Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Vitamin C plays a significant role in various physiological functions. Humans depend on external sources of vitamin C due to the loss of the L-gulono-γ-lactone oxidase (GULO) gene that contributes to the synthesis of vitamin C. During the evolutionary loss of the GULO gene, physical, chemical, and biological factors were different from the present environmental settings. Besides the evolutionary genetic loss of the GULO gene, there is a gap in the insightful discussion on the potential implications of the non-functional GULO gene towards the predisposition of humans to cancer that faces hostile and carcinogenic environments. Various methods by which vitamin C modulates cellular processes related to cancer, including DNA repair, epigenetic changes, and redox balance, are discussed. Furthermore, we present experimental and clinical evidence indicating that vitamin C deficiency promotes tumor growth, metastasis, and therapy resistance, emphasizing its potential as a cancer phenotypic modulator. Therapeutic implications of restoring vitamin C levels in cancer treatment range from improving the efficacy of conventional medicines to exploiting metabolic vulnerabilities in tumors. The relevance of assessing vitamin C status in cancer patients and the basis for additional research into vitamin C supplementation as an adjuvant therapy is emphasized. This paper presents a comprehensive overview of the implications associated with the functional deficiency of the GULO gene in human subjects exhibiting diverse tumor hallmarks, encompassing ECM remodeling, hypoxia, epigenetic reprogramming, oxidative stress, and drug responsiveness.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240328074241003110326
2024-10-14
2025-10-31
Loading full text...

Full text loading...

References

  1. PaulingL. Evolution and the need for ascorbic acid.Proc. Natl. Acad. Sci. USA19706741643164810.1073/pnas.67.4.1643 5275366
    [Google Scholar]
  2. WeberP. BendichA. SchalchW. Vitamin C and human health--a review of recent data relevant to human requirements.Int. J. Vitam. Nutr. Res.19966611930 8698541
    [Google Scholar]
  3. HemiläH. Vitamin C intake and susceptibility to pneumonia.Pediatr. Infect. Dis. J.199716983683710.1097/00006454‑199709000‑00003 9306475
    [Google Scholar]
  4. PadayattyS.J. KatzA. WangY. Vitamin C as an antioxidant: Evaluation of its role in disease prevention.J. Am. Coll. Nutr.2003221183510.1080/07315724.2003.10719272 12569111
    [Google Scholar]
  5. DuJ. CullenJ.J. BuettnerG.R. Ascorbic acid: Chemistry, biology and the treatment of cancer.Biochim. Biophys. Acta201218262443457 22728050
    [Google Scholar]
  6. CamarenaV. WangG. The epigenetic role of vitamin C in health and disease.Cell. Mol. Life Sci.20167381645165810.1007/s00018‑016‑2145‑x 26846695
    [Google Scholar]
  7. AgathocleousM. MeachamC.E. BurgessR.J. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis.Nature2017549767347648110.1038/nature23876 28825709
    [Google Scholar]
  8. DiTroiaS.P. PerchardeM. GuerquinM.J. Maternal vitamin C regulates reprogramming of DNA methylation and germline development.Nature2019573777327127510.1038/s41586‑019‑1536‑1 31485074
    [Google Scholar]
  9. TraberK.E. DimboE.L. SymerE.M. Roles of interleukin-11 during acute bacterial pneumonia.PLoS One2019148
    [Google Scholar]
  10. GrangerM. EckP. Dietary vitamin C in human health.Adv. Food Nutr. Res.20188328131010.1016/bs.afnr.2017.11.006
    [Google Scholar]
