Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Glioblastoma multiforme [GBM] is a highly aggressive grade IV central nervous system tumor with a dismal prognosis. Factors such as late detection, treatment limitations due to its aggressive nature, and, notably, drug resistance significantly affect clinical outcomes. Despite the effectiveness of Temozolomide [TMZ], a potent chemotherapy agent, the development of drug resistance remains a major challenge. Given the poor survival rates and chemoresistance, there is an urgent need for novel treatment strategies. Non-coding RNAs, particularly microRNAs [miRNAs], offer a promising approach to GBM diagnosis and treatment. These small non-coding RNAs play crucial roles in tumor progression, either suppressing or promoting oncogenic characteristics. The phosphoinositide-3 kinase [PI3K]/AKT/ mTOR pathway, which regulates essential biological processes like proliferation and survival, is a key target of miRNAs in cancer. Studies have underscored the significance of PI3K/AKT/mTOR signaling in drug resistance development and its interplay with non-coding RNAs as mediators of tumorigenesis. This review aims to outline the involvement of PI3K/AKT/mTOR signaling in miRNA modulation and strategies to overcome chemoresistance in GBM.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240309647240516042716
2024-06-04
2025-09-05
Loading full text...

Full text loading...

References

  1. KanderiT. GuptaV. Glioblastoma Multiforme.Treasure Island, FLStatPearls2023
    [Google Scholar]
  2. EiblR.H. SchneemannM. Liquid biopsy and glioblastoma.Explor. Target. Antitumor Ther.202341284110.37349/etat.2023.00121 36937320
    [Google Scholar]
  3. EiblR.H. SchneemannM. Liquid biopsy and primary brain tumors.Cancers20211321542910.3390/cancers13215429 34771592
    [Google Scholar]
  4. GrochansS CybulskaAM SimińskaD Epidemiology of glioblastoma multiforme–literature review.Cancers20221410241210.3390/cancers14102412 35626018
    [Google Scholar]
  5. WuW. KlockowJ.L. ZhangM. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance.Pharmacol. Res.202117110578010.1016/j.phrs.2021.105780 34302977
    [Google Scholar]
  6. Di FilippoL.D. De CarvalhoS.G. DuarteJ.L. A receptor-mediated landscape of druggable and targeted nanomaterials for gliomas.Mater. Today Bio20232010067110.1016/j.mtbio.2023.100671 37273792
    [Google Scholar]
  7. LiuH. QiuW. SunT. Therapeutic strategies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds.Acta Pharm. Sin. B20221241781180410.1016/j.apsb.2021.12.019 35847506
    [Google Scholar]
  8. El AtatO. NaserR. AbdelkhalekM. HabibR. El SibaiM. Molecular targeted therapy: A new avenue in glioblastoma treatment (Review).Oncol. Lett.20222524610.3892/ol.2022.13632 36644133
    [Google Scholar]
  9. MakowskaM. SmolarzB. RomanowiczH. microRNAs (miRNAs) in glioblastoma multiforme (GBM)—recent literature review.Int. J. Mol. Sci.2023244352110.3390/ijms24043521 36834933
    [Google Scholar]
  10. TluliO. Al-MaadhadiM. Al-KhulaifiA.A. Exploring the role of microRNAs in glioma progression, prognosis, and therapeutic strategies.Cancers20231517421310.3390/cancers15174213 37686489
    [Google Scholar]
  11. ZającA Sumorek-WiadroJ LangnerE Involvement of PI3K pathway in glioma cell resistance to temozolomide treatment.Int J Mol Sci20212210515510.3390/ijms22105155 34068110
    [Google Scholar]
  12. AbolghasemiM. TehraniS.S. YousefiT. Critical roles of long noncoding RNAs in breast cancer.J. Cell. Physiol.202023565059507110.1002/jcp.29442 31951025
