Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Subarachnoid hemorrhage is a serious subtype of stroke with high mortality and disability. The rupture of intracranial aneurysms is the main cause. However, in recent years, with the popularization of CT, MRI, and cerebral angiography, the detection rate of unruptured aneurysms has increased, and the incidence of aneurysm rupture and hemorrhage has gradually decreased. However, there are still some patients who fail to detect aneurysms in time and receive treatment, resulting in the occurrence of aneurysm rupture and bleeding, and these patients usually have a poor prognosis and leave a lasting disability. Therefore, exploring the causes of aneurysm formation and the mechanism of brain injury caused by aneurysm rupture is of great significance for preventing aneurysm formation and improving the prognosis of patients. MicroRNAs (miRNAs) are highly conserved non-coding RNAs that can bind to the 3'UTR of target mRNAs to regulate gene expression. Studies have shown that miRNAs can affect the formation and rupture of intracranial aneurysms by participating in apoptosis, inflammation, phagocyte migration, and vascular smooth muscle cells (VSMCs) regulation, and regulate the damage of brain tissue after aneurysm rupture. They play a role in multiple pathophysiological processes of aneurysmal subarachnoid hemorrhage. This article reviews the role of miRNAs in different pathophysiological stages of aneurysmal subarachnoid hemorrhage (aSAH). We further described the research progress of miRNAs as biomarkers for the diagnosis and prognosis of aSAH and discussed their application prospects in the prevention and treatment of aSAH.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240306767240603091329
2024-06-06
2025-09-04
Loading full text...

Full text loading...

References

  1. MacdonaldR.L. SchweizerT.A. Spontaneous subarachnoid haemorrhage.Lancet20173891006965566610.1016/S0140‑6736(16)30668‑7 27637674
    [Google Scholar]
  2. ClaassenJ. ParkS. Spontaneous subarachnoid haemorrhage.Lancet20224001035584686210.1016/S0140‑6736(22)00938‑2 35985353
    [Google Scholar]
  3. RinkelG.J.E. AlgraA. Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage.Lancet Neurol.201110434935610.1016/S1474‑4422(11)70017‑5 21435599
    [Google Scholar]
  4. KarhunenV. BakkerM.K. RuigrokY.M. GillD. LarssonS.C. Modifiable risk factors for intracranial aneurysm and aneurysmal subarachnoid hemorrhage: A mendelian randomization study.J. Am. Heart Assoc.20211022e02227710.1161/JAHA.121.022277 34729997
    [Google Scholar]
  5. de RooijN.K. LinnF.H.H. van der PlasJ.A. AlgraA. RinkelG.J.E. Incidence of subarachnoid haemorrhage: A systematic review with emphasis on region, age, gender and time trends.J. Neurol. Neurosurg. Psychiatry200778121365137210.1136/jnnp.2007.117655 17470467
    [Google Scholar]
  6. NeifertS.N. ChapmanE.K. MartiniM.L. Aneurysmal subarachnoid hemorrhage: The last decade.Transl. Stroke Res.202112342844610.1007/s12975‑020‑00867‑0 33078345
    [Google Scholar]
  7. ZeyuZ. YuanjianF. CameronL. ShengC. The role of immune inflammation in aneurysmal subarachnoid hemorrhage.Exp. Neurol.202133611353510.1016/j.expneurol.2020.113535 33249033
    [Google Scholar]
  8. GeraghtyJ.R. TestaiF.D. Delayed cerebral ischemia after subarachnoid hemorrhage: Beyond vasospasm and towards a multifactorial pathophysiology.Curr. Atheroscler. Rep.201719125010.1007/s11883‑017‑0690‑x 29063300