  11. FerradaL. BarahonaM.J. SalazarK. VandenabeeleP. NualartF. Vitamin C controls neuronal necroptosis under oxidative stress.Redox Biol.20202910140810.1016/j.redox.2019.101408 31926631
    [Google Scholar]
  12. RoyR.N. GuhaB.C. Species difference in regard to the biosynthesis of ascorbic acid.Nature1958182463131932010.1038/182319a0 13577829
    [Google Scholar]
  13. ChatterjeeI.B. KarN.C. GhoshN.C. GuhaB.C. Aspects of ascorbic acid biosynthesis in animals.Ann. N. Y. Acad. Sci.1961921365610.1111/j.1749‑6632.1961.tb46105.x 13692611
    [Google Scholar]
  14. ChatterjeeI.B. KarN.C. GhoshN.C. GuhaB.C. Biosynthesis of L-ascorbic acid: Missing steps in animals incapable of synthesizing the vitamin.Nature1961192479816316410.1038/192163a0 13878430
    [Google Scholar]
  15. FlierJ.S. UnderhillL.H. LevineM. New concepts in the biology and biochemistry of ascorbic acid.N. Engl. J. Med.19863141489290210.1056/NEJM198604033141407 3513016
    [Google Scholar]
  16. GULO [L-gulono-gamma-lactone oxidase, Bostaurus [cattle Gene ID 286812[ Bethesda [MD]: National Library of Medicine [US], National Center for Biotechnology Information2004Available from:https://www.ncbi.nlm.nih.gov/gene/2004
  17. PrasadA.B. AllardM.W. GreenE.D. Confirming the phylogeny of mammals by use of large comparative sequence data sets.Mol. Biol. Evol.20082591795180810.1093/molbev/msn104 18453548
    [Google Scholar]
  18. CuiJ. PanY.H. ZhangY. JonesG. ZhangS. Progressive pseudogenization: Vitamin C synthesis and its loss in bats.Mol. Biol. Evol.20112821025103110.1093/molbev/msq286 21037206
    [Google Scholar]
  19. DrouinG. GodinJ.R. PagéB. The genetics of vitamin C loss in vertebrates.Curr. Genomics201112537137810.2174/138920211796429736 22294879
    [Google Scholar]
  20. HuangW. TsaiL. LiY. HuaN. SunC. WeiC. Widespread of horizontal gene transfer in the human genome.BMC Genomics201718127410.1186/s12864‑017‑3649‑y 28376762
    [Google Scholar]
  21. PaciollaC. FortunatoS. DipierroN. Vitamin C in plants: From functions to biofortification.Antioxidants201981151910.3390/antiox8110519 31671820
    [Google Scholar]
  22. KohJ. ItahanaY. MendenhallI.H. ABCB1 protects bat cells from DNA damage induced by genotoxic compounds.Nat. Commun.2019101282010.1038/s41467‑019‑10495‑4 31249297
    [Google Scholar]
  23. YangH. Conserved or lost: Molecular evolution of the key gene GULO in vertebrate vitamin C biosynthesis.Biochem. Genet.2013515-641342510.1007/s10528‑013‑9574‑0 23404229
    [Google Scholar]
  24. LucaF. PerryG.H. Di RienzoA. Evolutionary adaptations to dietary changes.Annu. Rev. Nutr.201030129131410.1146/annurev‑nutr‑080508‑141048 20420525
    [Google Scholar]
  25. SonjaP. Mihevc, Peter Dovc. Mammary tumors in ruminants.Acta Agric. Slov.201310228386
    [Google Scholar]
  26. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell20111445646674
    [Google Scholar]
  27. Lee ChongT. AhearnE.L. CimminoL. Reprogramming the epigenome with Vitamin C.Front. Cell Dev. Biol.2019712810.3389/fcell.2019.00128 31380368
    [Google Scholar]
  28. NgoB. Van RiperJ.M. CantleyL.C. YunJ. Targeting cancer vulnerabilities with high-dose vitamin C.Nat. Rev. Cancer201919527128210.1038/s41568‑019‑0135‑7 30967651
    [Google Scholar]
  29. MaylandC.R. BennettM.I. AllanK. Vitamin C deficiency in cancer patients.Palliat. Med.2005191172010.1191/0269216305pm970oa 15690864
    [Google Scholar]
  30. YeomC.H. LeeG. ParkJ.H. High dose concentration administration of ascorbic acid inhibits tumor growth in BALB/C mice implanted with sarcoma 180 cancer cells via the restriction of angiogenesis.J. Transl. Med.2009717010.1186/1479‑5876‑7‑70 19671184
    [Google Scholar]
