Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

miRNA-21 is regarded as both an abundant and highly conserved member of the microRNA (miRNA) family. It is expressed in virtually every cell and is responsible for critical regulatory actions that are important in health and disease. This microRNA has been shown to potentially have a role in the pathogenesis of several immune-related disorders, including autoimmune diseases, such as Multiple sclerosis and systemic lupus erythematosus, as two prominent examples of diseases that might be involved. In the current research, we looked at the role of miRNA-21, regarded as one of the most significant pathogenic miRNAs with a role in the development of autoimmune illness.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240290075240514164601
2024-05-27
2025-10-26
Loading full text...

Full text loading...

References

  1. LeeR.C. FeinbaumR.L. AmbrosV. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell1993755843854
    [Google Scholar]
  2. FilipowiczW. BhattacharyyaS.N. SonenbergN. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?Nat. Rev. Genet.20089210211410.1038/nrg2290 18197166
    [Google Scholar]
  3. Valinezhad OrangA. SafaralizadehR. Kazemzadeh-BaviliM. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation.Int. J. Genomics2014201411510.1155/2014/970607 25180174
    [Google Scholar]
  4. Griffiths-JonesS. miRBase: The microRNA sequence database. MicroRNA Protocols2006129138
    [Google Scholar]
  5. LewisB.P. BurgeC.B. BartelD.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.Cell200512011520
    [Google Scholar]
  6. AnayaJ-M. ShoenfeldY. CorreaP.A. García-CarrascoM. CerveraR. Autoinmunidad y enfermedad autoinmune.CIB2020
    [Google Scholar]
  7. XiangY. ZhangM. JiangD. SuQ. ShiJ. The role of inflammation in autoimmune disease: A therapeutic target.Front. Immunol.202314126709110.3389/fimmu.2023.1267091 37859999
    [Google Scholar]
  8. QuZ. LiW. FuB. MicroRNAs in autoimmune diseases.BioMed Res. Int.2014201452789510.1155/2014/527895
    [Google Scholar]
  9. LiS. WuY. ChenJ. ShenS-y. DuanJ. XuH.E. Autoimmune diseases: Targets, biology, and drug discovery.Acta Pharmacol. Sin.202352112 38097717
    [Google Scholar]
  10. Moran-MoguelM.C. Petarra-del RioS. Mayorquin-GalvanE.E. Zavala-CernaM.G. Rheumatoid arthritis and miRNAs: A critical review through a functional view.J. Immunol. Res.20182018247452910.1155/2018/2474529
    [Google Scholar]
  11. AssmannT.S. Recamonde-MendozaM. De SouzaB.M. CrispimD. MicroRNA expression profiles and type 1 diabetes mellitus: Systematic review and bioinformatic analysis.Endocr. Connect.20176877379010.1530/EC‑17‑0248 28986402
    [Google Scholar]
  12. DolatiS. MarofiF. BabalooZ. Dysregulated network of miRNAs involved in the pathogenesis of multiple sclerosis.Biomed. Pharmacother.201810428029010.1016/j.biopha.2018.05.050 29775896
    [Google Scholar]
  13. RealeM. D’AngeloC. CostantiniE. LausM. MorettiA. CroceA. MicroRNA in Sjögren’s syndrome: their potential roles in pathogenesis and diagnosis.J. Immunol. Res.20182018751017410.1155/2018/7510174
    [Google Scholar]
  14. HongS.M. LiuC. YinZ. WuL. QuB. ShenN. MicroRNAs in systemic lupus erythematosus: A perspective on the path from biological discoveries to clinical practice.Curr. Rheumatol. Rep.20202261710.1007/s11926‑020‑00895‑7 32405712
    [Google Scholar]
  15. JungH. KimJ.S. LeeK.H. Roles of microRNAs in inflammatory bowel disease.Int. J. Biol. Sci.20211782112212310.7150/ijbs.59904 34131410
    [Google Scholar]
  16. XiuliY. HonglinW. miRNAs flowing up and down: The concerto of psoriasis.Front. Med.2021864679610.3389/fmed.2021.646796 33718413
    [Google Scholar]
  17. TanY. PanT. YeY. Serum microRNAs as potential biomarkers of primary biliary cirrhosis.PLoS One2014910e11142410.1371/journal.pone.0111424 25347847
    [Google Scholar]
