GrewalG. KukalS. KanojiaN. SasoL. KukretiS. KukretiR. Effect of oxidative stress on ABC transporters: Contribution to epilepsy pharmacoresistance.Molecules201722336510.3390/molecules22030365 28264441
    [Google Scholar]
  14. BellezzaI. GiambancoI. MinelliA. DonatoR. Nrf2-Keap1 signaling in oxidative and reductive stress.Biochim. Biophys. Acta Mol. Cell Res.20181865572173310.1016/j.bbamcr.2018.02.010 29499228
    [Google Scholar]
  15. YamazakiH. TanjiK. WakabayashiK. MatsuuraS. ItohK. Role of the Keap1/Nrf2 pathway in neurodegenerative diseases.Pathol. Int.201565521021910.1111/pin.12261 25707882
    [Google Scholar]
  16. MoonE.J. GiacciaA. Dual roles of NRF2 in tumor prevention and progression: Possible implications in cancer treatment.Free Radic. Biol. Med.20157929229910.1016/j.freeradbiomed.2014.11.009 25458917
    [Google Scholar]
  17. TonelliC. InI. ChioC. TuvesonD.A. Transcriptional Regulation by Nrf2.Antioxid. Redox Signal.201829171727174510.1089/ars.2017.7342
    [Google Scholar]
  18. NioiP. NguyenT. SherrattP.J. PickettC.B. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation.Mol. Cell. Biol.20052524108951090610.1128/MCB.25.24.10895‑10906.2005 16314513
    [Google Scholar]
  19. SuzukiM. OtsukiA. Keleku-LukweteN. YamamotoM. Overview of redox regulation by Keap1–Nrf2 system in toxicology and cancer.Curr. Opin. Toxicol.20161293610.1016/j.cotox.2016.10.001
    [Google Scholar]
  20. KatohY. ItohK. YoshidaE. MiyagishiM. FukamizuA. YamamotoM. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription.Genes Cells200161085786810.1046/j.1365‑2443.2001.00469.x 11683914
    [Google Scholar]
  21. ChowdhryS. ZhangY. McMahonM. SutherlandC. CuadradoA. HayesJ.D. Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity.Oncogene201332323765378110.1038/onc.2012.388 22964642
    [Google Scholar]
  22. RadaP. RojoA.I. Evrard-TodeschiN. Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/β-TrCP axis.Mol. Cell. Biol.201232173486349910.1128/MCB.00180‑12 22751928
    [Google Scholar]
  23. RadaP. RojoA.I. ChowdhryS. McMahonM. HayesJ.D. CuadradoA. SCF/beta-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner.Mol. Cell. Biol.20113161121113310.1128/MCB.01204‑10 21245377
    [Google Scholar]
  24. WangH. LiuK. GengM. RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2.Cancer Res.201373103097310810.1158/0008‑5472.CAN‑12‑3386 23612120
    [Google Scholar]
  25. CardozoL.F.M.F. PedruzziL.M. StenvinkelP. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2.Biochimie20139581525153310.1016/j.biochi.2013.04.012 23643732
    [Google Scholar]
  26. LiX. ZhangD. HanninkM. BeamerL.J. Crystal structure of the Kelch domain of human Keap1.J. Biol. Chem.200427952547505475810.1074/jbc.M410073200 15475350
    [Google Scholar]
  27. WhitmanS.A. LongM. WondrakG.T. ZhengH. ZhangD.D. Nrf2 modulates contractile and metabolic properties of skeletal muscle in streptozotocin-induced diabetic atrophy.Exp. Cell Res.2013319172673268310.1016/j.yexcr.2013.07.015 23896025
    [Google Scholar]
  28. ZipperL.M. MulcahyR.T. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm.J. Biol. Chem.200227739365443655210.1074/jbc.M206530200 12145307
    [Google Scholar]
  29. CallisJ. PollmannL. ShanklinJ. WetternM. VierstraR.D. Sequence of a cDNA from Chlamydomonas reinhardii encoding a ubiquitin 52 amino acid extension protein.Nucleic Acids Res.19891720837710.1093/nar/17.20.8377 2554258
    [Google Scholar]
  30. FinleyD. Recognition and processing of ubiquitin-protein conjugates by the proteasome.Annu. Rev. Biochem.20097847751310.1146/annurev.biochem.78.081507.101607
    [Google Scholar]
  31. ItohK. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.Genes Dev.1999131768610.1101/gad.13.1.76
    [Google Scholar]
