Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Interferon epsilon (IFN-ε) belongs to the type I IFN group and exhibits various biological properties. IFN-ε exhibits different regulation mechanisms and expression other type I IFNs. Its hormonal regulation suggests that this INF can have different functions and pathways from other type I IFNs. Although IFN-ε exhibits lower antiproliferative, anti-tumor, and antiviral activities compared to IFN-α, it has been identified to contribute to mucosal immunity, combat bacterial infections, and aid in the prevention of specific sexually transmitted diseases, such as HIV, Zika virus, . IFN-α and IFN-β with their well-established properties have been a research hotspot for many years; nevertheless, IFN-ε, whose unique roles are only now beginning to emerge, may be an intriguing subject for future study. This review focuses on the known activity of IFN-ε in certain cancers, pregnancy, autoimmune diseases, bacterial infections, and viruses. The aim of this paper is to enhance the understanding of the potential efficacy of IFN-ε treatment in the future.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240309075240603062703
2024-06-07
2025-10-25
Loading full text...

Full text loading...

References

  1. AbdolvahabM.H. DarvishiB. ZareiM. Majidzadeh-AK. FarahmandL. Interferons: Role in cancer therapy.Immunotherapy2020121183385510.2217/imt‑2019‑0217 32635782
    [Google Scholar]
  2. ZhaoF.R. WangW. ZhengQ. ZhangY.G. ChenJ. The regulation of antiviral activity of interferon epsilon.Front. Microbiol.202213100648110.3389/fmicb.2022.1006481 36386666
    [Google Scholar]
  3. PengF.W. DuanZ.J. ZhengL.S. Purification of recombinant human interferon-ε and oligonucleotide microarray analysis of interferon-ε-regulated genes.Protein Expr. Purif.200753235636210.1016/j.pep.2006.12.013 17287131
    [Google Scholar]
  4. LazearH.M. SchogginsJ.W. DiamondM.S. Shared and distinct functions of type I and Type III interferons.Immunity201950490792310.1016/j.immuni.2019.03.025 30995506
    [Google Scholar]
  5. BandurskaK. KrólI Myga-Nowak M. Interferons: Between structure and function.Postepy Hig. Med. Dosw.20146842844010.5604/17322693.1101229 24864095
    [Google Scholar]
  6. HardyM.P. OwczarekC.M. JermiinL.S. Ejdebنck M, Hertzog PJ. Characterization of the type I interferon locus and identification of novel genes.Genomics200484233134510.1016/j.ygeno.2004.03.003 15233997
    [Google Scholar]
  7. HertzogP.J. BourkeN.M. de WeerdN.A. ManganN.E. New Interferons. In: Radcliffe MJH, Ed.Encyclopedia of Immunobiology: Molecular Immunology.Oxford UK: Elsevier2016250150810.1016/B978‑0‑12‑374279‑7.10007‑4
    [Google Scholar]
  8. MarksZ.R.C. CampbellN. deWeerdN.A. Properties and functions of the novel type I interferon epsilon.Semin. Immunol.20194310132810.1016/j.smim.2019.101328 31734130
    [Google Scholar]
  9. GuoY. GaoM. BaoJ. Molecular cloning and characterization of a novel bovine IFN-ε.Gene20155581253010.1016/j.gene.2014.12.031 25523095
    [Google Scholar]
  10. FungK.Y. ManganN.E. CummingH. Interferon-ε protects the female reproductive tract from viral and bacterial infection.Science201333961231088109210.1126/science.1233321
    [Google Scholar]