  18. JafarzadehA. MarzbanH. NematiM. Dysregulated expression of miRNAs in immune thrombocytopenia.Epigenomics202113161317132710.2217/epi‑2021‑0092 34498489
    [Google Scholar]
  19. Lagos-QuintanaM. RauhutR. LendeckelW. TuschlT. Identification of novel genes coding for small expressed RNAs.Science2001294554385385810.1126/science.1064921 11679670
    [Google Scholar]
  20. MengF. HensonR. Wehbe-JanekH. GhoshalK. JacobS.T. PatelT. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer.Gastroenterology2007133264765810.1053/j.gastro.2007.05.022 17681183
    [Google Scholar]
  21. ZhuQ. WangZ. HuY. miR-21 promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback loop in human hepatocellular carcinoma.Oncol. Rep.201227516601668 22322403
    [Google Scholar]
  22. ZhangJ. WangJ. ZhaoF. LiuQ. JiangK. YangG. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC).Clin. Chim. Acta201041111-1284685210.1016/j.cca.2010.02.074 20223231
    [Google Scholar]
  23. da Costa MartinsP.A. De WindtL.J. Preconception Health and Care: Handbook for education.Oxford University Press20101541
    [Google Scholar]
  24. YangC.H. YueJ. FanM. PfefferL.M. IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis.Cancer Res.201070208108811610.1158/0008‑5472.CAN‑10‑2579 20813833
    [Google Scholar]
  25. DavisB.N. HilyardA.C. LagnaG. HataA. SMAD proteins control DROSHA-mediated microRNA maturation.Nature20084547200566110.1038/nature07086 18548003
    [Google Scholar]
  26. JenikeA.E. HalushkaM.K. miR-21: A non‐specific biomarker of all maladies.Biomark. Res.2021911810.1186/s40364‑021‑00272‑1 33712063
    [Google Scholar]
  27. KumarswamyR. VolkmannI. ThumT. Regulation and function of miRNA-21 in health and disease.RNA Biol.20118570671310.4161/rna.8.5.16154 21712654
    [Google Scholar]
  28. JiangH. ChessL. How the immune system achieves self-nonself discrimination during adaptive immunity.Adv. Immunol.20091029513310.1016/S0065‑2776(09)01202‑4 19477320
    [Google Scholar]
  29. Muñoz CarrilloJ.L. Castro GarcíaF.P. Gutiérrez CoronadoO. Moreno GarcíaM.A. Contreras CorderoJ.F. Physiology and pathology of innate immune response against pathogens.In: Physiology and Pathology of Immunology. Intechopen20171264
    [Google Scholar]
  30. LuL.F. ListonA. MicroRNA in the immune system, microRNA as an immune system.Immunology2009127329129810.1111/j.1365‑2567.2009.03092.x 19538248
    [Google Scholar]
  31. TaganovKD BoldinMP ChangKJ BaltimoreD. NF-κBdependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses.Proc Natl Acad Sci200610333124811248610.1073/pnas.0605298103 16885212
    [Google Scholar]
  32. O’ConnellR.M. TaganovK.D. BoldinM.P. ChengG. BaltimoreD. MicroRNA-155 is induced during the macrophage inflammatory response.Proc. Natl. Acad. Sci.200710451604160910.1073/pnas.0610731104 17242365
    [Google Scholar]
  33. TiliE. MichailleJ.J. CiminoA. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock.J. Immunol.200717985082508910.4049/jimmunol.179.8.5082 17911593
    [Google Scholar]
  34. RaischJ. Darfeuille-MichaudA. NguyenH.T.T. Role of microRNAs in the immune system, inflammation and cancer.World J. Gastroenterol.201319202985299610.3748/wjg.v19.i20.2985 23716978
    [Google Scholar]
  35. MaheshG. BiswasR. MicroRNA-155: A master regulator of inflammation.J. Interferon Cytokine Res.201939632133010.1089/jir.2018.0155 30998423
    [Google Scholar]
  36. RodriguezA. VigoritoE. ClareS. Requirement of bic/microRNA-155 for normal immune function.Science2007316582460861110.1126/science.1139253 17463290
    [Google Scholar]
  37. AliverniniS. GremeseE. McSharryC. MicroRNA-155—at the critical interface of innate and adaptive immunity in arthritis.Front. Immunol.20188193210.3389/fimmu.2017.01932 29354135
    [Google Scholar]
  38. CeppiM. PereiraP.M. Dunand-SauthierI. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells.Proc. Natl. Acad. Sci.200910682735274010.1073/pnas.0811073106 19193853