    [Google Scholar]
  13. Barzegar BehroozA TalaieZ JusheghaniF ŁosMJ KlonischT GhavamiS Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma.Int. J. Mol. Sci.2022233135310.3390/ijms23031353 35163279
    [Google Scholar]
  14. AlQurashiN. HashimiS. WeiM. Chemical inhibitors and microRNAs (miRNA) targeting the mammalian target of rapamycin (mTOR) pathway: Potential for novel anticancer therapeutics.Int. J. Mol. Sci.20131423874390010.3390/ijms14023874 23434669
    [Google Scholar]
  15. BhattacharjeeB. SyedaA.F. RynjahD. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: Prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment.Front. Pharmacol.20231410.3389/fphar.2023.1174330 37205904
    [Google Scholar]
  16. HanifF. MuzaffarK. PerveenK. MalhiS.M. SimjeeShU. Glioblastoma Multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment.APJCP201718139 28239999
    [Google Scholar]
  17. LiJ. FengL. LuY. Glioblastoma multiforme: diagnosis, treatment, and invasion.J Biomed Res2023371475810.7555/JBR.36.20220156 36403983
    [Google Scholar]
  18. YaoM. LiS. WuX. Cellular origin of glioblastoma and its implication in precision therapy.Cell. Mol. Immunol.201815873773910.1038/cmi.2017.159 29553137
    [Google Scholar]
  19. MajidiniaM. AlizadehE. YousefiB. Co-inhibition of notch and Nf-κb signaling pathway decreases proliferation through downregulating iκb-α and hes-1 expression in human ovarian cancer OVCAR-3 cells.Drug Res.20176711319 27684192
    [Google Scholar]
  20. LouisD.N. PerryA. WesselingP. The 2021 WHO classification of tumors of the central nervous system: A summary.Neuro-oncol.20212381231125110.1093/neuonc/noab106 34185076
    [Google Scholar]
  21. El KhayariA. BouchmaaN. TaibB. WeiZ. ZengA. El FatimyR. Metabolic rewiring in glioblastoma cancer: EGFR, IDH and beyond.Front. Oncol.20221290195110.3389/fonc.2022.901951 35912242
    [Google Scholar]
  22. von DeimlingA. EiblR.H. OhgakiH. p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma.Cancer Res.1992521029872990 1349850
    [Google Scholar]
  23. StoyanovG.S. DzhenkovD. GhenevP. IlievB. EnchevY. TonchevA.B. Cell biology of glioblastoma multiforme: From basic science to diagnosis and treatment.Med. Oncol.20183532710.1007/s12032‑018‑1083‑x 29387965
    [Google Scholar]
  24. HaarC.P. HebbarP. WallaceG.C.IV Drug resistance in glioblastoma: A mini review.Neurochem. Res.20123761192120010.1007/s11064‑011‑0701‑1 22228201
    [Google Scholar]
  25. Rocha PinheiroS.L. LemosF.F.B. MarquesH.S. Immunotherapy in glioblastoma treatment: Current state and future prospects.World J. Clin. Oncol.202314413815910.5306/wjco.v14.i4.138 37124134
    [Google Scholar]
  26. LiX. WuC. ChenN. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma.Oncotarget2016722334403345010.18632/oncotarget.7961 26967052
    [Google Scholar]
  27. MaoH. LeBrunD.G. YangJ. ZhuV.F. LiM. Deregulated signaling pathways in glioblastoma multiforme: Molecular mechanisms and therapeutic targets.Cancer Invest.2012301485610.3109/07357907.2011.630050 22236189
    [Google Scholar]
  28. LukS.K. PiekorzR.P. NürnbergB. Tony ToS.S. The catalytic phosphoinositol 3-kinase isoform p110δ is required for glioma cell migration and invasion.Eur. J. Cancer201248114915710.1016/j.ejca.2011.09.006 22079609
    [Google Scholar]
  29. MillisS.Z. JardimD.L. AlbackerL. Phosphatidylinositol 3‐kinase pathway genomic alterations in 60,991 diverse solid tumors informs targeted therapy opportunities.Cancer2019125711851199
    [Google Scholar]
