Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Introduction

The major complication of Obliterative Bronchiolitis (OB) is characterized by epithelial cell loss, fibrosis, and luminal occlusion of the terminal small airways, which limits the long-term survival of the recipient after lung transplantation. However, the underlying mechanisms are still not fully clarified. This research aims to investigate whether iron overload-induced ferroptosis is involved in OB development and provide a new target for OB prevention.

Materials and Methods

Allograft orthotopic tracheal transplantation in mice was applied in our study. Ferrostatin-1 and deferoxamine were administrated to inhibit ferroptosis and get rid of ferric iron, while iron dextran was used to induce an iron overload condition in the recipient. The histological examination, luminal occlusion rate, collagen deposition, iron level, ferroptosis marker (GPX4, PTGS2), and mitochondrial morphological changes of the graft were evaluated in mice.

Results

Our research indicated that ferroptosis and iron overload contribute to OB development, while ferroptosis inhibition and iron chelator could reverse the changes. Iron overload exacerbated OB development after orthotopic tracheal transplantation promoting ferroptosis.

Conclusion

Overall, this research demonstrated that iron overload-induced ferroptosis is involved in OB, which may be a potential therapeutic target for OB after lung transplantation.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240304363240524103203
2024-06-03
2025-10-26
Loading full text...

Full text loading...

/deliver/fulltext/cmm/25/6/CMM-25-6-08.html?itemId=/content/journals/cmm/10.2174/0115665240304363240524103203&mimeType=html&fmt=ahah