    [Google Scholar]
  39. O’ConnellR.M. RaoD.S. ChaudhuriA.A. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder.J. Exp. Med.2008205358559410.1084/jem.20072108 18299402
    [Google Scholar]
  40. KhoshmirsafaM. KianmehrN. FalakR. Elevated expression of miR‐21 and miR‐155 in peripheral blood mononuclear cells as potential biomarkers for lupus nephritis.Int. J. Rheum. Dis.201922345846710.1111/1756‑185X.13410 30398001
    [Google Scholar]
  41. MostahfezianM. AzhirZ. DehghanianF. HojatiZ. Expression pattern of microRNAs, miR-21, miR-155 and miR-338 in patients with type 1 diabetes.Arch. Med. Res.2019503798510.1016/j.arcmed.2019.07.002 31495393
    [Google Scholar]
  42. SunY. ZhangL. HongL. MicroRNA-181b-2 and MicroRNA-21-1 negatively regulate NF-κB and IRF3-mediated innate immune responses via targeting TRIF in Teleost.Front. Immunol.20211273452010.3389/fimmu.2021.734520
    [Google Scholar]
  43. WangL. HeL. ZhangR. Regulation of T lymphocyte activation by microRNA-21.Mol. Immunol.201459216317110.1016/j.molimm.2014.02.004 24631982
    [Google Scholar]
  44. LiuF. LiuC. HuX. ShangY. WuL. MicroRNA-21: A positive regulator for optimal production of type I and type III interferon by plasmacytoid dendritic cells.Front. Immunol.2017894710.3389/fimmu.2017.00947 28871250
    [Google Scholar]
  45. VarikutiS. VermaC. HolcombE. MicroRNA-21 deficiency promotes the early Th1 immune response and resistance toward visceral leishmaniasis.J. Immunol.202120751322133210.4049/jimmunol.2001099 34341171
    [Google Scholar]
  46. LeeH.Y. HurJ. KangJ.Y. RheeC.K. LeeS.Y. MicroRNA-21 inhibition suppresses alveolar M2 macrophages in an ovalbumin-induced allergic asthma mice model.Allergy Asthma Immunol. Res.202113231232910.4168/aair.2021.13.2.312 33474864
    [Google Scholar]
  47. LiechtyC. HuJ. ZhangL. LiechtyK.W. XuJ. Role of microRNA-21 and its underlying mechanisms in inflammatory responses in diabetic wounds.Int. J. Mol. Sci.2020219332810.3390/ijms21093328 32397166
    [Google Scholar]
  48. ChuQ. YanX. LiuL. XuT. The inducible microRNA-21 negatively modulates the inflammatory response in teleost fish via targeting IRAK4.Front. Immunol.201910162310.3389/fimmu.2019.01623 31379828
    [Google Scholar]
  49. SunJ. LiuR. HeX. MicroRNA-21 regulates diametrically opposed biological functions of regulatory T cells.Front. Immunol.20211276675710.3389/fimmu.2021.766757 34858422
    [Google Scholar]
  50. LongH. YinH. WangL. GershwinM.E. LuQ. The critical role of epigenetics in systemic lupus erythematosus and autoimmunity.J. Autoimmun.20167411813810.1016/j.jaut.2016.06.020 27396525
    [Google Scholar]
  51. MakA. IsenbergD.A. LauC.S. Global trends, potential mechanisms and early detection of organ damage in SLE.Nat. Rev. Rheumatol.20139530131010.1038/nrrheum.2012.208 23229448
    [Google Scholar]
  52. DörnerT. FurieR. Novel paradigms in systemic lupus erythematosus.Lancet2019393101882344235810.1016/S0140‑6736(19)30546‑X 31180031
    [Google Scholar]
  53. RekvigO.P. Systemic lupus erythematosus: Definitions, contexts, conflicts, enigmas.Front. Immunol.2018938710.3389/fimmu.2018.00387 29545801
    [Google Scholar]
  54. PanL. LuM.P. WangJ.H. XuM. YangS.R. Immunological pathogenesis and treatment of systemic lupus erythematosus.World J. Pediatr.2020161193010.1007/s12519‑019‑00229‑3 30796732
    [Google Scholar]
  55. GurevitzS.L. SnyderJ.A. WesselE.K. FreyJ. WilliamsonB.A. Systemic lupus erythematosus: A review of the disease and treatment options.Consult Pharm.201328211012110.4140/TCP.n.2013.110 23395811
    [Google Scholar]
  56. MohanC. PuttermanC. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis.Nat. Rev. Nephrol.201511632934110.1038/nrneph.2015.33 25825084
    [Google Scholar]
  57. LuoX. TsaiL.M. ShenN. YuD. Evidence for microRNA-mediated regulation in rheumatic diseases.Ann. Rheum. Dis.201069Suppl. 1i30i3610.1136/ard.2009.117218 19995741