  30. NaderaliE. KhakiA.A. RadJ.S. Ali-HemmatiA. RahmatiM. Regulation and modulation of PTEN activity.Mol. Biol. Rep.201845628692881
    [Google Scholar]
  31. DanieleS. CostaB. ZappelliE. Da PozzoE. SestitoS. NesiG. Combined inhibition of AKT/mTOR and MDM2 enhances glioblastoma multiforme cell apoptosis and differentiation of cancer stem cells.Sci. Rep.201559956
    [Google Scholar]
  32. ColardoM. SegattoM. Di BartolomeoS. Targeting RTK-PI3K-mTOR axis in gliomas: An update.Int. J. Mol. Sci.2021229489910.3390/ijms22094899 34063168
    [Google Scholar]
  33. ConciatoriF. CiuffredaL. BazzichettoC. mTOR cross-talk in cancer and potential for combination therapy.Cancers20181012310.3390/cancers10010023 29351204
    [Google Scholar]
  34. MajidiniaM. DarbandS.G. KavianiM. NabaviS.M. Jahanban-EsfahlanR. YousefiB. Cross-regulation between notch signaling pathway and miRNA machinery in cancer.DNA Repair201866-67304110.1016/j.dnarep.2018.04.002 29723707
    [Google Scholar]
  35. MajidiniaM. KarimianA. AlemiF. YousefiB. SafaA. Targeting miRNAs by polyphenols: Novel therapeutic strategy for aging.Biochem. Pharmacol.202017311368810.1016/j.bcp.2019.113688 31682793
    [Google Scholar]
  36. O'BrienJ. HayderH. ZayedY. PengC. Overview of microrna biogenesis, mechanisms of actions, and circulation.Front. Endocrinol.20189402
    [Google Scholar]
  37. JanssonM.D. LundA.H. MicroRNA and cancer.Mol. Oncol.20126659061010.1016/j.molonc.2012.09.006 23102669
    [Google Scholar]
  38. MazurekM. LitakJ. KamieniakP. Micro RNA molecules as modulators of treatment resistance, immune checkpoints controllers and sensitive biomarkers in glioblastoma multiforme.Int. J. Mol. Sci.2020214150710.3390/ijms21041507 32098401
    [Google Scholar]
  39. ChenM. MedarovaZ. MooreA. Role of microRNAs in glioblastoma.Oncotarget202112171707172310.18632/oncotarget.28039 34434499
    [Google Scholar]
  40. SatiI.S.E.E. ParharI. MicroRNAs regulate cell cycle and cell death pathways in glioblastoma.Int. J. Mol. Sci.202122241355010.3390/ijms222413550 34948346
    [Google Scholar]
  41. BuruianăA FlorianȘI FlorianAI The roles of miRNA in glioblastoma tumor cell communication: Diplomatic and aggressive negotiations.Int J Mol Sci2020216195010.3390/ijms21061950 32178454
    [Google Scholar]
  42. WangH. RenS. XuY. MicroRNA-195 reverses the resistance to temozolomide through targeting cyclin E1 in glioma cells.Anticancer Drugs2019301818810.1097/CAD.0000000000000700 30273182
    [Google Scholar]
  43. SheaA. HarishV. AfzalZ. ChijiokeJ. KedirH. DusmatovaS. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics.Cancer Med.2016581917194610.1002/cam4.775
    [Google Scholar]
  44. ArabS. GhasemiS. GhanbariA. Chemopreventive effect of spirulina microalgae on an animal model of glioblastoma via down‐regulation of PI3K/AKT/mTOR and up‐regulation of miR ‐34a/miR‐125B expression.Phytother. Res.202135116452646110.1002/ptr.7298 34606108
    [Google Scholar]
  45. ZhouW. LiuL. XueY. Combination of endothelial-monocyte-activating polypeptide-II with temozolomide suppress malignant biological behaviors of human glioblastoma stem cells via miR-590-3p/MACC1 inhibiting PI3K/AKT/mTOR signal pathway.Front. Mol. Neurosci.20171068
    [Google Scholar]
  46. ShiL. FeiX. WangZ. YouY. PI3K inhibitor combined with miR-125b inhibitor sensitize TMZ-induced anti-glioma stem cancer effects through inactivation of Wnt/β-catenin signaling pathway.In Vitro Cell. Dev. Biol. Anim.201551101047105510.1007/s11626‑015‑9931‑x 26170223
    [Google Scholar]