  11. BourkeN.M. AchillesS.L. HuangS.U.S. Spatiotemporal regulation of human IFN-ε and innate immunity in the female reproductive tract.JCI Insight2022718e13540710.1172/jci.insight.135407 35862222
    [Google Scholar]
  12. DarnellJ.E.Jr Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.Science1994264516414151421
    [Google Scholar]
  13. SchogginsJ.W. Interferon-stimulated genes.Annu. Rev. Virol.20196156758410.1146/annurev‑virology‑092818‑015756 31283436
    [Google Scholar]
  14. ZhangH. ZhangD. ZhangS. Isolation and characterization of the mink interferon-epsilon gene and its antiviral activity.Front. Vet. Sci.2023997243310.3389/fvets.2022.972433
    [Google Scholar]
  15. SaleiroD. PlataniasL.C. Interferon signaling in cancer. Non-canonical pathways and control of intracellular immune checkpoints. Seminars in immunology.Elsevier201910129910.1016/j.smim.2019.101299
    [Google Scholar]
  16. HolicekP. TruxovaI. RakovaJ. SalekC. HenslerM. KovarM. Type I interferon signaling in malignant blasts contributes to treatment efficacy in AML patients.Cell Death & Disease2023143112
    [Google Scholar]
  17. DayS.L. RamshawI.A. RamsayA.J. RanasingheC. Differential effects of the type I interferons α4, β, and ε on antiviral activity and vaccine efficacy.J. Immunol.2008180117158716610.4049/jimmunol.180.11.7158 18490714
    [Google Scholar]
  18. YangL. XuL. LiY. LiJ. BiY. LiuW. Molecular and functional characterization of canine interferon-epsilon.J. Interferon Cytokine Res.2013331276076810.1089/jir.2013.0037 23964570
    [Google Scholar]
  19. MirzalievaO. JunckerM. SchwartzenburgJ. DesaiS. ISG15 and ISGylation in human diseases.Cells202211353810.3390/cells11030538
    [Google Scholar]
  20. ZhangX. WangS. ZhuY. Double-edged effects of interferons on the regulation of cancer-immunity cycle.OncoImmunology2021101192900510.1080/2162402X.2021.1929005 34262796
    [Google Scholar]
  21. MesgariH. EsmaelianS. NasiriK. GhasemzadehS. DoroudgarP. PayandehZ. Epigenetic regulation in oral squamous cell carcinoma microenvironment: A comprehensive review.Cancers20231523560010.3390/cancers15235600 38067304
    [Google Scholar]
  22. ParkerB.S. RautelaJ. HertzogP.J. Antitumour actions of interferons: Implications for cancer therapy.Nat. Rev. Cancer201616313114410.1038/nrc.2016.14 26911188
    [Google Scholar]
  23. FentonS.E. SaleiroD. PlataniasL.C. Type I and II interferons in the anti-tumor immune response.Cancers2021131037
    [Google Scholar]
  24. YuR. ZhuB. ChenD. Type I interferon-mediated tumor immunity and its role in immunotherapy.Cell. Mol. Life Sci.202279319110.1007/s00018‑022‑04219‑z 35292881
    [Google Scholar]
  25. HolicekP. GuilbaudE. KlappV. Type I interferon and cancer.Immunol. Rev.2024321111512710.1111/imr.13272 37667466
    [Google Scholar]
  26. OlopadeO.I. BohlanderS.K. PomykalaH. Mapping of the shortest region of overlap of deletions of the short arm of chromosome 9 associated with human neoplasia.Genomics199214243744310.1016/S0888‑7543(05)80238‑1 1385305
    [Google Scholar]
  27. OlopadeO.I. BuchhagenD.L. MalikK. Homozygous loss of the interferon genes defines the critical region on 9p that is deleted in lung cancers.Cancer Res.19935310Suppl.24102415 7683574
    [Google Scholar]
  28. KambA. A cell cycle regulator potentially involved in genesis of many tumour types.Trends Genet.199410722810.1016/0168‑9525(94)90162‑7