    [Google Scholar]
  58. TavakoliniaN MahmoudiM FaeziST NoorbakhshF IzadM Mir-21-3p and Mir-21-5p as a candidate biomarker in serum and PBMCs of patients with systemic lupus erythematosus.JCell Immunol Serum Biology2018
    [Google Scholar]
  59. PanW. ZhuS. YuanM. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1.J. Immunol.2010184126773678110.4049/jimmunol.0904060 20483747
    [Google Scholar]
  60. HaT.Y. The role of microRNAs in regulatory T cells and in the immune response.Immune Netw.2011111114110.4110/in.2011.11.1.11 21494372
    [Google Scholar]
  61. GarchowB.G. Bartulos EncinasO. LeungY.T. Silencing of microRNA‐21 in vivo ameliorates autoimmune splenomegaly in lupus mice.EMBO Mol. Med.201131060561510.1002/emmm.201100171 21882343
    [Google Scholar]
  62. StagakisE. BertsiasG. VerginisP. Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression.Ann. Rheum. Dis.20117081496150610.1136/ard.2010.139857 21602271
    [Google Scholar]
  63. AmrK.S. BayoumiF.S. ElgengehyF.T. AbdallahS.O. AhmedH.H. EissaE. The role of microRNA-31 and microRNA-21 as regulatory biomarkers in the activation of T lymphocytes of Egyptian lupus patients.Rheumatol. Int.201636111617162510.1007/s00296‑016‑3550‑z 27510529
    [Google Scholar]
  64. GarchowB. KiriakidouM. MicroRNA-21 deficiency protects from lupus-like autoimmunity in the chronic graft-versus-host disease model of systemic lupus erythematosus.Clin. Immunol.201616210010610.1016/j.clim.2015.11.010 26631756
    [Google Scholar]
  65. YoungN.A. ValienteG.R. HamptonJ.M. Estrogen-regulated STAT1 activation promotes TLR8 expression to facilitate signaling via microRNA-21 in systemic lupus erythematosus.Clin. Immunol.2017176122210.1016/j.clim.2016.12.005 28039018
    [Google Scholar]
  66. ZhaoM. LiM. GaoX. Downregulation of BDH2 modulates iron homeostasis and promotes DNA demethylation in CD4 + T cells of systemic lupus erythematosus.Clin. Immunol.201818711312110.1016/j.clim.2017.11.002 29113828
    [Google Scholar]
  67. MartinJ.C. BaetenD.L. JosienR. Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus.Clin. Immunol.2014154111210.1016/j.clim.2014.05.004 24858580
    [Google Scholar]
  68. KourtiM. SokratousM. KatsiariC.G. Regulation of microRNA in systemic lupus erythematosus: the role of miR-21 and miR-210.Mediterr. J. Rheumatol.2019311717410.31138/mjr.31.1.71 32411934
    [Google Scholar]
  69. LiuD. ZhangW. Pioglitazone attenuates lupus nephritis symptoms in mice by modulating miR-21-5p/TIMP3 Axis: The key role of the activation of peroxisome proliferator–activated receptor-γ.Inflammation20214441416142510.1007/s10753‑021‑01426‑x 33604775
    [Google Scholar]
  70. SchellS.L. BrickerK.N. FikeA.J. Context-dependent mir-21 regulation of tlr7-mediated autoimmune and foreign antigen-driven antibody-forming cell and germinal center responses.J. Immunol.2021206122803281810.4049/jimmunol.2001039 34039637
    [Google Scholar]
  71. AllaweQ.H. AbedM.Q. AbdullahH.N. The possible effect of expressive plasma level of miRNA-21-5P on the serum level of IL-23 in with and without lupus nephritis patients.Gene Rep.20222610142210.1016/j.genrep.2021.101422
    [Google Scholar]
  72. VukelicM. LalooA. KyttarisV.C. Interleukin 23 is elevated in the serum of patients with SLE.Lupus202029141943194710.1177/0961203320952841 32838622
    [Google Scholar]
  73. GaoX. SongY. DuP. Administration of a microRNA-21 inhibitor improves the lupus-like phenotype in MRL/lpr mice by repressing Tfh cell-mediated autoimmune responses.Int. Immunopharmacol.202210610857810.1016/j.intimp.2022.108578 35124415
    [Google Scholar]
  74. WangY-D. YangX-F. WenL. Exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation after traumatic brain injury.Neural Regen. Res.202217122717272410.4103/1673‑5374.339489 35662219
    [Google Scholar]