  47. GengS. TuS. FuW. WangJ. BaiZ. LncRNA PITPNA-AS1 stimulates cell proliferation and suppresses cell apoptosis in glioblastoma via targeting miR-223-3p/EGFR axis and activating PI3K/AKT signaling pathway.Cell Cycle202120191988199810.1080/15384101.2021.1958503 34470587
    [Google Scholar]
  48. HuangB.S. LuoQ. HanY. HuangD. TangQ.P. WuL.X. MiR‐223/PAX6 axis regulates glioblastoma stem cell proliferation and the chemo resistance to TMZ via regulating PI3K/Akt pathway.J. Cell. Biochem.2017118103452346110.1002/jcb.26003 28332226
    [Google Scholar]
  49. WuD. WangC. miR-155 regulates the proliferation of glioma cells through PI3K/AKT signaling.Front. Neurol.20201129710.3389/fneur.2020.00297 32411077
    [Google Scholar]
  50. KalhoriM.R. ArefianE. Fallah AtanakiF. KavousiK. SoleimaniM.J.S.R. miR-548x and miR-4698 controlled cell proliferation by affecting the PI3K/AKT signaling pathway in Glioblastoma cell lines.Sci. Rep.20201011558
    [Google Scholar]
  51. ZhouY. AnH. WuG. MicroRNA-6071 suppresses glioblastoma progression through the inhibition of PI3K/AKT/mTOR pathway by binding to ULBP2.OncoTargets Ther.2020139429944110.2147/OTT.S265791 33061429
    [Google Scholar]
  52. ZhangH. XuW. CircABCC3 knockdown inhibits glioblastoma cell malignancy by regulating miR-770-5p/SOX2 axis through PI3K/AKT signaling pathway.Brain Res.2021176414746510.1016/j.brainres.2021.147465 33811842
    [Google Scholar]
  53. RezaeiT. HejaziM. MansooriB. microRNA-181a mediates the chemo-sensitivity of glioblastoma to carmustine and regulates cell proliferation, migration, and apoptosis.Eur. J. Pharmacol.202088817348310.1016/j.ejphar.2020.173483 32810491
    [Google Scholar]
  54. LiuY. ZhengM. JiaoM. Polymeric nanoparticle mediated inhibition of miR-21 with enhanced miR-124 expression for combinatorial glioblastoma therapy.Biomaterials202127612103610.1016/j.biomaterials.2021.121036 34329919
    [Google Scholar]
  55. De BaccoF. OrzanF. ErriquezJ. ERBB3 overexpression due to miR-205 inactivation confers sensitivity to FGF, metabolic activation, and liability to ERBB3 targeting in glioblastoma.Cell Rep.202136410945510.1016/j.celrep.2021.109455 34320350
    [Google Scholar]
  56. ZhangX. NiuW. MuM. HuS. NiuC. Long non-coding RNA LPP-AS2 promotes glioma tumorigenesis via miR-7-5p/EGFR/PI3K/AKT/c-MYC feedback loop.J. Exp. Clin. Cancer Res.202039119610.1186/s13046‑020‑01695‑8 32962742
    [Google Scholar]
  57. ShuklaA. GuptaP. SinghR. MishraD.P. Glycolytic inhibitor 2-deoxy-d-glucose activates migration and invasion in glioblastoma cells through modulation of the miR-7-5p/TFF3 signaling pathway.Biochem. Biophys. Res. Commun.2018499482983510.1016/j.bbrc.2018.04.001 29621542
    [Google Scholar]
  58. BaoL. LiX. MicroRNA-32 targeting PTEN enhances M2 macrophage polarization in the glioma microenvironment and further promotes the progression of glioma.Mol. Cell. Biochem.20194601-2677910.1007/s11010‑019‑03571‑2 31218569
    [Google Scholar]
  59. ChengZ. LuoC. GuoZ. LncRNA‐XIST/microRNA‐126 sponge mediates cell proliferation and glucose metabolism through the IRS1/PI3K/Akt pathway in glioma.J. Cell. Biochem.202012132170218310.1002/jcb.29440 31680298
    [Google Scholar]
  60. KalhoriM.R. IraniS. SoleimaniM. ArefianE. KouhkanF. The effect of miR‐579 on the PI3K/AKT pathway in human glioblastoma PTEN mutant cell lines.J. Cell. Biochem.201912010167601677410.1002/jcb.28935 31243804
    [Google Scholar]
  61. AgrawalR. GargA. Benny MalgulwarP. SharmaV. SarkarC. KulshreshthaR. p53 and miR‐210 regulated NeuroD2, a neuronal basic helix–loop–helix transcription factor, is downregulated in glioblastoma patients and functions as a tumor suppressor under hypoxic microenvironment.Int. J. Cancer201814291817182810.1002/ijc.31209 29226333