    [Google Scholar]
  9. SimonsonB. DasS. MicroRNA therapeutics: The next magic bullet?Mini Rev. Med. Chem.201515646747410.2174/1389557515666150324123208 25807941
    [Google Scholar]
  10. García-LópezJ. Brieño-EnríquezM.A. del MazoJ. MicroRNA biogenesis and variability.Biomol. Concepts20134436738010.1515/bmc‑2013‑0015 25436586
    [Google Scholar]
  11. BrennanG.P. HenshallD.C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy.Nat. Rev. Neurol.202016950651910.1038/s41582‑020‑0369‑8 32546757
    [Google Scholar]
  12. LeeY.S. DuttaA. MicroRNAs in cancer.Annu. Rev. Pathol.20094119922710.1146/annurev.pathol.4.110807.092222 18817506
    [Google Scholar]
  13. HoP.T.B. ClarkI.M. LeL.T.T. MicroRNA-based diagnosis and therapy.Int. J. Mol. Sci.20222313716710.3390/ijms23137167 35806173
    [Google Scholar]
  14. HeB. ZhaoZ. CaiQ. miRNA-based biomarkers, therapies, and resistance in Cancer.Int. J. Biol. Sci.202016142628264710.7150/ijbs.47203 32792861
    [Google Scholar]
  15. TodoranR. FalcioneS.R. ClarkeM. JoyT. BoghozianR. JicklingG.C. microRNA as a therapeutic for ischemic stroke.Neurochem. Int.202316310548710.1016/j.neuint.2023.105487 36657721
    [Google Scholar]
  16. FeinbergM.W. MooreK.J. MicroRNA regulation of atherosclerosis.Circ. Res.2016118470372010.1161/CIRCRESAHA.115.306300 26892968
    [Google Scholar]
  17. LiY. WenJ. LiangD. SunH. Extracellular vesicles and their associated miRNAs as potential biomarkers in intracranial aneurysm.Front. Mol. Biosci.2022978531410.3389/fmolb.2022.785314 35795823
    [Google Scholar]
  18. SlotaJ.A. BoothS.A. MicroRNAs in neuroinflammation: Implications in disease pathogenesis, biomarker discovery and therapeutic applications.Noncoding RNA2019523510.3390/ncrna5020035 31022830
    [Google Scholar]
  19. BrismanJ.L. SongJ.K. NewellD.W. Cerebral aneurysms.N. Engl. J. Med.2006355992893910.1056/NEJMra052760 16943405
    [Google Scholar]
  20. ChalouhiN. HohB.L. HasanD. Review of cerebral aneurysm formation, growth, and rupture.Stroke201344123613362210.1161/STROKEAHA.113.002390 24130141
    [Google Scholar]
  21. SinghR.P. MassachiI. ManickavelS. The role of miRNA in inflammation and autoimmunity.Autoimmun. Rev.201312121160116510.1016/j.autrev.2013.07.003 23860189
    [Google Scholar]
  22. MeeuwsenJ.A.L. van ´t HofF.N.G. van RheenenW. RinkelG.J.E. VeldinkJ.H. RuigrokY.M. Circulating microRNAs in patients with intracranial aneurysms.PLoS One2017125e017655810.1371/journal.pone.0176558 28459827
    [Google Scholar]
  23. SignorelliF. SelaS. GesualdoL. Hemodynamic stress, inflammation, and intracranial aneurysm development and rupture: A systematic review.World Neurosurg.201811523424410.1016/j.wneu.2018.04.143 29709752
    [Google Scholar]
  24. ChalouhiN. AliM.S. JabbourP.M. Biology of intracranial aneurysms: Role of inflammation.J. Cereb. Blood Flow Metab.20123291659167610.1038/jcbfm.2012.84 22781330
    [Google Scholar]
  25. KanematsuY. KanematsuM. KuriharaC. Critical roles of macrophages in the formation of intracranial aneurysm.Stroke201142117317810.1161/STROKEAHA.110.590976 21106959
    [Google Scholar]
  26. MitchellS. VargasJ. HoffmannA. Signaling via the NFκB system.Wiley Interdiscip. Rev. Syst. Biol. Med.20168322724110.1002/wsbm.1331 26990581
    [Google Scholar]