  75. ZhangM. Johnson-StephensonT.K. WangW. Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17+ regulatory T cell.Stem Cell Res. Ther.202213148410.1186/s13287‑022‑03174‑7 36153633
    [Google Scholar]
  76. BhartiN. AgrawalV. KamthanS. PrasadN. AgarwalV. Blood TGF-β1 and miRNA-21-5p levels predict renal fibrosis and outcome in IgA nephropathy.Int. Urol. Nephrol.20235561557156410.1007/s11255‑023‑03464‑w 36648741
    [Google Scholar]
  77. CuiY. ZhangH. WangZ. Exploring the shared molecular mechanisms between systemic lupus erythematosus and primary Sjögren’s syndrome based on integrated bioinformatics and single-cell RNA-seq analysis.Front. Immunol.202314121233010.3389/fimmu.2023.1212330 37614232
    [Google Scholar]
  78. HusakovaM. MicroRNAs in the key events of systemic lupus erythematosus pathogenesis.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2016160332734210.5507/bp.2016.004 27003314
    [Google Scholar]
  79. ChenJ.Q. PappG. PóliskaS. MicroRNA expression profiles identify disease-specific alterations in systemic lupus erythematosus and primary Sjögren’s syndrome.PLoS One2017123e017458510.1371/journal.pone.0174585 28339495
    [Google Scholar]
  80. LucafòM. CurciD. FranzinM. DecortiG. StoccoG. Inflammatory bowel disease and risk of colorectal cancer: An overview from pathophysiology to pharmacological prevention.Front. Pharmacol.20211277210110.3389/fphar.2021.772101 34744751
    [Google Scholar]
  81. LandyJ. RondeE. EnglishN. Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer.World J. Gastroenterol.201622113117312610.3748/wjg.v22.i11.3117 27003989
    [Google Scholar]
  82. LudwigK. FassanM. MescoliC. PDCD4/miR-21 dysregulation in inflammatory bowel disease-associated carcinogenesis.Virchows Arch.20134621576310.1007/s00428‑012‑1345‑5 23224068
    [Google Scholar]
  83. ShiC. LiangY. YangJ. MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury.PLoS One201386e6681410.1371/journal.pone.0066814 23826144
    [Google Scholar]
  84. AndoY. MazzuranaL. ForkelM. Downregulation of MicroRNA-21 in colonic CD3+ T cells in UC remission.Inflamm. Bowel Dis.201622122788279310.1097/MIB.0000000000000969 27824649
    [Google Scholar]
  85. Thorlacius-UssingG. Schnack NielsenB. AndersenV. HolmstrømK. PedersenA.E. Expression and localization of miR-21 and miR-126 in mucosal tissue from patients with inflammatory bowel disease.Inflamm. Bowel Dis.201723573975210.1097/MIB.0000000000001086 28426456
    [Google Scholar]
  86. KimE. BaeJ. LeeJ. Purification and characterization of turanose, a sucrose isomer and its anti-inflammatory effects in dextran sulfate sodium (DSS)-induced colitis model.J. Funct. Foods20196310357010.1016/j.jff.2019.103570
    [Google Scholar]
  87. LaiC.Y. YehK.Y. LiuB.F. Microrna-21 plays multiple oncometabolic roles in colitisassociated carcinoma and colorectal cancer via the pi3k/akt, stat3, and pdcd4/tnf-α signaling pathways in zebrafish.Cancers20211321556510.3390/cancers13215565 34771727
    [Google Scholar]
  88. ShapiroS.C. Biomarkers in Rheumatoid Arthritis.Cureus2021135e15063 34141507
    [Google Scholar]
  89. Castro-VillegasC. Pérez-SánchezC. EscuderoA. Circulating miRNAs as potential biomarkers of therapy effectiveness in rheumatoid arthritis patients treated with anti-TNFα.Arthritis Res. Ther.20151714910.1186/s13075‑015‑0555‑z 25566937
    [Google Scholar]
  90. SinghR.P. MassachiI. ManickavelS. The role of miRNA in inflammation and autoimmunity.Autoimmun. Rev.201312121160116510.1016/j.autrev.2013.07.003 23860189
    [Google Scholar]
  91. Duroux-RichardI. JorgensenC. ApparaillyF. What do microRNAs mean for Rheumatoid arthritis?Arthritis Rheum.2012641112010.1002/art.30651 21898352
    [Google Scholar]
  92. DeaneK.D. DemoruelleM.K. KelmensonL.B. KuhnK.A. NorrisJ.M. HolersV.M. Genetic and environmental risk factors for rheumatoid arthritis.Best Pract. Res. Clin. Rheumatol.201731131810.1016/j.berh.2017.08.003 29221595