References

  1. ChambersD.C. PerchM. ZuckermannA. The international thoracic organ transplant registry of the international society for heart and lung transplantation: Thirty-eighth adult lung transplantation report — 2021; Focus on recipient characteristics.J. Heart Lung Transplant.202140101060107210.1016/j.healun.2021.07.021 34446355
    [Google Scholar]
  2. Avtaar SinghS.S. Das DeS. Al-AdhamiA. SinghR. HopkinsP.M.A. CurryP.A. Primary graft dysfunction following lung transplantation: From pathogenesis to future frontiers.World J. Transplant.2023133588510.5500/wjt.v13.i3.58 36968136
    [Google Scholar]
  3. BarkerA.F. BergeronA. RomW.N. HertzM.I. Obliterative Bronchiolitis.N. Engl. J. Med.2014370191820182810.1056/NEJMra1204664 24806161
    [Google Scholar]
  4. KulkarniH.S. CherikhW.S. ChambersD.C. Bronchiolitis obliterans syndrome–free survival after lung transplantation: An international society for heart and lung transplantation thoracic transplant registry analysis.J. Heart Lung Transplant.201938151610.1016/j.healun.2018.09.016 30391193
    [Google Scholar]
  5. BosS. MilrossL. FilbyA.J. VosR. FisherA.J. Immune processes in the pathogenesis of chronic lung allograft dysfunction: Identifying the missing pieces of the puzzle.Eur. Respir. Rev.20223116522006010.1183/16000617.0060‑2022 35896274
    [Google Scholar]
  6. VerledenS.E. VosR. VanaudenaerdeB.M. VerledenG.M. Chronic lung allograft dysfunction phenotypes and treatment.J. Thorac. Dis.2017982650265910.21037/jtd.2017.07.81 28932572
    [Google Scholar]
  7. ChuH.Q. LiuJ.M. GuiT. Case of interstitial lung disease possibly induced by exposure to iron dust.Heart Lung201241219619910.1016/j.hrtlng.2011.06.002 21890204
    [Google Scholar]
  8. BjørklundG. SemenovaY. HanganT. PenJ.J. AasethJ. PeanaM. Perspectives on iron deficiency as a cause of human disease in global public health.Curr. Med. Chem.202431121428144010.2174/0929867330666230324154606 38572614
    [Google Scholar]
  9. KortasJ.A. ReczkowiczJ. JuhasU. Iron status determined changes in health measures induced by nordic walking with time-restricted eating in older adults– A randomised trial.BMC Geriatr.202424130010.1186/s12877‑024‑04876‑8 38553690
    [Google Scholar]
  10. ChattopadhyayS. HazraR. MallickA. GayenS. RoyS. A review on comprehending immunotherapeutic approaches inducing ferroptosis: Managing tumour immunity.Immunology202410.1111/imm.13789 38566448
    [Google Scholar]
  11. LeiG. GanB. Exploring ferroptosis-inducing therapies for cancer treatment: Challenges and opportunities.Cancer Res.202484796196410.1158/0008‑5472.CAN‑23‑4042 38558130
    [Google Scholar]
  12. LuanX. ChenP. MiaoL. YuanX. YuC. DiG. Ferroptosis in organ ischemia–reperfusion injuries: Recent advancements and strategies.Mol. Cell. Biochem.202410.1007/s11010‑024‑04978‑2 38556592
    [Google Scholar]
  13. KongY. LiJ. LinR. Understanding the unique mechanism of ferroptosis: A promising therapeutic target.Front. Cell Dev. Biol.202411132914710.3389/fcell.2023.1329147 38562992
    [Google Scholar]
  14. StockwellB.R. Friedmann AngeliJ.P. BayirH. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017171227328510.1016/j.cell.2017.09.021 28985560
    [Google Scholar]
  15. TangD. ChenX. KangR. KroemerG. Ferroptosis: Molecular mechanisms and health implications.Cell Res.202131210712510.1038/s41422‑020‑00441‑1 33268902
    [Google Scholar]
  16. DixonS.J. LembergK.M. LamprechtM.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  17. QuG. LiuH. LiJ. GPX4 is a key ferroptosis biomarker and correlated with immune cell populations and immune checkpoints in childhood sepsis.Sci. Rep.20231311135810.1038/s41598‑023‑32992‑9 37443372
    [Google Scholar]
  18. XieJ. LiuM. GaoY. Integration of metabolomics and network pharmacology to reveal the protective mechanism underlying Qibai Pingfei capsule on chronic obstructive pulmonary disease.Front. Pharmacol.202314125813810.3389/fphar.2023.1258138 37920214
    [Google Scholar]