  32. CullinanS.B. GordanJ.D. JinJ. HarperJ.W. DiehlJ.A. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase.Mol. Cell. Biol.200424198477848610.1128/MCB.24.19.8477‑8486.2004 15367669
    [Google Scholar]
  33. TongK.I. KatohY. KusunokiH. ItohK. TanakaT. YamamotoM. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model.Mol. Cell. Biol.20062682887290010.1128/MCB.26.8.2887‑2900.2006 16581765
    [Google Scholar]
  34. SamarghandianS. Azimi‐NezhadM. BorjiA. FarkhondehT. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state.Phytother. Res.201630813451353
    [Google Scholar]
  35. Silva-PalaciosA. Ostolga-ChavarríaM. ZazuetaC. KönigsbergM. Nrf2: Molecular and epigenetic regulation during aging.Ageing Res. Rev.201847June314010.1016/j.arr.2018.06.003 29913211
    [Google Scholar]
  36. VenugopalR. JaiswalA.K. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes.Oncogene199817243145315610.1038/sj.onc.1202237 9872330
    [Google Scholar]
  37. HeC.H. GongP. HuB. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation.J. Biol. Chem.200127624208582086510.1074/jbc.M101198200 11274184
    [Google Scholar]
  38. HinoiE. FujimoriS. WangL. HojoH. UnoK. YonedaY. Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation.J. Biol. Chem.200628126180151802410.1074/jbc.M600603200 16613847
    [Google Scholar]
  39. RenéC. LopezE. ClaustresM. TaulanM. Romey-ChatelainM.C. NF-E2-related factor 2, a key inducer of antioxidant defenses, negatively regulates the CFTR transcription.Cell. Mol. Life Sci.201067132297230910.1007/s00018‑010‑0336‑4 20309604
    [Google Scholar]
  40. LiuP. Rojo de la VegaM. SammaniS. RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE–dependent repression.Proc. Natl. Acad. Sci. USA201811544E10352E1036110.1073/pnas.1812125115 30309964
    [Google Scholar]
  41. FãoL. MotaS.I. RegoA.C. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases.Ageing Res. Rev.201954March10094210.1016/j.arr.2019.100942 31415806
    [Google Scholar]
  42. HuangH.C. NguyenT. PickettC.B. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription.J. Biol. Chem.200227745427694277410.1074/jbc.M206911200 12198130
    [Google Scholar]
  43. CorreaF. MallardC. NilssonM. SandbergM. Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: Restoring effects of inhibitors of HDACs, p38 MAPK and GSK3β.Neurobiol. Dis.201144114215110.1016/j.nbd.2011.06.016 21757005
    [Google Scholar]
  44. SamarghandianS. ShoshtariM.E. SargolzaeiJ. HossinimoghadamH. FarahzadJ.A. Anti-tumor activity of safranal against neuroblastoma cells.Pharmacogn. Magaz201410Suppl. 2S419
    [Google Scholar]
  45. HayesJ.D. Dinkova-KostovaA.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism.Trends Biochem. Sci.201439419921810.1016/j.tibs.2014.02.002 24647116
    [Google Scholar]
  46. ChorleyB.N. CampbellM.R. WangX. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha.Nucleic Acids Res.201240157416742910.1093/nar/gks409 22581777
    [Google Scholar]
  47. MaherJ.M. DieterM.Z. AleksunesL.M. Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway.Hepatology20074651597161010.1002/hep.21831 17668877
    [Google Scholar]
  48. YatesM.S. TranQ.T. DolanP.M. Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice.Carcinogenesis20093061024103110.1093/carcin/bgp100 19386581
    [Google Scholar]
  49. SajjaR.K. GreenK.N. CuculloL. Altered Nrf2 signaling mediates hypoglycemia-induced blood-brain barrier endothelial dysfunction in vitro.PLoS One2015103e012235810.1371/journal.pone.0122358 25807533
    [Google Scholar]
  50. ZhaoJ. MooreA.N. RedellJ.B. DashP.K. Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury.J. Neurosci.20072738102401024810.1523/JNEUROSCI.1683‑07.2007 17881530
    [Google Scholar]