    [Google Scholar]
  29. StadlerW.M. ShermanJ. BohlanderS.K. Homozygous deletions within chromosomal bands 9p21-22 in bladder cancer.Cancer Res.199454820602063 7513608
    [Google Scholar]
  30. LingeC. GewertD. RossmannC. BishopJ.A.N. CroweJ.S. Interferon system defects in human malignant melanoma.Cancer Res.1995551840994104 7664286
    [Google Scholar]
  31. YeZ. DongH. LiY. Prevalent homozygous deletions of type I interferon and defensin genes in human cancers associate with immunotherapy resistance.Clin. Cancer Res.201824143299330810.1158/1078‑0432.CCR‑17‑3008 29618619
    [Google Scholar]
  32. DunnG.P. BruceA.T. SheehanK.C.F. Erratum: Corrigendum: A critical function for type I interferons in cancer immunoediting.Nat. Immunol.20056885210.1038/ni0805‑852b
    [Google Scholar]
  33. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  34. BordenE.C. Interferons α and β in cancer: Therapeutic opportunities from new insights.Nat. Rev. Drug Discov.201918321923410.1038/s41573‑018‑0011‑2 30679806
    [Google Scholar]
  35. MarksZ.R.C. CampbellN.K. ManganN.E. Interferon-ε is a tumour suppressor and restricts ovarian cancer.Nature202362079761063107010.1038/s41586‑023‑06421‑w 37587335
    [Google Scholar]
  36. BaekA.E. Interferon with ovarian cancer.Sci. Signal.202316800eadk465910.1126/scisignal.adk4659 37643242
    [Google Scholar]
  37. BordonY. A protective role for interferon-ε in ovarian cancer.Nat. Rev. Immunol.2023231061610.1038/s41577‑023‑00945‑y 37715102
    [Google Scholar]
  38. ElorbanyS. MalacridaB. BalkwillF. Interferon epsilon and ovarian cancer.Trends Cancer202391298598610.1016/j.trecan.2023.09.008 37778961
    [Google Scholar]
  39. MarksZ.R.C. CampbellN.K. ManganN.E. IFNε suppresses ovarian cancer and activates antitumor immunity.Cancer Discov.2023SepOF1
    [Google Scholar]
  40. SmithJ.C. SheltzerJ.M. Systematic identification of mutations and copy number alterations associated with cancer patient prognosis.Elife20187e3921710.7554/eLife.39217
    [Google Scholar]
  41. BarrigaF.M. TsanovK.M. HoY.J. MACHETE identifies interferon-encompassing chromosome 9p21.3 deletions as mediators of immune evasion and metastasis.Nat. Can.20223111367138510.1038/s43018‑022‑00443‑5 36344707
    [Google Scholar]
  42. MatsumiyaT. PrescottS.M. StafforiniD.M. IFN-ε mediates TNF-α-induced STAT1 phosphorylation and induction of retinoic acid-inducible gene-I in human cervical cancer cells.J. Immunol.200717974542454910.4049/jimmunol.179.7.4542 17878351
    [Google Scholar]
  43. Marrero-RodrيguezD. Baeza-XochihuaV. Taniguchi-PoncianoK. Interferon epsilon mRNA expression could represent a potential molecular marker in cervical cancer.Int. J. Clin. Exp. Pathol.201811419791988 31938304
    [Google Scholar]
  44. Abdel-FattahM. SaeedH. El-ShennawyL. The arabian camel, camelus dromedarius interferon epsilon: Functional expression, in vitro refolding, purification and cytotoxicity on breast cancer cell lines.PLoS One2019149e021388010.1371/journal.pone.0213880 31490936
    [Google Scholar]
  45. BonfocoE. KraincD. AnkarcronaM. NicoteraP. LiptonS.A. Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures.Proc. Natl. Acad. Sci.199592167162716610.1073/pnas.92.16.7162 7638161
    [Google Scholar]