  27. SunX. ZhengX. ZhangX. ZhangY. LuoG. Exosomal microRNA-23b-3p from bone marrow mesenchymal stem cells maintains T helper/Treg balance by downregulating the PI3k/Akt/NF-κB signaling pathway in intracranial aneurysm.Brain Res. Bull.202016530531510.1016/j.brainresbull.2020.09.003 32956770
    [Google Scholar]
  28. ZhangJ.Z. ChenD. LvL.Q. miR-448-3p controls intracranial aneurysm by regulating KLF5 expression.Biochem. Biophys. Res. Commun.201850541211121510.1016/j.bbrc.2018.10.032 30322616
    [Google Scholar]
  29. WangR.K. SunY.Y. LiG.Y. MicroRNA 124 5p delays the progression of cerebral aneurysm by regulating FoxO1.Exp. Ther. Med.2021224117210.3892/etm.2021.10606 34504617
    [Google Scholar]
  30. ChenZ. SongS. ZhuJ. LaiX. Regulatory mechanism of MiR-21 in formation and rupture of intracranial aneurysm through JNK signaling pathway-mediated inflammatory response.Int. J. Clin. Exp. Pathol.202013718341841 32782712
    [Google Scholar]
  31. FanH. YangC. JiaC. XieX. DuL. miR-566 expression and immune changes in patients with intracranial aneurysm.Int. J. Clin. Exp. Pathol.2020134685691 32355516
    [Google Scholar]
  32. QinH.L. BaoJ.H. TangJ.J. XuD.Y. ShenL. Arterial remodeling: The role of mitochondrial metabolism in vascular smooth muscle cells.Am. J. Physiol. Cell Physiol.20233241C183C19210.1152/ajpcell.00074.2022 36468843
    [Google Scholar]
  33. LiS. ShiY. LiuP. Metformin inhibits intracranial aneurysm formation and progression by regulating vascular smooth muscle cell phenotype switching via the AMPK/ACC pathway.J. Neuroinflammation202017119110.1186/s12974‑020‑01868‑4 32546267
    [Google Scholar]
  34. LiaoB. ZhouM. ZhouF. Exosome-derived MiRNAs as biomarkers of the development and progression of intracranial aneurysms.J. Atheroscler. Thromb.202027654561010.5551/jat.51102 31597886
    [Google Scholar]
  35. XuJ. YanS. TanH. The miR-143/145 cluster reverses the regulation effect of KLF5 in smooth muscle cells with proliferation and contractility in intracranial aneurysm.Gene201867926627310.1016/j.gene.2018.09.010 30201338
    [Google Scholar]
  36. ZhengZ. ChenY. WangY. LiY. ChengQ. MicroRNA-513b-5p targets COL1A1 and COL1A2 associated with the formation and rupture of intracranial aneurysm.Sci. Rep.20211111489710.1038/s41598‑021‑94116‑5 34290266
    [Google Scholar]
  37. FengZ. ZhangX. LiL. Tumor-associated macrophage-derived exosomal microRNA-155-5p stimulates intracranial aneurysm formation and macrophage infiltration.Clin. Sci.2019133222265228210.1042/CS20190680 31657855
    [Google Scholar]
  38. DengJ. NingK. LiuD. WuD. WanR. GeJ. MiR-140 promotes the progression of intracranial aneurysms by targeting BCL2L2.Neuroreport2023341384510.1097/WNR.0000000000001856 36441929
    [Google Scholar]
  39. ZhaoW. ZhangH. SuJ.Y. MicroRNA 29a contributes to intracranial aneurysm by regulating the mitochondrial apoptotic pathway.Mol. Med. Rep.20181832945295410.3892/mmr.2018.9257 30015903
    [Google Scholar]
  40. LuoJ. JinH. JiangY. GeH. WangJ. LiY. Aberrant expression of microRNA-9 contributes to development of intracranial aneurysm by suppressing proliferation and reducing contractility of smooth muscle cells.Med. Sci. Monit.2016224247425310.12659/MSM.897511 27824808
    [Google Scholar]
  41. FanW. LiuY. LiC. microRNA-331-3p maintains the contractile type of vascular smooth muscle cells by regulating TNF-α and CD14 in intracranial aneurysm.Neuropharmacology202016410785810.1016/j.neuropharm.2019.107858 31785262