    [Google Scholar]
  62. HinskeL.C. HeynJ. HübnerM. RinkJ. HirschbergerS. KrethS. Intronic miRNA-641 controls its host gene’s pathway PI3K/AKT and this relationship is dysfunctional in glioblastoma multiforme.Biochem. Biophys. Res. Commun.2017489447748310.1016/j.bbrc.2017.05.175 28576488
    [Google Scholar]
  63. XuT. WangH. JiangM. The E3 ubiquitin ligase CHIP/miR-92b/PTEN regulatory network contributes to tumorigenesis of glioblastoma.Am. J. Cancer Res.201772289300 28337377
    [Google Scholar]
  64. ZhangG. ChenL. KhanA.A. miRNA‐124‐3p/neuropilin‐1(NRP‐1) axis plays an important role in mediating glioblastoma growth and angiogenesis.Int. J. Cancer2018143363564410.1002/ijc.31329 29457830
    [Google Scholar]
  65. NawazZ. PatilV. PaulY. PI3 kinase pathway regulated miRNome in glioblastoma: Identification of miR-326 as a tumour suppressor miRNA.Mol. Cancer20161517410.1186/s12943‑016‑0557‑8 27871300
    [Google Scholar]
  66. YangC.M. ChibaT. BrillB. Expression of the miR ‐302/367 cluster in glioblastoma cells suppresses tumorigenic gene expression patterns and abolishes transformation related phenotypes.Int. J. Cancer2015137102296230910.1002/ijc.29606 25991553
    [Google Scholar]
  67. ChangJ.H. HwangY.H. LeeD.J. MicroRNA-203 modulates the radiation sensitivity of human malignant glioma cells.Int. J. Radiat. Oncol. Biol. Phys.201694241242010.1016/j.ijrobp.2015.10.001 26678661
    [Google Scholar]
  68. YaoY. MaJ. XueY. miR‐449a exerts tumor‐suppressive functions in human glioblastoma by targeting Myc‐associated zinc‐finger protein.Mol. Oncol.20159364065610.1016/j.molonc.2014.11.003 25487955
    [Google Scholar]
  69. LinM. TengL. WangY. ZhangJ. Curcumin-guided nanotherapy: A lipid-based nanomedicine for targeted drug delivery in breast cancer therapy.Drug Deliv.201623414201425
    [Google Scholar]
  70. SrinivasanS. PatricI.R.P. SomasundaramK. A ten-microRNA expression signature predicts survival in glioblastoma.PLoS One201163e1743810.1371/journal.pone.0017438 21483847
    [Google Scholar]
  71. GarciaC.M. TomsS.A. The role of circulating microRNA in glioblastoma liquid biopsy.World Neurosurg.202013842543510.1016/j.wneu.2020.03.128 32251831
    [Google Scholar]
  72. MafiA. RahmatiA. Babaei AghdamZ. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment.Cell. Mol. Biol. Lett.20222716510.1186/s11658‑022‑00354‑4 35922753
    [Google Scholar]
  73. MahinfarP. MansooriB. RostamzadehD. BaradaranB. ChoW.C. MansooriB. The role of microRNAs in multidrug resistance of glioblastoma.Cancers20221413321710.3390/cancers14133217 35804989
    [Google Scholar]
  74. GareevI. BeylerliO. LiangY. The role of microRNAs in therapeutic resistance of malignant primary brain tumors.Front. Cell Dev. Biol.2021974030310.3389/fcell.2021.740303 34692698
    [Google Scholar]
  75. AhirB.K. OzerH. EngelhardH.H. LakkaS.S. MicroRNAs in glioblastoma pathogenesis and therapy: A comprehensive review.Crit. Rev. Oncol. Hematol.2017120223310.1016/j.critrevonc.2017.10.003 29198335
    [Google Scholar]
  76. XuB. MeiJ. JiW. MicroRNAs involved in the EGFR pathway in glioblastoma.Biomed. Pharmacother.202113411111510.1016/j.biopha.2020.111115
    [Google Scholar]
  77. ChuangH.Y. SuY. LiuH.W. Preclinical evidence of STAT3 inhibitor pacritinib overcoming temozolomide resistance via downregulating miR-21-enriched exosomes from M2 glioblastoma-associated macrophages.J. Clin. Med.20198795910.3390/jcm8070959 31269723