  51. MarešJ. StopkaP. NohejlováK. RokytaR. Oxidative stress induced by epileptic seizure and its attenuation by melatonin.Physiol. Res.201362Suppl. 1677410.33549/physiolres.932576
    [Google Scholar]
  52. PaulettiA. TerroneG. Shekh-AhmadT. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy.Brain20191427e3910.1093/brain/awz130 31145451
    [Google Scholar]
  53. WangW. WangW. ZhangG. Activation of Nrf2-ARE signal pathway in hippocampus of amygdala kindling rats.Neurosci. Lett.2013543586310.1016/j.neulet.2013.03.038 23570726
    [Google Scholar]
  54. LiangL.P. HoY.S. PatelM. Mitochondrial superoxide production in kainate-induced hippocampal damage.Neuroscience2000101356357010.1016/S0306‑4522(00)00397‑3 11113305
    [Google Scholar]
  55. Shekh-AhmadT. EckelR. Dayalan NaiduS. KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy.Brain201814151390140310.1093/brain/awy071 29538645
    [Google Scholar]
  56. SedaghatR. TaabY. KiasalariZ. Afshin-MajdS. BaluchnejadmojaradT. RoghaniM. Berberine ameliorates intrahippocampal kainate-induced status epilepticus and consequent epileptogenic process in the rat: Underlying mechanisms.Biomed. Pharmacother.20178720020810.1016/j.biopha.2016.12.109 28061403
    [Google Scholar]
  57. KangY. YanW. FangH. Alleviation of oxidative damage and involvement of Nrf2‐ARE pathway in mesodopaminergic system and hippocampus of status epilepticus rats pretreated by intranasal pentoxifylline.Oxid. Med. Cell. Longev.201720171790807210.1155/2017/7908072 28386312
    [Google Scholar]
  58. AbdanipourA. DeheshjoF. SohrabiD. Jafari AnarkooliI. NejatbakhshR. Neuroprotective effect of lovastatin through down-regulation of pro-apoptotic Mst1 gene expression in rat model pilocarpine epilepsy.Neurol. Res.2018401087488210.1080/01616412.2018.1497252 30048231
    [Google Scholar]
  59. ZhangY.N. DongH.T. YangF.B. Nrf2-ARE signaling pathway regulates the expressions of A1R and ENT1 in the brain of epileptic rats.Eur. Rev. Med. Pharmacol. Sci.201822206896690410.26355/eurrev_201810_16159 30402855
    [Google Scholar]
  60. LiuZ. YangC. MengX. LiZ. LvC. CaoP. Neuroprotection of edaravone on the hippocampus of kainate-induced epilepsy rats through Nrf2/HO-1 pathway.Neurochem. Int.201811215916510.1016/j.neuint.2017.07.001 28697972
    [Google Scholar]
  61. GaoJ. AnL. XuY. HuangY. Catalpol exerts an anti-epilepticus effect, possibly by regulating the Nrf2-keap1-ARE signaling pathway.Med. Sci. Monit.2018249436944110.12659/MSM.911902 30592708
    [Google Scholar]
  62. ShiY. MiaoW. TengJ. ZhangL. Ginsenoside Rb1 protects the brain from damage induced by epileptic seizure via Nrf2/ARE signaling.Cell. Physiol. Biochem.201845121222510.1159/000486768 29357320
    [Google Scholar]
  63. NagibM.M. TadrosM.G. Al-khalekH.A.A. RETRACTED: Molecular mechanisms of neuroprotective effect of adjuvant therapy with phenytoin in pentylenetetrazole-induced seizures: Impact on Sirt1/NRF2 signaling pathways.Neurotoxicology201868476510.1016/j.neuro.2018.07.006 30017425
    [Google Scholar]
  64. NaderM.A. AteyyaH. El-ShafeyM. El-SherbeenyN.A. Sitagliptin enhances the neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in mice: Implication of oxidative, inflammatory, apoptotic and autophagy pathways.Neurochem. Int.20181151123
    [Google Scholar]
  65. XianP. HeiY. WangR. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice.Theranostics20199205956597510.7150/thno.33872 31534531
    [Google Scholar]
  66. DaiH. WangP. MaoH. MaoX. TanS. ChenZ. Dynorphin activation of kappa opioid receptor protects against epilepsy and seizure-induced brain injury via PI3K/Akt/Nrf2/HO-1 pathway.Cell Cycle201918222623710.1080/15384101.2018.1562286 30595095
    [Google Scholar]