    [Google Scholar]
  42. YuanX. BianX. WeiW. BaoQ. LiuP. JiangW. miR-34a regulates phenotypic modulation of vascular smooth muscle cells in intracranial aneurysm by targeting CXCR3 and MMP-2.Genet. Mol. Biol.2021442e20200124
    [Google Scholar]
  43. SunL. ZhaoM. ZhangJ. MiR-29b downregulation induces phenotypic modulation of vascular smooth muscle cells: Implication for intracranial aneurysm formation and progression to rupture.Cell. Physiol. Biochem.201741251051810.1159/000456887 28214880
    [Google Scholar]
  44. JinT. ChenG. AnQ. miR-139-5p suppresses proliferation and angiogenesis of intracranial aneurysm via FGB.J. Healthc. Eng.202220221810.1155/2022/5824327 35469231
    [Google Scholar]
  45. YangG. QinH. LiuB. ZhaoX. YinH. Mesenchymal stem cells-derived exosomes modulate vascular endothelial injury via miR-144-5p/PTEN in intracranial aneurysm.Hum. Cell20213451346135910.1007/s13577‑021‑00571‑7 34240392
    [Google Scholar]
  46. KusakaG. IshikawaM. NandaA. GrangerD.N. ZhangJ.H. Signaling pathways for early brain injury after subarachnoid hemorrhage.J. Cereb. Blood Flow Metab.200424891692510.1097/01.WCB.0000125886.48838.7E 15362722
    [Google Scholar]
  47. RassV. HelbokR. Early brain injury after poor-grade subarachnoid hemorrhage.Curr. Neurol. Neurosci. Rep.201919107810.1007/s11910‑019‑0990‑3 31468197
    [Google Scholar]
  48. FujiiM. YanJ. RollandW.B. SoejimaY. CanerB. ZhangJ.H. Early brain injury, an evolving frontier in subarachnoid hemorrhage research.Transl. Stroke Res.20134443244610.1007/s12975‑013‑0257‑2 23894255
    [Google Scholar]
  49. DengX. WuY. HuZ. The mechanism of ferroptosis in early brain injury after subarachnoid hemorrhage.Front. Immunol.202314119182610.3389/fimmu.2023.1191826 37266433
    [Google Scholar]
  50. WangL. ZhaoY. GangS. Inhibition of miR-103-3p preserves neurovascular integrity through caveolin-1 in experimental subarachnoid hemorrhage.Neuroscience20214619110110.1016/j.neuroscience.2021.03.007 33722672
    [Google Scholar]
  51. LuJ. HuangX. DengA. miR-452-3p targets HDAC3 to inhibit p65 deacetylation and activate the NF-κB signaling pathway in early brain injury after subarachnoid hemorrhage.Neurocrit. Care202237255857110.1007/s12028‑022‑01509‑z 35641805
    [Google Scholar]
  52. SongN. SongR. MaP. MiR‐340‐5p alleviates neuroinflammation and neuronal injury via suppressing STING in subarachnoid hemorrhage.Brain Behav.2022129e268710.1002/brb3.2687 35957622
    [Google Scholar]
  53. WeilandJ. BeezA. WestermaierT. KunzeE. SirénA.L. LillaN. Neuroprotective strategies in aneurysmal subarachnoid hemorrhage (aSAH).Int. J. Mol. Sci.20212211544210.3390/ijms22115442
    [Google Scholar]
  54. LaiN. WuD. LiangT. Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice.J. Neuroinflammation20201717410.1186/s12974‑020‑01745‑0 32098619
    [Google Scholar]
  55. LiuZ. WangB. GuoQ. MiR-26b-5p-modified hUB-MSCs derived exosomes attenuate early brain injury during subarachnoid hemorrhage via MAT2A-mediated the p38 MAPK/STAT3 signaling pathway.Brain Res. Bull.202117510711510.1016/j.brainresbull.2021.07.014 34284075
    [Google Scholar]
  56. ChenD. WangX. HuangJ. CuiS. ZhangL. CDKN1B mediates apoptosis of neuronal cells and inflammation induced by oxyhemoglobin via miR-502-5p after subarachnoid hemorrhage.J. Mol. Neurosci.20207071073108010.1007/s12031‑020‑01512‑z 32152938