  46. KlotzD. BaumgärtnerW. GerhauserI. Type I interferons in the pathogenesis and treatment of canine diseases.Vet. Immunol. Immunopathol.2017191809310.1016/j.vetimm.2017.08.006 28895871
    [Google Scholar]
  47. NickersonM.L. WitteN. ImK.M. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.Oncogene2017361354610.1038/onc.2016.172 27270441
    [Google Scholar]
  48. RoyA. MatzukM.M. Reproductive tract function and dysfunction in women.Nat. Rev. Endocrinol.20117951752510.1038/nrendo.2011.79
    [Google Scholar]
  49. McNabF. Mayer-BarberK. SherA. WackA. O’GarraA. Type I interferons in infectious disease.Nat. Rev. Immunol.2015287103
    [Google Scholar]
  50. BourkeN.M. AchillesS.L. HuangS.U. CummingH.E. PapageorgioI. GearingL.J. Human IFNε Spaciotemporal expression, hormone regulation and innate immunity in the female reproductive tract.BioRxiv201844500710.1101/445007
    [Google Scholar]
  51. KentS.J. KelleherA.D. Expanding role for type I Interferons in restricting HIV growth.Immunol. Cell Biol.201795541741810.1038/icb.2017.15 28440312
    [Google Scholar]
  52. SharkeyD.J. MacphersonA.M. TremellenK.P. RobertsonS.A. Seminal plasma differentially regulates inflammatory cytokine gene expression in human cervical and vaginal epithelial cells.Mol. Hum. Reprod.200713749150110.1093/molehr/gam028 17483528
    [Google Scholar]
  53. XiY. DayS.L. JacksonR.J. RanasingheC. Role of novel type I interferon epsilon in viral infection and mucosal immunity.Mucosal Immunol.20125661062210.1038/mi.2012.35 22617838
    [Google Scholar]
  54. OhumaE.O. MollerA.B. BradleyE. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis.Lancet2023402104091261127110.1016/S0140‑6736(23)00878‑4 37805217
    [Google Scholar]
  55. TaylorB.D. CriscitielloM.F. HernandezT. NorwoodB. NoahA.I. BazerF.W. Interferon epsilon and preterm birth subtypes; a new piece of the type I interferon puzzle during pregnancy?Am. J. Reprod. Immunol.2022874e1352610.1111/aji.13526 35147251
    [Google Scholar]
  56. MillerD. RomeroR. KacerovskyM. Defining a role for interferon epsilon in normal and complicated pregnancies.Heliyon202287e0995210.1016/j.heliyon.2022.e09952 35898609
    [Google Scholar]
  57. CapuanoS.V.III CroixD.A. PawarS. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection.Infect. Immun.200371105831584410.1128/IAI.71.10.5831‑5844.2003 14500505
    [Google Scholar]
  58. WalshG.P. TanE.V. Dela CruzE.C. The Philippine cynomolgus monkey (Macaca fasiculari) provides a new nonhuman primate model of tuberculosis that resembles human disease.Nat. Med.19962443043610.1038/nm0496‑430 8597953
    [Google Scholar]
  59. RoodgarM. RossC.T. TararaR. LowenstineL. DandekarS. SmithD.G. Gene expression and TB pathogenesis in rhesus macaques: TR4, CD40, CD40L, FAS (CD95), and TNF are host genetic markers in peripheral blood mononuclear cells that are associated with severity of TB lesions.Infect. Genet. Evol.20153639640910.1016/j.meegid.2015.10.010 26483316
    [Google Scholar]
  60. CarpT.N. MetoudiM. BrownB. OjhaV. Low-dose interferon I and III-based nasal sprays: A good-looking COVID-19 vaccine candidate and a therapy of the future?Preprints2023
    [Google Scholar]
  61. PierceC.A. SyS. GalenB. Natural mucosal barriers and COVID-19 in children.JCI Insight202169e14869410.1172/jci.insight.148694 33822777
    [Google Scholar]
