Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

As lncRNAs have increasingly been investigated, they are no longer simply defined as RNAs with no transcription capability. Studies have identified significant associations between the abnormal expression of lncRNAs and human diseases, particularly the mechanisms by which lncRNAs play a part in cancers, which are of considerable attention to researchers. As a result of the complex spatial structure, the mechanisms of interaction of lncRNAs in cancer cells are also complicated and diversified. Among a series of lncRNAs, TUG1, which is now considered to be a very high-value lncRNA, has recently been identified to express abnormally in some malignancies, leading to different alterations in cancer cells proliferation, migration, invasion, apoptosis, and drug resistance, and hence promoting or inhibiting cancer progression. Current studies have implicitly indicated that TUG1 can be used as a therapeutic target for human cancers. However, the biological functions of TUG1 have been studied for a short period of time, and the complete molecular mechanism still needs to be clarified. Accordingly, this review focuses on the principal molecular mechanisms of TUG1 in human cancers and the specific mechanisms of action in different cancer development processes based on existing studies.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240298173240427042624
2024-05-22
2025-10-26
Loading full text...

Full text loading...

References

  1. BridgesM.C. DaulagalaA.C. KourtidisA. LNCcation: lncRNA localization and function.J. Cell Biol.20212202e20200904510.1083/jcb.202009045 33464299
    [Google Scholar]
  2. IyerM.K. NiknafsY.S. MalikR. The landscape of long noncoding RNAs in the human transcriptome.Nat. Genet.201547319920810.1038/ng.3192 25599403
    [Google Scholar]
  3. JohnssonP. ZiegenhainC. HartmanisL. Transcriptional kinetics and molecular functions of long noncoding RNAs.Nat. Genet.202254330631710.1038/s41588‑022‑01014‑1 35241826
    [Google Scholar]
  4. ArunG. DiermeierS.D. SpectorD.L. Therapeutic targeting of long non-coding RNAs in cancer.Trends Mol. Med.201824325727710.1016/j.molmed.2018.01.001 29449148
    [Google Scholar]
  5. LarssonA.J.M. ZiegenhainC. Hagemann-JensenM. Transcriptional bursts explain autosomal random monoallelic expression and affect allelic imbalance.PLOS Comput. Biol.2021173e100877210.1371/journal.pcbi.1008772 33690599
    [Google Scholar]
  6. ChanJ. TayY. Noncoding RNA: RNA regulatory networks in cancer.Int. J. Mol. Sci.2018195131010.3390/ijms19051310 29702599
    [Google Scholar]
  7. YangM. LuH. LiuJ. WuS. KimP. ZhouX. lncRNAfunc: a knowledgebase of lncRNA function in human cancer.Nucleic Acids Res.202250D1D1295D130610.1093/nar/gkab1035 34791419
    [Google Scholar]
  8. TanY.T. LinJ.F. LiT. LiJ.J. XuR.H. JuH.Q. LncRNA‐mediated posttranslational modifications and reprogramming of energy metabolism in cancer.Cancer Commun.202141210912010.1002/cac2.12108 33119215
    [Google Scholar]
  9. SlackF.J. ChinnaiyanA.M. The role of non-coding RNAs in oncology.Cell201917951033105510.1016/j.cell.2019.10.017 31730848
    [Google Scholar]
  10. XuY. QiuM. ShenM. The emerging regulatory roles of long non-coding RNAs implicated in cancer metabolism.Mol. Ther.20212972209221810.1016/j.ymthe.2021.03.017 33775912
    [Google Scholar]
  11. SunH. HuangZ. ShengW. XuM. Emerging roles of long non-coding RNAs in tumor metabolism.J. Hematol. Oncol.201811110610.1186/s13045‑018‑0648‑7 30134946
    [Google Scholar]
  12. SenR. GhosalS. DasS. BaltiS. ChakrabartiJ. Competing endogenous RNA: the key to posttranscriptional regulation.ScientWorldJ201420141610.1155/2014/896206 24672386