    [Google Scholar]
  57. HuangZ. LiuJ. XuJ. DaiL. WangH. Downregulation of miR-26b attenuates early brain injury induced by subarachnoid hemorrhage via mediating the KLF4/STAT3/HMGB1 axis.Exp. Neurol.202335911427010.1016/j.expneurol.2022.114270 36347300
    [Google Scholar]
  58. ZhaoH. LiY. ChenL. HucMSCs-derived miR-206-knockdown exosomes contribute to neuroprotection in subarachnoid hemorrhage induced early brain injury by targeting BDNF.Neuroscience2019417112310.1016/j.neuroscience.2019.07.051 31400488
    [Google Scholar]
  59. WangP. XueY. ZuoY. Exosome-encapsulated microRNA-140-5p alleviates neuronal injury following subarachnoid hemorrhage by regulating IGFBP5-mediated PI3K/AKT signaling pathway.Mol. Neurobiol.202259127212722810.1007/s12035‑022‑03007‑x 36129637
    [Google Scholar]
  60. ZhangY. LiuJ. ZhouY. ZouZ. XieC. MaL. miR-18a-5p shuttled by mesenchymal stem cell-derived extracellular vesicles alleviates early brain injury following subarachnoid hemorrhage through blockade of the ENC1/p62 axis.Cell Tissue Res.2023392367168710.1007/s00441‑023‑03754‑w 36795153
    [Google Scholar]
  61. XueC. WangR. JiaY. Downregulation of miR-23a-3p improves cognitive function in rats after subarachnoid hemorrhage by targeting VCAN.Med. Mol. Morphol.202255214615710.1007/s00795‑022‑00315‑y 35137264
    [Google Scholar]
  62. GaoX. XiongY. LiQ. Extracellular vesicle-mediated transfer of miR-21-5p from mesenchymal stromal cells to neurons alleviates early brain injury to improve cognitive function via the PTEN/Akt pathway after subarachnoid hemorrhage.Cell Death Dis.202011536310.1038/s41419‑020‑2530‑0 32404916
    [Google Scholar]
  63. NikaidoH. TsunodaH. NishimuraY. KirinoT. TanakaT. Potential role for heat shock protein 72 in antagonizing cerebral vasospasm after rat subarachnoid hemorrhage.Circulation2004110131839184610.1161/01.CIR.0000142615.88444.31 15381648
    [Google Scholar]
  64. WilkinsR.H. Cerebral vasospasm.Crit. Rev. Neurobiol.1990615177 2225095
    [Google Scholar]
  65. Rodríguez-RodríguezA. Egea-GuerreroJ.J. Ruiz de Azúa-LópezZ. Murillo-CabezasF. Biomarkers of vasospasm development and outcome in aneurysmal subarachnoid hemorrhage.J. Neurol. Sci.20143411-211912710.1016/j.jns.2014.04.020 24811975
    [Google Scholar]
  66. FindlayJ.M. NisarJ. DarsautT. Cerebral vasospasm: A review.Can. J. Neurol. Sci.2016431153210.1017/cjn.2015.288 26332908
    [Google Scholar]
  67. TsaiT.H. ChangC.H. LinS.H. Therapeutic effect of and mechanisms underlying the effect of miR-195-5p on subarachnoid hemorrhage-induced vasospasm and brain injury in rats.PeerJ20219e1139510.7717/peerj.11395 34221706
    [Google Scholar]
  68. LiY. YangS. ZhouX. LaiR. Poor expression of miR‐195‐5p can assist the diagnosis of cerebral vasospasm after subarachnoid hemorrhage and predict adverse outcomes.Brain Behav.20221212e276610.1002/brb3.2766 36350075
    [Google Scholar]
  69. HouG. ChenH. YinY. PanY. ZhangX. JiaF. MEL ameliorates post-SAH cerebral vasospasm by affecting the expression of eNOS and HIF1α via H19/miR-138/eNOS/NO and H19/miR-675/HIF1α.Mol. Ther. Nucleic Acids20201952353210.1016/j.omtn.2019.12.002 31927306
    [Google Scholar]
  70. HuangZ. HuJ. XuJ. WangH. DaiL. microRNA-130b may induce cerebral vasospasm after subarachnoid hemorrhage via modulating kruppel-like factor 4.Mol. Cell. Biol.202343730131610.1080/10985549.2023.2210030 37381993