    [Google Scholar]
  78. KhayamzadehM. NiaziV. HussenB.M. TaheriM. Ghafouri-FardS. SamadianM. Emerging role of extracellular vesicles in the pathogenesis of glioblastoma.Metab. Brain Dis.202338117718410.1007/s11011‑022‑01074‑6 36083425
    [Google Scholar]
  79. Di MartinoM.T. ArbitrioM. CaraccioloD. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review.Mol. Ther. Nucleic Acids2022271191122410.1016/j.omtn.2022.02.005 35282417
    [Google Scholar]
  80. GulluogluS. TuysuzE.C. SahinM. Simultaneous miRNA and mRNA transcriptome profiling of glioblastoma samples reveals a novel set of OncomiR candidates and their target genes.Brain Res.2018170019921010.1016/j.brainres.2018.08.035 30176243
    [Google Scholar]
  81. SchäferA EversL MeierL The metalloprotease-disintegrin ADAM8 alters the tumor suppressor miR-181a-5p expression profile in glioblastoma thereby contributing to its aggressiveness.Front. Oncol.20221282627310.3389/fonc.2022.826273 35371977
    [Google Scholar]
  82. SchneiderB. LampN. ZimpferA. HenkerC. ErbersdoblerA. Comparing tumor microRNA profiles of patients with long and short-term-surviving glioblastoma.Mol. Med. Rep.2022271810.3892/mmr.2022.12895 36367159
    [Google Scholar]
  83. Jesionek-KupnickaD BraunM Trąbska-KluchB MiR-21, miR-34a, miR-125b, miR-181d and miR-648 levels inversely correlate with MGMT and TP53 expression in primary glioblastoma patients.Arch. Med. Sci.201915250451210.5114/aoms.2017.69374 30899304
    [Google Scholar]
  84. WangY. ChenR. ZhouX. miR-137: A novel therapeutic target for human glioma.Mol. Ther. Nucleic Acids20202161462210.1016/j.omtn.2020.06.028 32736290
    [Google Scholar]
  85. LiuZ. JiangZ. HuangJ. miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways.Int. J. Oncol.20144451571158010.3892/ijo.2014.2322 24603851
    [Google Scholar]
  86. Ghaffarian ZirakR. TajikH. AsadiJ. HashemianP. JavidH. The role of micro RNAs in regulating PI3K/AKT signaling pathways in glioblastoma.Iran. J. Pathol.202217212213610.30699/ijp.2022.539029.2726 35463721
    [Google Scholar]
  87. VaitkieneP. PranckevicieneA. StakaitisR. SteponaitisG. TamasauskasA. BuneviciusA. Association of miR-34a expression with quality of life of glioblastoma patients: A prospective study.Cancers201911330010.3390/cancers11030300 30836600
    [Google Scholar]
  88. WangP. LiuX. DingL. ZhangX. MaZ. mTOR signaling-related microRNAs and cancer involvement.J. Cancer20189466767310.7150/jca.22119 29556324
    [Google Scholar]
  89. de MooijT. PetersonT.E. EvansJ. McCutcheonB. ParneyI.F. Short non-coding RNA sequencing of glioblastoma extracellular vesicles.J. Neurooncol.2020146225326310.1007/s11060‑019‑03384‑9 31912278
    [Google Scholar]
  90. ZhengB. ChenT. MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma.Open Life Sci.202015127428310.1515/biol‑2020‑0024 33817216
    [Google Scholar]
  91. YousefiB. ZarghamiN. SamadiN. MajidiniaM. Peroxisome proliferator-activated receptors and their ligands in cancer drug-resistance: Opportunity or challenge.Anticancer. Agents Med. Chem.201616121541154810.2174/1871520616666160204112941
    [Google Scholar]
  92. YousefiB. SamadiN. BaradaranB. Differential effects of peroxisome proliferator-activated receptor agonists on doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells.Cell. Mol. Biol.2015618118122 26718439
    [Google Scholar]
  93. VasanN. BaselgaJ. HymanD.M. A view on drug resistance in cancer.Nature2019575778229930910.1038/s41586‑019‑1730‑1 31723286
    [Google Scholar]