    [Google Scholar]
  13. LinY.H. Crosstalk of lncRNA and cellular metabolism and their regulatory mechanism in cancer.Int. J. Mol. Sci.2020218294710.3390/ijms21082947 32331347
    [Google Scholar]
  14. IorioM.V. CroceC.M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review.EMBO Mol. Med.20124314315910.1002/emmm.201100209 22351564
    [Google Scholar]
  15. YuX. LiZ. Long non-coding RNA growth arrest-specific transcript 5 in tumor biology.Oncol. Lett.20151041953195810.3892/ol.2015.3553 26622780
    [Google Scholar]
  16. DeyB.K. MuellerA.C. DuttaA. Long non-coding RNAs as emerging regulators of differentiation, development, and disease.Transcription201454e94401410.4161/21541272.2014.944014 25483404
    [Google Scholar]
  17. LinW. ZhouQ. WangC.Q. LncRNAs regulate metabolism in cancer.Int. J. Biol. Sci.20201671194120610.7150/ijbs.40769 32174794
    [Google Scholar]
  18. XiaoZ.D. ZhuangL. GanB. Long non‐coding RNAs in cancer metabolism.BioEssays2016381099199610.1002/bies.201600110 27550823
    [Google Scholar]
  19. ZhouH. SunL. WanF. Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells (Review).Oncol. Lett.20191854393440210.3892/ol.2019.10848 31611948
    [Google Scholar]
  20. XieC. ChenB. WuB. GuoJ. CaoY. LncRNA TUG1 promotes cell proliferation and suppresses apoptosis in osteosarcoma by regulating miR-212-3p/FOXA1 axis.Biomed. Pharmacother.2018971645165310.1016/j.biopha.2017.12.004 29793327
    [Google Scholar]
  21. KonishiH. IchikawaD. YamamotoY. Plasma level of metastasis‐associated lung adenocarcinoma transcript 1 is associated with liver damage and predicts development of Hepatocellular Carcinoma.Cancer Sci.2016107214915410.1111/cas.12854 26614531
    [Google Scholar]
  22. GuoL.L. SongC.H. WangP. DaiL.P. ZhangJ.Y. WangK.J. Competing endogenous RNA networks and gastric cancer.World J. Gastroenterol.20152141116801168710.3748/wjg.v21.i41.11680 26556995
    [Google Scholar]
  23. DaM. ZhuangJ. ZhouY. QiQ. HanS. Role of long noncoding RNA taurine‐upregulated gene 1 in cancers.Mol. Med.20212715110.1186/s10020‑021‑00312‑4 34039257
    [Google Scholar]
  24. EsfandiF. TaheriM. OmraniM.D. Expression of long non-coding RNAs (lncRNAs) has been dysregulated in non-small cell lung cancer tissues.BMC Cancer201919122210.1186/s12885‑019‑5435‑5 30866866
    [Google Scholar]
  25. LiZ. ShenJ. ChanM.T.V. WuW.K.K. TUG 1: a pivotal oncogenic long non‐coding RNA of human cancers.Cell Prolif.201649447147510.1111/cpr.12269 27339553
    [Google Scholar]
  26. BaliouS. KyriakopoulosA. SpandidosD. ZoumpourlisV. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics?Int. J. Oncol.202057363166410.3892/ijo.2020.5100 32705269
    [Google Scholar]
  27. LiuW. MengJ. SuR. SP1-mediated up-regulation of lncRNA TUG1 underlines an oncogenic property in colorectal cancer.Cell Death Dis.202213543310.1038/s41419‑022‑04805‑w 35508523
    [Google Scholar]
  28. HuY. SunX. MaoC. Upregulation of long noncoding RNA TUG1 promotes cervical cancer cell proliferation and migration.Cancer Med.20176247148210.1002/cam4.994 28088836
    [Google Scholar]
  29. IsakoffM.S. BielackS.S. MeltzerP. GorlickR. Osteosarcoma: Current treatment and a collaborative pathway to success.J. Clin. Oncol.201533273029303510.1200/JCO.2014.59.4895 26304877
    [Google Scholar]
  30. LinM. ShiC. LinX. sMicroRNA-1290 inhibits cells proliferation and migration by targeting FOXA1 in gastric cancer cells.Gene2016582213714210.1016/j.gene.2016.02.001 26851540
    [Google Scholar]
  31. ZhangQ. GengP.L. YinP. WangX.L. JiaJ.P. YaoJ. Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis.Asian Pac. J. Cancer Prev.20131442311231510.7314/APJCP.2013.14.4.2311 23725133