    [Google Scholar]
  71. LiH.T. WangJ. LiS.F. ChengL. TangW.Z. FengY.G. Upregulation of microRNA 24 causes vasospasm following subarachnoid hemorrhage by suppressing the expression of endothelial nitric oxide synthase.Mol. Med. Rep.20181811181118710.3892/mmr.2018.9050 29845232
    [Google Scholar]
  72. DengX. LiangC. QianL. ZhangQ. miR-24 targets HMOX1 to regulate inflammation and neurofunction in rats with cerebral vasospasm after subarachnoid hemorrhage.Am. J. Transl. Res.202113310641074 33841640
    [Google Scholar]
  73. MaruhashiT. HigashiY. An overview of pharmacotherapy for cerebral vasospasm and delayed cerebral ischemia after subarachnoid hemorrhage.Expert Opin. Pharmacother.202122121601161410.1080/14656566.2021.1912013 33823726
    [Google Scholar]
  74. FrancoeurC.L. MayerS.A. Management of delayed cerebral ischemia after subarachnoid hemorrhage.Crit. Care201620127710.1186/s13054‑016‑1447‑6 27737684
    [Google Scholar]
  75. DoddW.S. LaurentD. DumontA.S. Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: A review.J. Am. Heart Assoc.20211015e02184510.1161/JAHA.121.021845 34325514
    [Google Scholar]
  76. LuG. WongM.S. XiongM.Z.Q. Circulating MicroRNAs in delayed cerebral infarction after aneurysmal subarachnoid hemorrhage.J. Am. Heart Assoc.201764e00536310.1161/JAHA.116.005363 28442458
    [Google Scholar]
  77. BacheS. RasmussenR. RossingM. LaigaardF.P. NielsenF.C. MøllerK. MicroRNA changes in cerebrospinal fluid after subarachnoid hemorrhage.Stroke20174892391239810.1161/STROKEAHA.117.017804 28768799
    [Google Scholar]
  78. TawkR.G. HasanT.F. D’SouzaC.E. PeelJ.B. FreemanW.D. Diagnosis and treatment of unruptured intracranial aneurysms and aneurysmal subarachnoid hemorrhage.Mayo Clin. Proc.20219671970200010.1016/j.mayocp.2021.01.005 33992453
    [Google Scholar]
  79. ParnettiL. GaetaniL. EusebiP. CSF and blood biomarkers for Parkinson’s disease.Lancet Neurol.201918657358610.1016/S1474‑4422(19)30024‑9 30981640
    [Google Scholar]
  80. SupriyaM. ChristopherR. Indira DeviB. BhatD.I. ShuklaD. Circulating MicroRNAs as potential molecular biomarkers for intracranial aneurysmal rupture.Mol. Diagn. Ther.202024335136410.1007/s40291‑020‑00465‑8 32323261
    [Google Scholar]
  81. WangW.H. WangY.H. ZhengL.L. LiX.W. HaoF. GuoD. MicroRNA-29a: A potential biomarker in the development of intracranial aneurysm.J. Neurol. Sci.2016364848910.1016/j.jns.2016.03.010 27084222
    [Google Scholar]
  82. ZhongZ. WuJ. YuanK. Upregulation of microRNA-205 is a potential biomarker for intracranial aneurysms.Neuroreport2019301281281610.1097/WNR.0000000000001279 31283712
    [Google Scholar]
  83. LiP. ZhangQ. WuX. Circulating microRNAs serve as novel biological markers for intracranial aneurysms.J. Am. Heart Assoc.201435e00097210.1161/JAHA.114.000972 25249297
    [Google Scholar]
  84. WuJ. GareevI. BeylerliO. Circulating miR-126 as a potential non-invasive biomarker for intracranial aneurysmal rupture: A pilot study.Curr. Neurovasc. Res.202118552553410.2174/1567202619666211217142116 34923944
    [Google Scholar]
  85. ZhangH.L. LiL. ChengC.J. SunX.C. Expression of miR-146a-5p in patients with intracranial aneurysms and its association with prognosis.Eur. Rev. Med. Pharmacol. Sci.201822372673010.26355/eurrev_201802_14300 29461602
    [Google Scholar]