  31. Tantamango-BartleyY. Jaceldo-SieglK. FanJ. FraserG. Vegetarian diets and the incidence of cancer in a low-risk population.Cancer Epidemiol. Biomarkers Prev.201322228629410.1158/1055‑9965.EPI‑12‑1060 23169929
    [Google Scholar]
  32. KlimantE. WrightH. RubinD. SeelyD. MarkmanM. Intravenous vitamin C in the supportive care of cancer patients: A review and rational approach.Curr. Oncol.201825213914810.3747/co.25.3790 29719430
    [Google Scholar]
  33. LeeY. Role of vitamin C in targeting cancer stem cells and cellular plasticity.Cancers20231523565710.3390/cancers15235657 38067361
    [Google Scholar]
  34. LiottaL.A. KohnE.C. The microenvironment of the tumour–host interface.Nature2001411683537537910.1038/35077241 11357145
    [Google Scholar]
  35. WiseL.N. BryanJ.N. SellonD.C. HinesM.T. RamsayJ. SeinoK.K. A retrospective analysis of renal carcinoma in the horse.J. Vet. Intern. Med.200923491391810.1111/j.1939‑1676.2009.0326.x 19496911
    [Google Scholar]
  36. MeachamC.E. MorrisonS.J. Tumour heterogeneity and cancer cell plasticity.Nature2013501746732833710.1038/nature12624 24048065
    [Google Scholar]
  37. ShibueT. WeinbergR.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications.Nat. Rev. Clin. Oncol.2017141061162910.1038/nrclinonc.2017.44 28397828
    [Google Scholar]
  38. PfefferF. CasanuevaE. KamarJ. GuerraA. PerichartO. Vadillo-OrtegaF. Modulation of 72-kilodalton type IV collagenase (Matrix metalloproteinase-2) by ascorbic acid in cultured human amnion-derived cells.Biol. Reprod.199859232632910.1095/biolreprod59.2.326 9687303
    [Google Scholar]
  39. MikirovaN.A. IchimT.E. RiordanN.H. Anti-angiogenic effect of high doses of ascorbic acid.J. Transl. Med.2008615010.1186/1479‑5876‑6‑50 18789157
    [Google Scholar]
  40. ChaJ. RoomiM.W. IvanovV. KalinovskyT. NiedzwieckiA. RathM. Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice.Int. J. Oncol.2013421556410.3892/ijo.2012.1712 23175106
    [Google Scholar]
  41. PolireddyK. DongR. ReedG. High dose parenteral ascorbate inhibited pancreatic cancer growth and metastasis: Mechanisms and a phase I/IIa study.Sci. Rep.2017711718810.1038/s41598‑017‑17568‑8 29215048
    [Google Scholar]
  42. RyanH.E. PoloniM. McNultyW. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth.Cancer Res.2000601540104015 10945599
    [Google Scholar]
  43. HöckelM. VaupelP. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects.J. Natl. Cancer Inst.200193426627610.1093/jnci/93.4.266 11181773
    [Google Scholar]
  44. FlettT. CampbellE. PhillipsE. VissersM. DachsG. Gulonolactone Addition to Human Hepatocellular Carcinoma Cells with Gene Transfer of Gulonolactone Oxidase Restores Ascorbate Biosynthesis and Reduces Hypoxia Inducible Factor 1.Biomedicines2014219810910.3390/biomedicines2010098 28548062
    [Google Scholar]
  45. Brahimi-HornM.C. ChicheJ. PouysségurJ. Hypoxia and cancer.J. Mol. Med.200785121301130710.1007/s00109‑007‑0281‑3 18026916
    [Google Scholar]
  46. JankeR. DodsonA.E. RineJ. Metabolism and epigenetics.Annu. Rev. Cell Dev. Biol.201531147349610.1146/annurev‑cellbio‑100814‑125544 26359776
    [Google Scholar]
  47. MonfortA. WutzA. Breathing‐in epigenetic change with vitamin C.EMBO Rep.201314433734610.1038/embor.2013.29 23492828
    [Google Scholar]
  48. YinR. MaoS.Q. ZhaoB. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals.J. Am. Chem. Soc.201313528103961040310.1021/ja4028346 23768208
    [Google Scholar]
  49. EbataK.T. MeshK. LiuS. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.Epigenetics Chromatin20171013610.1186/s13072‑017‑0143‑3 28706564
    [Google Scholar]