  62. LoskeJ RöhmelJ LukassenS StrickerS MagalhãesVG LiebigJ Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children.Nat. Biotechnol.2022403319324
    [Google Scholar]
  63. KochC.M. PriggeA.D. AnekallaK.R. Age-related differences in the nasal mucosal immune response to SARS-CoV-2.Am. J. Respir. Cell Mol. Biol.202266220622210.1165/rcmb.2021‑0292OC 34731594
    [Google Scholar]
  64. YoshidaM. WorlockK.B. HuangN. Local and systemic responses to SARS-CoV-2 infection in children and adults.Nature2022602789632132710.1038/s41586‑021‑04345‑x 34937051
    [Google Scholar]
  65. PierangeliA. GentileM. OlivetoG. Comparison by age of the local interferon response to SARS-CoV-2 suggests a role for IFN-ε and -ω.Front. Immunol.20221387323210.3389/fimmu.2022.873232 35903094
    [Google Scholar]
  66. FracellaM. SorrentinoL. FrascaF. ScordioM. D’AuriaA. OlivetoG. Inflammasome but Not Ifn-I/Iii response is altered in children with long covid.Top. Antivir. Med.20235336
    [Google Scholar]
  67. AfsarC.U. AfsarS. SARS-CoV-2 (Covid-19): Interferon-epsilon may be responsible of decreased mortality in females.J. reproduct immunol2020141103154
    [Google Scholar]
  68. GrasselliG. ZangrilloA. ZanellaA. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy.JAMA2020323161574158110.1001/jama.2020.5394 32250385
    [Google Scholar]
  69. GuanW.J. NiZ.Y. HuY. LiangW.H. OuC.Q. XingH.J. Clinical characteristics of coronavirus disease 2019 in China.New England J Med20203821817081720
    [Google Scholar]
  70. LivingstonE. BucherK. Coronavirus disease 2019 (COVID-19) in Italy.JAMA202032314133510.1001/jama.2020.4344 32181795
    [Google Scholar]
  71. Martinez-EspinozaI Guerrero-PlataA Unveiling the antiviral activity of interferon epsilon in respiratory infections.J Immunol20232102352010.4049/jimmunol.210.Supp.235.20
    [Google Scholar]
  72. GattD. MartinI. AlFouzanR. MoraesT.J. Prevention and treatment strategies for respiratory syncytial virus (RSV).Pathogens202312215410.3390/pathogens12020154 36839426
    [Google Scholar]
  73. CrowM.K. Type I interferon in the pathogenesis of lupus.J. Immunol.2014192125459546810.4049/jimmunol.1002795 24907379
    [Google Scholar]
  74. JordanJ CesaroniM SchreiterJ HuangC ChevrierM BensonJ II II-21 Interfering with interferon in lupus: Hitting the sweet spot with CNTO 6358.Lupus Sci Med20163Suppl 1LP-A26
    [Google Scholar]
  75. JiangJ. ZhaoM. ChangC. WuH. LuQ. Type I interferons in the pathogenesis and treatment of autoimmune diseases.Clin. Rev. Allergy Immunol.202059224827210.1007/s12016‑020‑08798‑2 32557263
    [Google Scholar]
  76. ManganN.E. FungK.Y. Type I interferons in regulation of mucosal immunity.Immunol. Cell Biol.201290551051910.1038/icb.2012.13 22430250
    [Google Scholar]
  77. LokeshwarV.B. SelzerM.G. Differences in hyaluronic acid-mediated functions and signaling in arterial, microvessel, and vein-derived human endothelial cells.J. Biol. Chem.200027536276412764910.1074/jbc.M003084200 10882722
    [Google Scholar]
  78. ChoH.R. KimS.K. LimH.K. ParkH.J. ChungJ.H. LeeM.H. Association study between nonsense polymorphism (rs2039381, Gln71Stop) of Interferon-ε and susceptibility to vitiligo in Korean population. Immunol Invest [Internet].2013Available from: https://www.tandfonline.com/doi/abs/10.3109/08820139.2013.804836