  19. ZouC. XuF. ShenJ. XuS. Identification of a ferroptosis-related prognostic gene PTGS2 based on risk modeling and immune microenvironment of early-stage cervical cancer.J. Oncol.2022202213210.1155/2022/3997562 35432535
    [Google Scholar]
  20. YoshidaM. MinagawaS. ArayaJ. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis.Nat. Commun.2019101314510.1038/s41467‑019‑10991‑7 31316058
    [Google Scholar]
  21. RochetteL. DogonG. RigalE. ZellerM. CottinY. VergelyC. Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis.Int. J. Mol. Sci.202224144910.3390/ijms24010449 36613888
    [Google Scholar]
  22. KawasakiN.K. SuharaT. KomaiK. The role of ferroptosis in cell-to-cell propagation of cell death initiated from focal injury in cardiomyocytes.Life Sci.202333212211310.1016/j.lfs.2023.122113 37739163
    [Google Scholar]
  23. JiaH. LiuX. CaoY. Deferoxamine ameliorates neurological dysfunction by inhibiting ferroptosis and neuroinflammation after traumatic brain injury.Brain Res.2023181214838310.1016/j.brainres.2023.148383 37149247
    [Google Scholar]
  24. LeiG. ZhuangL. GanB. Targeting ferroptosis as a vulnerability in cancer.Nat. Rev. Cancer202222738139610.1038/s41568‑022‑00459‑0 35338310
    [Google Scholar]
  25. ZhangB. ChenX. RuF. Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis.Cell Death Dis.202112984310.1038/s41419‑021‑04137‑1 34511597
    [Google Scholar]
  26. ZhangG. ZhangY. ShenY. WangY. ZhaoM. SunL. The potential role of ferroptosis in alzheimer’s disease.J. Alzheimers Dis.202180390792510.3233/JAD‑201369 33646161
    [Google Scholar]
  27. BolandghamatS. Behnam-RassouliM. Iron role paradox in nerve degeneration and regeneration.Physiol. Rep.2024121e1590810.14814/phy2.15908 38176709
    [Google Scholar]
  28. Mousavi-AghdasS.A. FarashiE. NaderiN. Iron dyshomeostasis and mitochondrial function in the failing heart: A review of the literature.Am. J. Cardiovasc. Drugs2024241193710.1007/s40256‑023‑00619‑z 38157159
    [Google Scholar]
  29. FanK. QiaoX.W. NieJ. Orthotopic and heterotopic tracheal transplantation model in studying obliterative bronchiolitis.Transpl. Immunol.201328417017510.1016/j.trim.2013.04.006 23619376
    [Google Scholar]
  30. HuaX. DeuseT. Tang-QuanK.R. RobbinsR.C. ReichenspurnerH. SchrepferS. Heterotopic and orthotopic tracheal transplantation in mice used as models to study the development of obliterative airway disease.J. Vis. Exp.2010351437 20090665
    [Google Scholar]
  31. CheonY.I. KimJ.M. ShinS.C. Effect of deferoxamine and ferrostatin-1 on salivary gland dysfunction in ovariectomized rats.Aging20231572418243210.18632/aging.204641 37036468
    [Google Scholar]
  32. PeiZ. QinY. FuX. Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model.Redox Biol.20225710250910.1016/j.redox.2022.102509 36302319
    [Google Scholar]
  33. LuoY. ChenH. LiuH. Protective effects of ferroptosis inhibition on high fat diet-induced liver and renal injury in mice.Int. J. Clin. Exp. Pathol.202013820412049 32922599
    [Google Scholar]
  34. ChenJ. ZhuH. ChenQ. The role of ferroptosis in chronic intermittent hypoxia-induced lung injury.BMC Pulm. Med.202222148810.1186/s12890‑022‑02262‑x 36572881
    [Google Scholar]
  35. WuA. FengB. YuJ. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis.Redox Biol.20214610213110.1016/j.redox.2021.102131 34530349
    [Google Scholar]
  36. SarkarR. HazraB. MandalN. Reducing power and iron chelating property of Terminalia chebula (Retz.) alleviates iron induced liver toxicity in mice.BMC Complement. Altern. Med.201212114410.1186/1472‑6882‑12‑144 22938047
    [Google Scholar]
  37. WangC. XiaT. JiangK. Apoptosis of the tracheal epithelium can increase the number of recipient bone marrow–derived myofibroblasts in allografts and exacerbate obliterative bronchiolitis after tracheal transplantation in mice.Transplantation201610091880188810.1097/TP.0000000000001230 27163540
    [Google Scholar]
  38. RoyerP.J. Olivera-BotelloG. KoutsokeraA. Chronic lung allograft dysfunction.Transplantation201610091803181410.1097/TP.0000000000001215 27257997
    [Google Scholar]