  50. CimminoL. NeelB.G. AifantisI. Vitamin C in stem cell reprogramming and cancer.Trends Cell Biol.201828969870810.1016/j.tcb.2018.04.001 29724526
    [Google Scholar]
  51. BaylinS.B. JonesP.A. A decade of exploring the cancer epigenome — biological and translational implications.Nat. Rev. Cancer2011111072673410.1038/nrc3130 21941284
    [Google Scholar]
  52. CyrA.R. DomannF.E. The redox basis of epigenetic modifications: From mechanisms to functional consequences.Antioxid. Redox Signal.201115255158910.1089/ars.2010.3492 20919933
    [Google Scholar]
  53. ReuterS. GuptaS.C. ChaturvediM.M. AggarwalB.B. Oxidative stress, inflammation, and cancer: How are they linked?Free Radic. Biol. Med.201049111603161610.1016/j.freeradbiomed.2010.09.006 20840865
    [Google Scholar]
  54. PopracP. JomovaK. SimunkovaM. KollarV. RhodesC.J. ValkoM. Targeting free radicals in oxidative stress-related human diseases.Trends Pharmacol. Sci.201738759260710.1016/j.tips.2017.04.005 28551354
    [Google Scholar]
  55. IqbalM.J. KabeerA. AbbasZ. Interplay of oxidative stress, cellular communication and signaling pathways in cancer.Cell Commun. Signal.2024221710.1186/s12964‑023‑01398‑5 38167159
    [Google Scholar]
  56. KlaunigJ.E. KamendulisL.M. HocevarB.A. Oxidative stress and oxidative damage in carcinogenesis.Toxicol. Pathol.20103819610910.1177/0192623309356453 20019356
    [Google Scholar]
  57. HayesJ.D. Dinkova-KostovaA.T. TewK.D. Oxidative stress in cancer.Cancer Cell2020103816719710.1016/j.ccell.2020.06.001
    [Google Scholar]
  58. ZhaoX. LiuM. LiC. High dose Vitamin C inhibits PD-L1 by ROS-pSTAT3 signal pathway and enhances T cell function in TNBC.Int. Immunopharmacol.202412611132110.1016/j.intimp.2023.111321 38041955
    [Google Scholar]
  59. DidierA.J. StieneJ. FangL. WatkinsD. DworkinL.D. CreedenJ.F. Antioxidant and anti-tumor effects of dietary vitamins A, C, and E.Antioxidants202312363210.3390/antiox12030632 36978880
    [Google Scholar]
  60. TranD. LuuX. TranH. MyungS.K. Dietary and supplementary vitamin C intake and the risk of lung cancer: A meta analysis of cohort studies.Oncol. Lett.20232711010.3892/ol.2023.14144 38034488
    [Google Scholar]
  61. FanD. LiuX. ShenZ. WuP. ZhongL. LinF. Cell signaling pathways based on vitamin C and their application in cancer therapy.Biomed. Pharmacother.202316211469510.1016/j.biopha.2023.114695 37058822
    [Google Scholar]
  62. MachmouchiA. ChehadeL. TemrazS. ShamseddineA. Overcoming EGFR Resistance in Metastatic Colorectal Cancer Using Vitamin C: A Review.Biomedicines202311367810.3390/biomedicines11030678 36979659
    [Google Scholar]
  63. Dagogo-JackI. ShawA.T. Tumour heterogeneity and resistance to cancer therapies.Nat. Rev. Clin. Oncol.2018152819410.1038/nrclinonc.2017.166 29115304
    [Google Scholar]
  64. NilenduP. SarodeS.C. JahagirdarD. Mutual concessions and compromises between stromal cells and cancer cells: Driving tumor development and drug resistance.Cell. Oncol.201841435336710.1007/s13402‑018‑0388‑2 30027403
    [Google Scholar]
  65. SeluanovA. GladyshevV.N. VijgJ. GorbunovaV. Mechanisms of cancer resistance in long-lived mammals.Nat. Rev. Cancer201818743344110.1038/s41568‑018‑0004‑9 29622806
    [Google Scholar]
  66. WongK. van der WeydenL. SchottC.R. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma.Nat. Commun.201910135310.1038/s41467‑018‑08081‑1 30664638
    [Google Scholar]
  67. LinsterC.L. Van SchaftingenE. VitaminC. VitaminC. FEBS J.2007274112210.1111/j.1742‑4658.2006.05607.x 17222174
    [Google Scholar]