    [Google Scholar]
  32. YuX. HuL. LiS. Long non-coding RNA Taurine upregulated gene 1 promotes osteosarcoma cell metastasis by mediating HIF-1α via miR-143-5p.Cell Death Dis.201910428010.1038/s41419‑019‑1509‑1 30911001
    [Google Scholar]
  33. WangH. YuY. FanS. LuoL. Knockdown of long noncoding RNA TUG1 inhibits the proliferation and cellular invasion of osteosarcoma cells by sponging miR-153.Oncol. Res.201826566567310.3727/096504017X14908298412505 28411362
    [Google Scholar]
  34. LiG. LiuK. DuX. Long Non-Coding RNA TUG1 promotes proliferation and inhibits apoptosis of osteosarcoma cells by sponging miR-132-3p and upregulating SOX4 expression.Yonsei Med. J.201859222623510.3349/ymj.2018.59.2.226 29436190
    [Google Scholar]
  35. ZhaoZ.Y. ZhaoY.C. LiuW. Long non-coding RNA TUG1 regulates the progression and metastasis of osteosarcoma cells via miR-140-5p/PFN2 axis.Eur. Rev. Med. Pharmacol. Sci.2019232297819792 31799645
    [Google Scholar]
  36. LiY. ZhangT. ZhangY. ZhaoX. WangW. Targeting the FOXM 1‐regulated long noncoding RNA TUG 1 in osteosarcoma.Cancer Sci.2018109103093310410.1111/cas.13765 30099814
    [Google Scholar]
  37. ShengK. LiY. LncRNA TUG1 promotes the development of osteosarcoma through RUNX2.Exp. Ther. Med.20191843002300810.3892/etm.2019.7880 31555384
    [Google Scholar]
  38. CaoJ. HanX. QiX. JinX. LiX. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p.Int. J. Oncol.20175141115112310.3892/ijo.2017.4110 28902349
    [Google Scholar]
  39. HanX. YangY. SunY. QinL. YangY. LncRNA TUG1 affects cell viability by regulating glycolysis in osteosarcoma cells.Gene2018674879210.1016/j.gene.2018.06.085 29960067
    [Google Scholar]
  40. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  41. AzizidoostS. NasrolahiA. GhaedrahmatiF. The pathogenic roles of lncRNA-Taurine upregulated 1 (TUG1) in colorectal cancer.Cancer Cell Int.202222133510.1186/s12935‑022‑02745‑1 36333703
    [Google Scholar]
  42. ShaoH. DongD. ShaoF. Long non-coding RNA TUG1-mediated down-regulation of KLF4 contributes to metastasis and the epithelial-to-mesenchymal transition of colorectal cancer by miR-153-1.Cancer Manag. Res.2019118699871010.2147/CMAR.S208508 31576172
    [Google Scholar]
  43. LiuQ. ZhangW. LuoL. Long noncoding RNA TUG1 regulates the progression of colorectal cancer through miR-542-3p/TRIB2 axis and Wnt/β-catenin pathway.Diagn. Pathol.20211614710.1186/s13000‑021‑01101‑7 34030715
    [Google Scholar]
  44. YanZ. BiM. ZhangQ. SongY. HongS. LncRNA TUG1 promotes the progression of colorectal cancer via the miR-138-5p/ZEB2 axis.Biosci. Rep.2020406BSR2020102510.1042/BSR20201025 32391554
    [Google Scholar]
  45. ShenX. HuX. MaoJ. The long noncoding RNA TUG1 is required for TGF-β/TWIST1/EMT-mediated metastasis in colorectal cancer cells.Cell Death Dis.20201116510.1038/s41419‑020‑2254‑1 31988275
    [Google Scholar]
  46. XiaoC. YuH. GuoC. Long non coding RNA TUG1 promotes the proliferation of colorectal cancer cells through regulating Wnt/β catenin pathway.Oncol. Lett.20181645317532410.3892/ol.2018.9259 30250601
    [Google Scholar]
  47. SunJ. ZhouH. BaoX. lncRNA TUG1 Facilitates colorectal cancer stem cell characteristics and chemoresistance by enhancing GATA6 protein stability.Stem Cells Int.2021202111410.1155/2021/1075481 34858502
    [Google Scholar]
  48. TianL. ZhaoZ.F. XieL. ZhuJ.P. Taurine up-regulated 1 accelerates tumorigenesis of colon cancer by regulating miR-26a-5p/MMP14/p38 MAPK/Hsp27 axis in vitro and in vivo.Life Sci.201923911703510.1016/j.lfs.2019.117035 31697952
    [Google Scholar]