  67. PrakashC. MishraM. KumarP. KumarV. SharmaD. Dehydroepiandrosterone alleviates oxidative stress and apoptosis in iron-induced epilepsy via activation of Nrf2/ARE signal pathway.Brain Res. Bull.2019153April18119010.1016/j.brainresbull.2019.08.019 31472186
    [Google Scholar]
  68. ChiuK.M. LinT.Y. LeeM.Y. LuC.W. WangM.J. WangS.J. Dexmedetomidine protects neurons from kainic acid-induced excitotoxicity by activating BDNF signaling.Neurochem. Int.2019129June10449310.1016/j.neuint.2019.104493 31220473
    [Google Scholar]
  69. SinghN. SahaL. KumariP. Effect of dimethyl fumarate on neuroinflammation and apoptosis in pentylenetetrazol kindling model in rats.Brain Res. Bull.201914423324510.1016/j.brainresbull.2018.11.013 30472152
    [Google Scholar]
  70. GhadiriT. VakilzadehG. HajaliV. KhodagholiF. Progesterone modulates post-traumatic epileptogenesis through regulation of BDNF-TrkB signaling and cell survival-related pathways in the rat hippocampus.Neurosci. Lett.2019709July13438410.1016/j.neulet.2019.134384 31325580
    [Google Scholar]
  71. WuY. WangY. WuY. LiT. WangW. Salidroside shows anticonvulsant and neuroprotective effects by activating the Nrf2-ARE pathway in a pentylenetetrazol-kindling epileptic model.Brain Res. Bull.2020164April142010.1016/j.brainresbull.2020.08.009 32800786
    [Google Scholar]
  72. a YuanX. FuZ. JiP. Selenium nanoparticles pretreatment reverse behavioral, oxidative damage, neuronal loss and neurochemical alterations in pentylenetetrazoleinduced epileptic seizures in mice.Int. J. Nanomedicine2020156339635310.2147/IJN.S25913432922005
    [Google Scholar]
  73. b GhoneimF.M. AlrefaiH. ElsamanoudyA.Z. Abo El-khairS.M. KhalafH.A. The protective role of prenatal alpha lipoic acid supplementation against pancreatic oxidative damage in offspring of valproic acid-treated rats: Histological and molecular study.Biology20209923910.3390/biology9090239
    [Google Scholar]
  74. GuoX. WangJ. WangN. Wogonin preventive impact on hippocampal neurodegeneration, inflammation and cognitive defects in temporal lobe epilepsy.Saudi J. Biol. Sci.20202782149215610.1016/j.sjbs.2020.05.030 32742183
    [Google Scholar]
  75. HuQ. Genistein protects epilepsy-induced brain injury through regulating the JAK2/STAT3 and Keap1/Nrf2 signaling pathways in the developing rats.Eur. J. Pharmacol.202191217462010.1016/j.ejphar.2021.174620
    [Google Scholar]
  76. ZhangY. ZhaoJ. AfzalO. Neuroprotective role of chrysin‐loaded poly(lactic‐co‐glycolic acid) nanoparticle against kindling‐induced epilepsy through Nrf2/ARE/HO‐1 pathway.J. Biochem. Mol. Toxicol.2021352e2263410.1002/jbt.22634 32991785
    [Google Scholar]
  77. PengY. ChenL. QuY. WangD. ZhuY. ZhuY. Rosiglitazone prevents autophagy by regulating Nrf2-antioxidant response element in a rat model of lithium-pilocarpine-induced status epilepticus.Neuroscience202145521222210.1016/j.neuroscience.2020.10.026 33197503
    [Google Scholar]
  78. WangW. WuY. ZhangG. Activation of Nrf2-ARE signal pathway protects the brain from damage induced by epileptic seizure.Brain Res.20141544546110.1016/j.brainres.2013.12.004 24333359
    [Google Scholar]
  79. AshrafizadehM. FekriH.S. AhmadiZ. FarkhondehT. SamarghandianS. Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway.J. Cell. Biochem.2020121215751585
    [Google Scholar]
  80. KraftA.D. LeeJ.M. JohnsonD.A. KanY.W. JohnsonJ.A. Neuronal sensitivity to kainic acid is dependent on the Nrf2‐mediated actions of the antioxidant response element.J. Neurochem.20069861852186510.1111/j.1471‑4159.2006.04019.x 16945104
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240305987240918103602
Loading
/content/journals/cmm/10.2174/0115665240305987240918103602
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): aura; epilepsy; Nrf2; oxidative stress; oxygen species; seizures
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test