    [Google Scholar]
  93. ChatzikyriakidouA. VoulgariP.V. GeorgiouI. DrososA.A. miRNAs and related polymorphisms in Rheumatoid arthritis susceptibility.Autoimmun. Rev.201211963664110.1016/j.autrev.2011.11.004 22100329
    [Google Scholar]
  94. Abou-ZeidA. SaadM. SolimanE. MicroRNA 146a expression in Rheumatoid arthritis: association with tumor necrosis factor-alpha and disease activity.Genet. Test. Mol. Biomarkers2011151180781210.1089/gtmb.2011.0026 21810022
    [Google Scholar]
  95. BottiniN. FiresteinG.S. Epigenetics in Rheumatoid arthritis: A primer for rheumatologists.Curr. Rheumatol. Rep.2013151137210.1007/s11926‑013‑0372‑9 24072602
    [Google Scholar]
  96. DongL. WangX. TanJ. Decreased expression of micro RNA ‐21 correlates with the imbalance of Th17 and Treg cells in patients with Rheumatoid arthritis.J. Cell. Mol. Med.201418112213222410.1111/jcmm.12353 25164131
    [Google Scholar]
  97. KondoN. KurodaT. KobayashiD. Cytokine networks in the pathogenesis of Rheumatoid arthritis.Int. J. Mol. Sci.202122201092210.3390/ijms222010922 34681582
    [Google Scholar]
  98. BrzustewiczE. BrylE. The role of cytokines in the pathogenesis of rheumatoid arthritis: Practical and potential application of cytokines as biomarkers and targets of personalized therapy.Cytokine201576252753610.1016/j.cyto.2015.08.260 26321413
    [Google Scholar]
  99. ChenY. XianP.F. YangL. WangS.X. MicroRNA-21 promotes proliferation of fibroblast-like synoviocytes through mediation of NF- B nuclear translocation in a rat model of collagen-induced rheumatoid arthritis.BioMed Res. Int.20162016927907810.1155/2016/9279078
    [Google Scholar]
  100. XiongG. HuangZ. JiangH. PanZ. XieJ. WangS. Inhibition of microRNA-21 decreases the invasiveness of fibroblast-like synoviocytes in rheumatoid arthritis via TGFβ/Smads signaling pathway.Iran. J. Basic Med. Sci.2016197787793 27635204
    [Google Scholar]
  101. YangS. JiangS. WangY. TuS. WangZ. ChenZ. Interleukin 34 upregulation contributes to the increment of MicroRNA 21 expression through STAT3 activation associated with disease activity in rheumatoid arthritis.J. Rheumatol.20164371312131910.3899/jrheum.151253 27084907
    [Google Scholar]
  102. HuS.L. ChangA.C. HuangC.C. TsaiC.H. LinC.C. TangC.H. Myostatin promotes interleukin-1β expression in rheumatoid arthritis synovial fibroblasts through inhibition of miR-21-5p.Front. Immunol.20178DEC174710.3389/fimmu.2017.01747
    [Google Scholar]
  103. LiuX.G. ZhangY. JuW.F. LiC.Y. MuY.C. MiR-21 relieves rheumatoid arthritis in rats via targeting Wnt signaling pathway.Eur. Rev. Med. Pharmacol. Sci.2019233Suppl.96103 31389580
    [Google Scholar]
  104. DengY. ZhouY. LiangQ. Inflammation‐instructed hierarchical delivery of IL‐4/miR‐21 orchestrates osteoimmune microenvironment toward the treatment of rheumatoid arthritis.Adv. Funct. Mater.20213133210103310.1002/adfm.202101033
    [Google Scholar]
  105. LiG.Q. FangY.X. LiuY. MicroRNA-21 from bone marrow mesenchymal stem cell-derived extracellular vesicles targets TET1 to suppress KLF4 and alleviate Rheumatoid arthritis.Ther. Adv. Chronic Dis.20211210.1177/20406223211007369 33995992
    [Google Scholar]
  106. RoepB.O. ThomaidouS. van TienhovenR. ZaldumbideA. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?).Nat. Rev. Endocrinol.202117315016110.1038/s41574‑020‑00443‑4 33293704
    [Google Scholar]
  107. Saberzadeh-ArdestaniB. KaramzadehR. BasiriM. Type 1 diabetes mellitus: Cellular and molecular pathophysiology at a glance.Cell J.2018203294301 29845781
    [Google Scholar]
  108. RuanQ. WangT. KameswaranV. The microRNA-21−PDCD4 axis prevents type 1 diabetes by blocking pancreatic β cell death.Proc. Natl. Acad. Sci.201110829120301203510.1073/pnas.1101450108 21730150
    [Google Scholar]
  109. OsipovaJ. FischerD.C. DangwalS. Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: A cross-sectional cohort study.J. Clin. Endocrinol. Metab.2014999E1661E166510.1210/jc.2013‑3868 24937532