  86. ShengB. FangX. LiuC. Persistent high levels of miR-502-5p are associated with poor neurologic outcome in patients with aneurysmal subarachnoid hemorrhage.World Neurosurg.2018116e92e9910.1016/j.wneu.2018.04.088 29689401
    [Google Scholar]
  87. ZhangJ. LiS. LiL. Exosome and exosomal microRNA: Trafficking, sorting, and function.Genom Proteom Bioinform2015131172410.1016/j.gpb.2015.02.001 25724326
    [Google Scholar]
  88. ShengB. LaiN. TaoT. Diagnosis potential of subarachnoid hemorrhage using miRNA signatures isolated from plasma-derived extracellular vesicles.Front. Pharmacol.202314109038910.3389/fphar.2023.1090389 36860299
    [Google Scholar]
  89. AjiboyeN. ChalouhiN. StarkeR.M. ZanatyM. BellR. Unruptured cerebral aneurysms: Evaluation and management.ScientWorldJ2015201511010.1155/2015/954954 26146657
    [Google Scholar]
  90. Lucke-WoldB. LogsdonA. ManoranjanB. Aneurysmal subarachnoid hemorrhage and neuroinflammation: A comprehensive review.Int. J. Mol. Sci.201617449710.3390/ijms17040497 27049383
    [Google Scholar]
  91. YoonS. YoonJ.C. WinklerE. LiuC. LawtonM.T. Nationwide analysis of cost variation for treatment of aneurysmal subarachnoid hemorrhage.Stroke201950119920310.1161/STROKEAHA.118.023079 30580700
    [Google Scholar]
  92. SaliminejadK. Khorram KhorshidH.R. Soleymani FardS. GhaffariS.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods.J. Cell. Physiol.201923455451546510.1002/jcp.27486 30471116
    [Google Scholar]
  93. Ferragut CardosoA.P. BanerjeeM. NailA.N. LykoudiA. StatesJ.C. miRNA dysregulation is an emerging modulator of genomic instability.Semin. Cancer Biol.20217612013110.1016/j.semcancer.2021.05.004 33979676
    [Google Scholar]
  94. PutteerajM. FairuzY.M. TeohS.L. MicroRNA dysregulation in alzheimer’s disease.CNS Neurol. Disord. Drug Targets20181691000100910.2174/1871527316666170807142311 28782488
    [Google Scholar]
  95. FormosaA. TurgeonP. dos SantosC.C. Role of miRNA dysregulation in sepsis.Mol. Med.20222819910.1186/s10020‑022‑00527‑z 35986237
    [Google Scholar]
  96. RupaimooleR. SlackF.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases.Nat. Rev. Drug Discov.201716320322210.1038/nrd.2016.246 28209991
    [Google Scholar]
  97. WinkleM. El-DalyS.M. FabbriM. CalinG.A. Noncoding RNA therapeutics challenges and potential solutions.Nat. Rev. Drug Discov.202120862965110.1038/s41573‑021‑00219‑z 34145432
    [Google Scholar]
  98. JanssenH.L.A. ReesinkH.W. LawitzE.J. Treatment of HCV infection by targeting microRNA.N. Engl. J. Med.2013368181685169410.1056/NEJMoa1209026 23534542
    [Google Scholar]
  99. Gallant-BehmC.L. PiperJ. LynchJ.M. A MicroRNA-29 Mimic (Remlarsen) represses extracellular matrix expression and fibroplasia in the skin.J. Invest. Dermatol.201913951073108110.1016/j.jid.2018.11.007 30472058
    [Google Scholar]
  100. HannaJ. HossainG.S. KocerhaJ. The potential for microRNA therapeutics and clinical research.Front. Genet.20191047810.3389/fgene.2019.00478 31156715
    [Google Scholar]
  101. KaraG. CalinG.A. OzpolatB. RNAi-based therapeutics and tumor targeted delivery in cancer.Adv. Drug Deliv. Rev.202218211411310.1016/j.addr.2022.114113 35063535
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240306767240603091329
Loading
/content/journals/cmm/10.2174/0115665240306767240603091329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test