  94. BukowskiK. KciukM. KontekR. Mechanisms of multidrug resistance in cancer chemotherapy.Int. J. Mol. Sci.2020219323310.3390/ijms21093233 32370233
    [Google Scholar]
  95. ShiX. ValizadehA. MirS.M. miRNA-29a reverses P-glycoprotein-mediated drug resistance and inhibits proliferation via up-regulation of PTEN in colon cancer cells.Eur. J. Pharmacol.202088017313810.1016/j.ejphar.2020.173138 32416187
    [Google Scholar]
  96. Guerrero-ZotanoA. MayerI.A. ArteagaC.L. PI3K/AKT/mTOR: Role in breast cancer progression, drug resistance, and treatment.Cancer Metastasis Rev.201635451552410.1007/s10555‑016‑9637‑x 27896521
    [Google Scholar]
  97. Jhanwar-UniyalM. GellersonO. BreeJ. DasM. KleinmanG. GandhiC.D. Defining the role of mTOR pathway in the regulation of stem cells of glioblastoma.Adv. Biol. Regul.20238810094610.1016/j.jbior.2022.100946 36658088
    [Google Scholar]
  98. TangQ. CaoH. TongN. Tubeimoside-I sensitizes temozolomide-resistant glioblastoma cells to chemotherapy by reducing MGMT expression and suppressing EGFR induced PI3K/Akt/mTOR/NF-κB-mediated signaling pathway.Phytomedicine20229915401610.1016/j.phymed.2022.154016 35278900
    [Google Scholar]
  99. GuoL. WuZ. FOXM1-mediated NUF2 expression confers temozolomide resistance to human glioma cells by regulating autophagy via the PI3K/AKT/mTOR signaling pathway.Neuropathology2022425430446
    [Google Scholar]
  100. LapointeS. MasonW. MacNeilM. A phase I study of vistusertib (dual mTORC1/2 inhibitor) in patients with previously treated glioblastoma multiforme: A CCTG study.Invest. New Drugs20203841137114410.1007/s10637‑019‑00875‑4 31707687
    [Google Scholar]
  101. LeeY.W. CherngY.G. YangS.T. LiuS.H. ChenT.L. ChenR.M. Hypoxia induced by cobalt chloride triggers autophagic apoptosis of human and mouse drug-resistant glioblastoma cells through targeting the PI3K-AKT-mTOR signaling pathway.Oxid. Med. Cell. Longev.2021202111610.1155/2021/5558618 34136065
    [Google Scholar]
  102. TutakI. OzdilB. UysalA. Voxtalisib and low intensity pulsed ultrasound combinatorial effect on glioblastoma multiforme cancer stem cells via PI3K/AKT/mTOR.Pathol. Res. Pract.202223915414510.1016/j.prp.2022.154145 36240647
    [Google Scholar]
  103. ChuangH.Y. HsuL.Y. PanC.M. The E3 ubiquitin ligase NEDD4-1 mediates temozolomide-resistant glioblastoma through PTEN attenuation and redox imbalance in Nrf2–HO-1 axis.Int. J. Mol. Sci.202122191024710.3390/ijms221910247 34638586
    [Google Scholar]
  104. ZhaoZ. LiuM. LongW. Knockdown lncRNA CRNDE enhances temozolomide chemosensitivity by regulating autophagy in glioblastoma.Cancer Cell Int.202121145610.1186/s12935‑021‑02153‑x 34454479
    [Google Scholar]
  105. LiuZ. LiH. HeL. Discovery of small-molecule inhibitors of the HSP90-calcineurin-NFAT pathway against glioblastoma.Cell Chem. Biol.2019263352365.e710.1016/j.chembiol.2018.11.009 30639261
    [Google Scholar]
  106. AlcanizJ. WinklerL. DahlmannM. Clinically relevant glioblastoma patient-derived xenograft models to guide drug development and identify molecular signatures.Front. Oncol.202313112962710.3389/fonc.2023.1129627 37114125
    [Google Scholar]
  107. XiaQ. ZhangH. ZhangP. Oncogenic Smurf1 promotes PTEN wild-type glioblastoma growth by mediating PTEN ubiquitylation.Oncogene202039365902591510.1038/s41388‑020‑01400‑1 32737433
    [Google Scholar]
  108. WangH. YuJ. WangX. ZhangY. The RNA helicase DHX33 is required for cancer cell proliferation in human glioblastoma and confers resistance to PI3K/mTOR inhibition.Cell. Signal.20195417017810.1016/j.cellsig.2018.12.005 30552990
    [Google Scholar]