  79. KimS.K. ParkH.J. KimJ.W. T Allele of nonsense polymorphism (rs2039381, Gln71Stop) of interferon-ε is a risk factor for the development of intracerebral hemorrhage.Hum. Immunol.2014751889010.1016/j.humimm.2013.09.004 24055696
    [Google Scholar]
  80. de GeusE.D. VolaricJ.S. MatthewsA.Y. Epithelially restricted interferon epsilon protects against colitis.Cell. Mol. Gastroenterol. Hepatol.202417226727810.1016/j.jcmgh.2023.10.006 37879406
    [Google Scholar]
  81. BekkerL.G. BeyrerC. MgodiN. HIV infection.Nat. Rev. Dis. Primers2023914210.1038/s41572‑023‑00452‑3 37591865
    [Google Scholar]
  82. ItellH.L. HumesD. OverbaughJ. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4+ T cells.Cell Rep.202342611255610.1016/j.celrep.2023.112556 37227817
    [Google Scholar]
  83. DateA.A. DestacheC.J. A review of nanotechnological approaches for the prophylaxis of HIV/AIDS.Biomaterials201334266202622810.1016/j.biomaterials.2013.05.012 23726227
    [Google Scholar]
  84. AbdulhaqqS.A. ZorrillaC. KangG. HIV-1-negative female sex workers sustain high cervical IFNɛ, low immune activation, and low expression of HIV-1-required host genes.Mucosal Immunol.2016941027103810.1038/mi.2015.116 26555708
    [Google Scholar]
  85. YangY.H. DiB. YangD.S. The discovery of a freezing-induced peptide ligation during the total chemical synthesis of human interferon-ε.Org. Biomol. Chem.201816285097510110.1039/C8OB01365A 29972388
    [Google Scholar]
  86. TaskerC. SubbianS. GaoP. IFN-ε protects primary macrophages against HIV infection.JCI Insight2016120e8825510.1172/jci.insight.88255 27942584
    [Google Scholar]
  87. IntroiniA. VanpouilleC. LiscoA. GrivelJ.C. MargolisL. Interleukin-7 facilitates HIV-1 transmission to cervico-vaginal tissue ex vivo.PLoS Pathog.201392e100314810.1371/journal.ppat.1003148 23408885
    [Google Scholar]
  88. KedzierskaK. CroweS.M. Cytokines and HIV-1: Interactions and clinical implications.Antivir. Chem. Chemother.200112313315010.1177/095632020101200301 12959322
    [Google Scholar]
  89. Garcia-MinambresA. EidS.G. ManganN.E. Interferon epsilon promotes HIV restriction at multiple steps of viral replication.Immunol. Cell Biol.201795547848310.1038/icb.2016.123 28045025
    [Google Scholar]
  90. KimI.J. TigheM.P. ClarkM.J. Impact of prior dengue virus infection on Zika virus infection during pregnancy in marmosets.Sci. Transl. Med.202315699eabq651710.1126/scitranslmed.abq6517 37285402
    [Google Scholar]
  91. BrittW.J. Adverse outcomes of pregnancy-associated Zika virus infection. Seminars in perinatology.Elsevier201815516710.1053/j.semperi.2018.02.003
    [Google Scholar]
  92. MunginJ.W.Jr ChenX. LiuB. Interferon epsilon signaling confers attenuated zika replication in human vaginal epithelial cells.Pathogens202211885310.3390/pathogens11080853 36014974
    [Google Scholar]
  93. SharmaV. SharmaM. DhullD. SharmaY. KaushikS. KaushikS. Zika virus: An emerging challenge to public health worldwide.Can. J. Microbiol.2020662879810.1139/cjm‑2019‑0331 31682478
    [Google Scholar]
  94. HillsS.L. FischerM. PetersenL.R. Epidemiology of Zika virus infection.J. Infect. Dis.2017216Suppl. 10S868S87410.1093/infdis/jix434 29267914
    [Google Scholar]
  95. ChibuezeE.C. TiradoV. LopesK.S. Zika virus infection in pregnancy: A systematic review of disease course and complications.Reprod. Health20171412810.1186/s12978‑017‑0285‑6 28241773