  68. WallaceB.D. RobertsA.B. PolletR.M. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity.Chem. Biol.20152291238124910.1016/j.chembiol.2015.08.005 26364932
    [Google Scholar]
  69. ChaJ. RoomiM.W. IvanovV. KalinovskyT. NiedzwieckiA. RathM. Ascorbate depletion increases growth and metastasis of melanoma cells in vitamin C deficient mice.Exp. Oncol.2011334226230 22217712
    [Google Scholar]
  70. JiaoY. ZhangJ. YanJ. Differential gene expression between wild-type and Gulo-deficient mice supplied with vitamin C.Genet. Mol. Biol.201134338639510.1590/S1415‑47572011005000031 21931508
    [Google Scholar]
  71. FujiiJ. Ascorbate is a multifunctional micronutrient whose synthesis is lacking in primates.J. Clin. Biochem. Nutr.20216912018110.3164/jcbn.20‑181 34376908
    [Google Scholar]
  72. TeafatillerT. AgrawalS. De RoblesG. Vitamin C enhances antiviral functions of lung epithelial cells.Biomolecules2021118114810.3390/biom11081148 34439814
    [Google Scholar]
  73. BhattA.P. PellockS.J. BiernatK.A. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy.Proc. Natl. Acad. Sci. USA2020117137374738110.1073/pnas.1918095117 32170007
    [Google Scholar]
  74. LiX.Y. MengL. ShenL. JiH.F. Regulation of gut microbiota by vitamin C, vitamin E and β-carotene.Food Res. Int.202316911274910.1016/j.foodres.2023.112749 37254375
    [Google Scholar]
  75. ZhaoL.Y. MeiJ.X. YuG. Role of the gut microbiota in anticancer therapy: From molecular mechanisms to clinical applications.Signal Transduct. Target. Ther.20238120110.1038/s41392‑023‑01406‑7 37179402
    [Google Scholar]
  76. RoyR. SinghS.K. The microbiome modulates the immune system to influence cancer therapy.Cancers (Basel)202416477910.3390/cancers16040779 38398170
    [Google Scholar]
  77. LinsterC.L. Van SchaftingenE. Glucuronate, the precursor of vitamin C, is directly formed from UDP‐glucuronate in liver.FEBS J.200627371516152710.1111/j.1742‑4658.2006.05172.x 16689937
    [Google Scholar]
  78. AllainE.P. RouleauM. LévesqueE. GuillemetteC. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression.Br. J. Cancer202012291277128710.1038/s41416‑019‑0722‑0 32047295
    [Google Scholar]
  79. LiuW. LiJ. ZhaoR. LuY. HuangP. The Uridine diphosphate (UDP)-glycosyltransferases (UGTs) superfamily: The role in tumor cell metabolism.Front. Oncol.202312108845810.3389/fonc.2022.1088458 36741721
    [Google Scholar]
  80. PrimoracD. HöppnerW. Bach-RojeckyL. Pharmacogenomics in clinical practice.1st ed2024
    [Google Scholar]
  81. DuqueP. VieiraC.P. BastosB. VieiraJ. The evolution of vitamin C biosynthesis and transport in animals.BMC Ecol. Evol.20222218410.1186/s12862‑022‑02040‑7 35752765
    [Google Scholar]
  82. JarrarY. LeeS.J. The functionality of UDP-Glucuronosyl-transferase genetic variants and their association with drug responses and human diseases.J. Pers. Med.202111655410.3390/jpm11060554 34198586
    [Google Scholar]
  83. DuqueP. VieiraC.P. VieiraJ. Advances in novel animal vitamin C biosynthesis pathways and the role of prokaryote-based inferences to understand their origin.Genes (Basel)20221310191710.3390/genes13101917 36292802
    [Google Scholar]
  84. SatoA. KondoY. IshigamiA. The evidence to date: Implications of l-ascorbic acid in the pathophysiology of aging.J. Physiol. Sci.20247412910.1186/s12576‑024‑00922‑7 38730366
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240328074241003110326
Loading
/content/journals/cmm/10.2174/0115665240328074241003110326
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; evolution; glucuronidase; GULO; horizontal gene transfer; nutrients; vitamin C
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test