    [Google Scholar]
  110. SimsE.K. LakhterA.J. Anderson-BaucumE. KonoT. TongX. Evans-MolinaC. MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells.Diabetologia20176061057106510.1007/s00125‑017‑4237‑z 28280903
    [Google Scholar]
  111. LakhterA.J. PrattR.E. MooreR.E. Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes.Diabetologia20186151124113410.1007/s00125‑018‑4559‑5 29445851
    [Google Scholar]
  112. FaissnerS. PlemelJ.R. GoldR. YongV.W. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies.Nat. Rev. Drug Discov.2019181290592210.1038/s41573‑019‑0035‑2 31399729
    [Google Scholar]
  113. AkbarzadehS. Tayefeh-GholamiS. NajariP. The expression profile of HAR1A and HAR1B in the peripheral blood cells of multiple sclerosis patients.Mol. Biol. Rep.20235032391239810.1007/s11033‑022‑08182‑7 36583781
    [Google Scholar]
  114. HauserS.L. CreeB.A. Treatment of multiple sclerosis: A review.Am. J. Med.2020133121380139010.1016/j.amjmed.2020.05.049
    [Google Scholar]
  115. GhasemiN. RazaviS. NikzadE. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy.Cell J.2017191110 28367411
    [Google Scholar]
  116. WaubantE. LucasR. MowryE. Environmental and genetic risk factors for MS: An integrated review.Ann. Clin. Transl. Neurol.2019691905192210.1002/acn3.50862 31392849
    [Google Scholar]
  117. GaoY. HanD. FengJ. MicroRNA in multiple sclerosis.Clin. Chim. Acta2021516929910.1016/j.cca.2021.01.020 33545109
    [Google Scholar]
  118. Zare-ShahabadiA. RenaudineauY. RezaeiN. MicroRNAs and multiple sclerosis: From physiopathology toward therapy.Expert Opin. Ther. Targets201317121497150710.1517/14728222.2013.838219 24053428
    [Google Scholar]
  119. FenoglioC. CantoniC. De RizM. Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis.Neurosci. Lett.2011504191210.1016/j.neulet.2011.08.021 21875645
    [Google Scholar]
  120. RuhrmannS. EwingE. PiketE. Hypermethylation of MIR21 in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associates with lower miRNA-21 levels and concomitant up-regulation of its target genes.Mult. Scler.201824101288130010.1177/1352458517721356 28766461
    [Google Scholar]
  121. BalkanE. BilgeN. Expression levels of IL-17/IL-23 cytokine-targeting microRNAs 20, 21, 26, 155, and Let-7 in patients with relapsing-remitting multiple sclerosis.Neurol. Res.202143977878310.1080/01616412.2021.1935099 34130607
    [Google Scholar]
  122. JunkerA. KrumbholzM. EiseleS. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47.Brain2009132123342335210.1093/brain/awp300 19952055
    [Google Scholar]
  123. ManianM. SohrabiE. EskandariN. An integrated bioinformatics analysis of the potential regulatory effects of mir-21 on t-cell related target genes in multiple sclerosis.Avicenna J. Med. Biotechnol.202113314916510.18502/ajmb.v13i3.6364 34484645
    [Google Scholar]
  124. LleoA. MarzoratiS. AnayaJ.M. GershwinM.E. Primary biliary cholangitis: A comprehensive overview.Hepatol. Int.201711648549910.1007/s12072‑017‑9830‑1 29164395
    [Google Scholar]
  125. SarcognatoS. SacchiD. GrilloF. Autoimmune biliary diseases: Primary biliary cholangitis and primary sclerosing cholangitis.Pathologica2021113317018410.32074/1591‑951X‑245 34294935
    [Google Scholar]
  126. SzaboG. BalaS. MicroRNAs in liver disease.Nat. Rev. Gastroenterol. Hepatol.201310954255210.1038/nrgastro.2013.87 23689081
    [Google Scholar]
  127. QinB. HuangF. LiangY. YangZ. ZhongR. Analysis of altered microRNA expression profiles in peripheral blood mononuclear cells from patients with primary biliary cirrhosis.J. Gastroenterol. Hepatol.201328354355010.1111/jgh.12040 23173724
    [Google Scholar]
  128. SelmiC. MedaF. KasangianA. Experimental evidence on the immunopathogenesis of primary biliary cirrhosis.Cell. Mol. Immunol.20107111010.1038/cmi.2009.104 20029462