  39. ToddJ.L. PalmerS.M. Bronchiolitis obliterans syndrome: The final frontier for lung transplantation.Chest2011140250250810.1378/chest.10‑2838 21813529
    [Google Scholar]
  40. RamadanS. NguyenT.T.D. LabergeS. MarcotteJ.E. Zisman-ColmanZ. TseS.M. Pre and post‐ COVID 19 infection pulmonary functions in children with chronic respiratory disease: A case series.Respirol. Case Rep.2023111e0107710.1002/rcr2.1077 36578269
    [Google Scholar]
  41. GlanvilleA.R. BendenC. BergeronA. Bronchiolitis obliterans syndrome after lung or haematopoietic stem cell transplantation: Current management and future directions.ERJ Open Res.202283001850202210.1183/23120541.00185‑2022 35898810
    [Google Scholar]
  42. LevyL. TigertA. HusztiE. Epithelial cell death markers in bronchoalveolar lavage correlate with chronic lung allograft dysfunction subtypes and survival in lung transplant recipients—a single‐center retrospective cohort study.Transpl. Int.201932996597310.1111/tri.13444 31002407
    [Google Scholar]
  43. AlhoH.S. SalminenU.S. MaasiltaP.K. PääkköP. HarjulaA.L.J. Epithelial apoptosis in experimental obliterative airway disease after lung transplantation.J. Heart Lung Transplant.20032291014102210.1016/S1053‑2498(02)01164‑6 12957611
    [Google Scholar]
  44. BaiX.Q. WangC.X. ZhaoP.L. LiY.N. [The role and molecular mechanism of pyroptosis in bronchiolitis obliterans].Zhonghua Er Ke Za Zhi2023614373376 37011988
    [Google Scholar]
  45. CapuzzimatiM. HoughO. LiuM. Cell death and ischemia-reperfusion injury in lung transplantation.J. Heart Lung Transplant.20224181003101310.1016/j.healun.2022.05.013 35710485
    [Google Scholar]
  46. ZhaoY. MainK. AujlaT. KeshavjeeS. LiuM. Necroptosis in organ transplantation: Mechanisms and potential therapeutic targets.Cells20231218229610.3390/cells12182296 37759518
    [Google Scholar]
  47. FischerS. CassiviS.D. XavierA.M. Cell death in human lung transplantation: Apoptosis induction in human lungs during ischemia and after transplantation.Ann. Surg.2000231342443110.1097/00000658‑200003000‑00016 10714636
    [Google Scholar]
  48. BeckerE.Jr HusainM. BoneN. SmithS. MorrisP. ZmijewskiJ.W. AMPK activation improves recovery from pneumonia-induced lung injury via reduction of er-stress and apoptosis in alveolar epithelial cells.Respir. Res.202324118510.1186/s12931‑023‑02483‑6 37438806
    [Google Scholar]
  49. RenY. QinS. LiuX. Hyperoxia can induce lung injury by upregulating AECII autophagy and apoptosis via the mTOR pathway.Mol. Biotechnol.202310.1007/s12033‑023‑00945‑2 37938537
    [Google Scholar]
  50. QinS. LiuJ. WangX. ROS-mediated MAPK activation aggravates hyperoxia-induced acute lung injury by promoting apoptosis of type II alveolar epithelial cells via the STAT3/miR-21–5p axis.Mol. Immunol.202316320721510.1016/j.molimm.2023.09.016 37839259
    [Google Scholar]
  51. HansenP. HolmA.M. SvendsenU.G. OlsenP.S. AndersenC.B. Apoptosis and formation of peroxynitrite in the lungs of patients with obliterative bronchiolitis.J. Heart Lung Transplant.200019216016610.1016/S1053‑2498(99)00115‑1 10703692
    [Google Scholar]
  52. ThangaveluG. DuJ. PazK.G. Inhibition of inositol kinase B controls acute and chronic graft-versus-host disease.Blood20201351284010.1182/blood.2019000032 31697815
    [Google Scholar]
  53. CipollaE. FisherA.J. GuH. IL‐17A deficiency mitigates bleomycin‐induced complement activation during lung fibrosis.FASEB J.201731125543555610.1096/fj.201700289R 28821630
    [Google Scholar]
  54. PandolfiL. FuscoR. FrangipaneV. Loading imatinib inside targeted nanoparticles to prevent bronchiolitis obliterans syndrome.Sci. Rep.20201012072610.1038/s41598‑020‑77828‑y 33244143
    [Google Scholar]
  55. BellonH. VandermeulenE. VerledenS.E. The effect of immunosuppression on airway integrity.Transplantation2017101122855286110.1097/TP.0000000000001809 28471870
    [Google Scholar]
  56. Martinez-OsorioV. AbdelwahabY. RosU. The many faces of MLKL, the executor of necroptosis.Int. J. Mol. Sci.202324121010810.3390/ijms241210108 37373257
    [Google Scholar]