    [Google Scholar]
  96. DowlingR. ThompsonA.B. KolokotronisS.O. Knowledge, attitudes and practices about zika virus infection among women of reproductive age in central brooklyn, New York City, USA.J. Community Health2023518 37507524
    [Google Scholar]
  97. CalvetG.A. KaraE.O. Bôtto-MenezesC.H.A. Detection and persistence of Zika virus in body fluids and associated factors: A prospective cohort study.Sci. Rep.20231312155710.1038/s41598‑023‑48493‑8 38057382
    [Google Scholar]
  98. BurkelV.K. NewtonS.M. AcostaJ. Zika virus knowledge, attitudes and prevention behaviors among pregnant women in the ZEN cohort study, Colombia, 2017–2018.Trans. R. Soc. Trop. Med. Hyg.2023117749650410.1093/trstmh/trad005 36864562
    [Google Scholar]
  99. Coldbeck-ShackleyR.C. RomeoO. RosliS. Constitutive expression and distinct properties of IFN-epsilon protect the female reproductive tract from Zika virus infection.PLoS Pathog.2023193e101084310.1371/journal.ppat.1010843 36897927
    [Google Scholar]
  100. XuC. WangA. EbrahamL. SullivanL. TaskerC. PizutelliV. Interferon ε restricts Zika virus infection in the female reproductive tract.BioRxiv202310.1101/2023.04.06.535968
    [Google Scholar]
  101. AlareekiA. OsmanA.M.M. KhandakjiM.N. LookerK.J. HarfoucheM. Abu-RaddadL.J. Epidemiology of herpes simplex virus type 2 in Europe: Systematic review, meta-analyses, and meta-regressions.Lancet Reg. Health Eur.20232510.1016/j.lanepe.2022.100558 36818238
    [Google Scholar]
  102. GuZ. LiuJ. QinL. WTAP-mediated m6A modification of IFNE is required for antiviral defense in condyloma acuminata.J. Dermatol. Sci.20231112435110.1016/j.jdermsci.2023.07.004 37516644
    [Google Scholar]
  103. NickodemC. CriscitielloM.F. BazerF. Abiodun-OjoO. TaylorB.D. Interferon epsilon in the reproductive tract of healthy and genital herpes simplex virus‐infected pregnant women: Results of a pilot study.Am. J. Reprod. Immunol.2018803e1299510.1111/aji.12995 29905034
    [Google Scholar]
  104. WilliamsonA.L. Recent developments in human papillomavirus (HPV) vaccinology.Viruses2023157144010.3390/v15071440 37515128
    [Google Scholar]
  105. ZhangL. ZhouY. XingX. Upregulation of IFNE in cervical biopsies of patients with high‐risk human papillomavirus infections.Immun. Inflamm. Dis.20231112e111110.1002/iid3.1111 38156399
    [Google Scholar]
  106. StifterS.A. MatthewsA.Y. ManganN.E. Defining the distinct, intrinsic properties of the novel type I interferon, IFNϵ.J. Biol. Chem.201829393168317910.1074/jbc.M117.800755 29187603
    [Google Scholar]
  107. Abou ChacraL. LyC. HammoudA. Relationship between bacterial vaginosis and sexually transmitted infections: Coincidence, consequence or co-transmission?Microorganisms20231110247010.3390/microorganisms11102470 37894128
    [Google Scholar]
  108. BosingerS.E. LiQ. GordonS.N. Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys.J. Clin. Invest.2009119123556357210.1172/JCI40115 19959874
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240309075240603062703
Loading
/content/journals/cmm/10.2174/0115665240309075240603062703
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-tumor; antiviral; autoimmune diseases; IFN-α; Interferon epsilon; PRP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test