    [Google Scholar]
  129. WangX. WenX. ZhouJ. MicroRNA-223 and microRNA-21 in peripheral blood B cells associated with progression of primary biliary cholangitis patients.PLoS One2017129e018429210.1371/journal.pone.0184292 28886078
    [Google Scholar]
  130. WasikU. Kempinska-PodhorodeckaA. BogdanosD.P. MilkiewiczP. MilkiewiczM. Enhanced expression of miR-21 and miR-150 is a feature of anti-mitochondrial antibody-negative primary biliary cholangitis.Mol. Med.2020261810.1186/s10020‑019‑0130‑1 31948396
    [Google Scholar]
  131. Justiz VaillantA.A. GuptaN. In StatPearls; StatPearls Publishing Copyright © 2024.Treasure Island, FLStatPearls Publishing LLC2024
    [Google Scholar]
  132. ZhaoY. CuiS. WangY. XuR. The extensive regulation of MicroRNA in immune thrombocytopenia.Clin. Appl. Thromb. Hemost.20222810.1177/10760296221093595 35536600
    [Google Scholar]
  133. TanJ.H. Ahmad AzahariA.H.S. AliA. IsmailN.A.S. Scoping review on epigenetic mechanisms in primary immune thrombocytopenia.Genes202314355510.3390/genes14030555 36980827
    [Google Scholar]
  134. SchifferliA. CavalliF. GodeauB. Understanding immune thrombocytopenia: Looking out of the box.Front. Med.2021861319210.3389/fmed.2021.613192 34249957
    [Google Scholar]
  135. NohJ.Y. Megakaryopoiesis and platelet biology: Roles of transcription factors and emerging clinical implications.Int. J. Mol. Sci.20212217961510.3390/ijms22179615 34502524
    [Google Scholar]
  136. KhodadiE. AsnafiA.A. Mohammadi-AslJ. HosseiniS.A. MalehiA.S. SakiN. Evaluation of miR-21 and miR-150 expression in immune thrombocytopenic purpura pathogenesis: A case-control study.Front. Biol.201712536136910.1007/s11515‑017‑1466‑y
    [Google Scholar]
  137. HeX WangT RanN LiuC XingL ShaoZ. MicroRNA-21-5p regulates CD3+T lymphocytes through VCL and LTF in patients with immune thrombocytopenia.Clin Lab20226807/202210.7754/Clin.Lab.2021.210907 35975534
    [Google Scholar]
  138. StichtC. De La TorreC. ParveenA. GretzN. miRWalk: An online resource for prediction of microRNA binding sites.PLoS One20181310e020623910.1371/journal.pone.0206239 30335862
    [Google Scholar]
  139. ShannonP. MarkielA. OzierO. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  140. SullivanR.P. LeongJ.W. FehnigerT.A. MicroRNA regulation of natural killer cells.Front. Immunol.201344410.3389/fimmu.2013.00044 23450173
    [Google Scholar]
  141. LaiY. DongC. Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases.Int. Immunol.201628418118810.1093/intimm/dxv063 26545932
    [Google Scholar]
  142. CurtisJ.R. SinghJ.A. Use of biologics in Rheumatoid arthritis: Current and emerging paradigms of care.Clin. Ther.201133667970710.1016/j.clinthera.2011.05.044 21704234
    [Google Scholar]
  143. LongH. WangX. ChenY. WangL. ZhaoM. LuQ. Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets.Cancer Lett.20184289010310.1016/j.canlet.2018.04.016 29680223
    [Google Scholar]
  144. WangS. WanX. RuanQ. The MicroRNA-21 in autoimmune diseases.Int. J. Mol. Sci.201617686410.3390/ijms17060864 27271606
    [Google Scholar]
  145. RupaimooleR. SlackF.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases.Nat. Rev. Drug Discov.201716320322210.1038/nrd.2016.246 28209991
    [Google Scholar]
  146. BauerM. KinklN. MeixnerA. Prevention of interferon-stimulated gene expression using microRNA-designed hairpins.Gene Ther.200916114214710.1038/gt.2008.123 18701917
    [Google Scholar]
  147. DasguptaI. ChatterjeeA. Recent advances in miRNA delivery systems.Methods Protoc.2021411010.3390/mps4010010 33498244
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240290075240514164601
Loading
/content/journals/cmm/10.2174/0115665240290075240514164601
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): autoimmune disease; autoimmunity; IBD; immunomodulation; miRNA-21; MS; RA; SLE; Type 1 diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test