  57. ChaouhanH.S. VinodC. MahapatraN. Necroptosis: A pathogenic negotiator in human diseases.Int. J. Mol. Sci.202223211271410.3390/ijms232112714 36361505
    [Google Scholar]
  58. NakanoH. MuraiS. MoriwakiK. Regulation of the release of damage-associated molecular patterns from necroptotic cells.Biochem. J.2022479567768510.1042/BCJ20210604 35293986
    [Google Scholar]
  59. DongL. LiangF. LouZ. Necrostatin-1 alleviates lung ischemia-reperfusion injury via inhibiting necroptosis and apoptosis of lung epithelial cells.Cells20221119313910.3390/cells11193139 36231101
    [Google Scholar]
  60. LiW. TeradaY. TyurinaY.Y. Necroptosis triggers spatially restricted neutrophil-mediated vascular damage during lung ischemia reperfusion injury.Proc. Natl. Acad. Sci. USA202211910e211153711910.1073/pnas.2111537119 35238643
    [Google Scholar]
  61. MagnaniL. ColantuoniM. MortellaroA. Gasdermins: New therapeutic targets in host defense, inflammatory diseases, and cancer.Front. Immunol.20221389829810.3389/fimmu.2022.898298 35844522
    [Google Scholar]
  62. WangC. RuanJ. Mechanistic insights into gasdermin pore formation and regulation in pyroptosis.J. Mol. Biol.2022434416729710.1016/j.jmb.2021.167297 34627790
    [Google Scholar]
  63. ChengK.T. XiongS. YeZ. Caspase-11–mediated endothelial pyroptosis underlies endotoxemia-induced lung injury.J. Clin. Invest.2017127114124413510.1172/JCI94495 28990935
    [Google Scholar]
  64. D’AmicoR. FuscoR. CordaroM. Modulation of NLRP3 inflammasome through formyl peptide receptor 1 (Fpr-1) pathway as a new therapeutic target in bronchiolitis obliterans syndrome.Int. J. Mol. Sci.2020216214410.3390/ijms21062144 32244997
    [Google Scholar]
  65. YangG. YangY. LiuY. LiuX. Regulation of alveolar macrophage death in pulmonary fibrosis: A review.Apoptosis20232811-121505151910.1007/s10495‑023‑01888‑4 37707713
    [Google Scholar]
  66. YangX. AnX. WangC. Protective effect of oxytocin on ventilator-induced lung injury through NLRP3-mediated pathways.Front. Pharmacol.20211272290710.3389/fphar.2021.722907 34733156
    [Google Scholar]
  67. LiA. GuL. HeC. GATA6 promotes fibrotic repair of tracheal injury through NLRP3 inflammasome-mediated epithelial pyroptosis.Int. Immunopharmacol.202312311065710.1016/j.intimp.2023.110657 37531826
    [Google Scholar]
  68. NingJ. ChenL. ZengY. The scheme, and regulative mechanism of pyroptosis, ferroptosis, and necroptosis in radiation injury.Int. J. Biol. Sci.20242051871188310.7150/ijbs.91112 38481804
    [Google Scholar]
  69. BerthelootD. LatzE. FranklinB.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death.Cell. Mol. Immunol.20211851106112110.1038/s41423‑020‑00630‑3 33785842
    [Google Scholar]
  70. BazM.A. GhioA.J. RoggliV.L. TapsonV.F. PiantadosiC.A. Iron accumulation in lung allografts after transplantation.Chest1997112243543910.1378/chest.112.2.435 9266881
    [Google Scholar]
  71. ChuA. KrishnaA. PaulM.P. SextonJ.F. MirchiaK. Obliterating bronchiolitis: Result of iron pill aspiration.Cureus2018105e257110.7759/cureus.2571 29974026
    [Google Scholar]
  72. XingJ. YadavR. NtiamoahP. Airway injury caused by aspiration of iron sulfate pills: A series of 11 cases.Mod. Pathol.2023361210034710.1016/j.modpat.2023.100347 37769995
    [Google Scholar]
  73. GiorgiG. D’AnnaM.C. RoqueM.E. Iron homeostasis and its disruption in mouse lung in iron deficiency and overload.Exp. Physiol.2015100101199121610.1113/EP085166 26047483
    [Google Scholar]
  74. ReidD. SnellG. WardC. Iron overload and nitric oxide-derived oxidative stress following lung transplantation.J. Heart Lung Transplant.200120884084910.1016/S1053‑2498(01)00282‑0 11502406
    [Google Scholar]
  75. MausM. López-PoloV. MateoL. Iron accumulation drives fibrosis, senescence and the senescence-associated secretory phenotype.Nat. Metab.20235122111213010.1038/s42255‑023‑00928‑2 38097808
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240304363240524103203
Loading
/content/journals/cmm/10.2174/0115665240304363240524103203
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test