  109. MaitiP. PlemmonsA. DunbarG.L. Combination treatment of berberine and solid lipid curcumin particles increased cell death and inhibited PI3K/Akt/mTOR pathway of human cultured glioblastoma cells more effectively than did individual treatments.PLoS One20191412e022566010.1371/journal.pone.0225660 31841506
    [Google Scholar]
  110. BarretteA.M. BouhaddouM. BirtwistleM.R. Integrating transcriptomic data with mechanistic systems pharmacology models for virtual drug combination trials.ACS Chem. Neurosci.20189111812910.1021/acschemneuro.7b00197 28950062
    [Google Scholar]
  111. YangL. ZhangH. Expression of cytosolic phospholipase A2 alpha in glioblastoma is associated with resistance to chemotherapy.Am. J. Med. Sci.2018356439139810.1016/j.amjms.2018.06.019 30360807
    [Google Scholar]
  112. WangZ. LiangP. HeX. Etoposide loaded layered double hydroxide nanoparticles reversing chemoresistance and eradicating human glioma stem cells in vitro and in vivo.Nanoscale20181027131061312110.1039/C8NR02708K 29961791
    [Google Scholar]
  113. JiapaerS. FurutaT. TanakaS. KitabayashiT. NakadaM. Potential strategies overcoming the temozolomide resistance for glioblastoma.Neurol. Med. Chir.2018581040542110.2176/nmc.ra.2018‑0141 30249919
    [Google Scholar]
  114. FabroF. LamfersM.L.M. LeenstraS. Advancements, challenges, and future directions in tackling glioblastoma resistance to small kinase inhibitors.Cancers202214360010.3390/cancers14030600 35158868
    [Google Scholar]
  115. LeninS. PonthierE. ScheerK.G. A drug screening pipeline using 2D and 3D patient-derived in vitro models for pre-clinical analysis of therapy response in glioblastoma.Int. J. Mol. Sci.20212294322
    [Google Scholar]
  116. JensenC. TengY. Is it time to start transitioning From 2D to 3D cell culture?Front. Mol. Biosci.2020733
    [Google Scholar]
  117. HeC. XuK. ZhuX. Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma.Nat. Commun.2021121408910.1038/s41467‑021‑24168‑8
    [Google Scholar]
  118. CivitaP. Pre-clinical drug testing in 2D and 3D human in vitro models of glioblastoma incorporating non-neoplastic astrocytes: Tunneling nano tubules and mitochondrial transfer modulates cell behavior and therapeutic response.Int. J. Mol. Sci.201920236017
    [Google Scholar]
  119. PatwardhanG.A. MarczykM. WaliV.B. SternD.F. PusztaiL. HatzisC.J.N.B.C. Treatment scheduling effects on the evolution of drug resistance in heterogeneous cancer cell populations.NPJ Breast Cancer2021716010.1038/s41523‑021‑00270‑4
    [Google Scholar]
  120. BruynG. Handbook of Clinical Neurology: Disorders of higher nervous activity.North-Holland Publishing Company1968
    [Google Scholar]
  121. Saenz-AntoñanzasA Auzmendi-IriarteJ Carrasco-GarciaE Liquid biopsy in glioblastoma: Opportunities, applications and challenges.Cancers201911795010.3390/cancers11070950
    [Google Scholar]
  122. StockslagerM.A. MalinowskiS. TouatM. Functional drug susceptibility testing using single-cell mass predicts treatment outcome in patient-derived cancer neurosphere models.Cell Rep.202137110978810.1016/j.celrep.2021.109788
    [Google Scholar]
  123. JainK.K. A critical overview of targeted therapies for glioblastoma.Front. Oncol.20188419
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240309647240516042716
Loading
/content/journals/cmm/10.2174/0115665240309647240516042716
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): chemotherapy; Glioblastoma; lncRNA; miRNAs; PI3K/AKT/mTOR; temozolomide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test