  49. WangM. HuH. WangY. Long non-coding RNA TUG1 mediates 5-fluorouracil resistance by acting as a ceRNA of miR-197-3p in colorectal cancer.J. Cancer201910194603461310.7150/jca.32065 31528224
    [Google Scholar]
  50. NagarajuG.P. DariyaB. KasaP. PeelaS. El-RayesB.F. Epigenetics in Hepatocellular Carcinoma.Semin. Cancer Biol.202286Pt 362263210.1016/j.semcancer.2021.07.017 34324953
    [Google Scholar]
  51. HuangZ. ZhouJ.K. PengY. HeW. HuangC. The role of long noncoding RNAs in Hepatocellular Carcinoma.Mol. Cancer20201917710.1186/s12943‑020‑01188‑4 32295598
    [Google Scholar]
  52. KhanA. ZhangX. Function of the Long Noncoding RNAs in Hepatocellular Carcinoma: Classification, molecular mechanisms, and significant therapeutic potentials.Bioengineering20229840610.3390/bioengineering9080406 36004931
    [Google Scholar]
  53. HuangM.D. ChenW.M. QiF.Z. Long non-coding RNA TUG1 is up-regulated in Hepatocellular Carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2.Mol. Cancer201514116510.1186/s12943‑015‑0431‑0 26336870
    [Google Scholar]
  54. LiuS. TUG1 long non-coding RNA enlists the USF1 transcription factor to overexpress ROMO1 leading to Hepatocellular Carcinoma growth and metastasis.MedComm20201338639910.1002/mco2.38
    [Google Scholar]
  55. LiuW. FengQ. LiaoW. LiE. WuL. TUG1 promotes the expression of IFITM3 in Hepatocellular Carcinoma by competitively binding to miR-29a.J. Cancer202112226905692010.7150/jca.57477 34659578
    [Google Scholar]
  56. LuL. HuangJ. MoJ. Exosomal lncRNA TUG1 from cancer-associated fibroblasts promotes liver cancer cell migration, invasion, and glycolysis by regulating the miR-524-5p/SIX1 axis.Cell. Mol. Biol. Lett.20222711710.1186/s11658‑022‑00309‑9 35193488
    [Google Scholar]
  57. TangK. LvD. MiaoL. MaoY. YuX. LncRNA TUG1 functions as a ceRNA for miR‐1‐3p to promote cell proliferation in hepatic carcinogenesis.J. Clin. Lab. Anal.2022365e2441510.1002/jcla.24415 35421276
    [Google Scholar]
  58. Nguyen-NielsenM. BorreM. Diagnostic and therapeutic strategies for prostate cancer.Semin. Nucl. Med.201646648449010.1053/j.semnuclmed.2016.07.002 27825428
    [Google Scholar]
  59. MirzaeiS. PaskehM.D.A. OkinaE. Molecular landscape of lncrnas in prostate cancer: A focus on pathways and therapeutic targets for intervention.J. Exp. Clin. Cancer Res.202241121410.1186/s13046‑022‑02406‑1 35773731
    [Google Scholar]
  60. DuZ. SunT. HacisuleymanE. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer.Nat. Commun.2016711098210.1038/ncomms10982 26975529
    [Google Scholar]
  61. HaoS.D. MaJ.X. LiuY. LiuP.J. QinY. Long non-coding TUG1 accelerates prostate cancer progression through regulating miR-128-3p/YES1 axis.Eur. Rev. Med. Pharmacol. Sci.2020242619632 32016963
    [Google Scholar]
  62. XiuD. LiuL. ChengM. SunX. MaX. Knockdown of lncrna tug1 enhances radiosensitivity of prostate cancer via the TUG1/miR-139-5p/SMC1A Axis.OncoTargets Ther.2020132319233110.2147/OTT.S236860 32256083
    [Google Scholar]
  63. YangB. TangX. WangZ. SunD. WeiX. DingY. TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a.Biosci. Rep.2018385BSR2018067710.1042/BSR20180677 29967294
    [Google Scholar]
  64. LiG. YangJ. ChongT. HuangY. LiuY. LiH. TUG1 knockdown inhibits the tumorigenesis and progression of prostate cancer by regulating microRNA-496/Wnt/β-catenin pathway.Anticancer Drugs202031659260010.1097/CAD.0000000000000882 32427740
    [Google Scholar]
  65. YangG. YinH. LinF. Long noncoding RNA TUG1 regulates prostate cancer cell proliferation, invasion and migration via the Nrf2 signaling axis.Pathol. Res. Pract.2020216415285110.1016/j.prp.2020.152851 32057513
    [Google Scholar]
  66. CaiJ. ChenH. LuM. Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis.Cancer Lett.202152011110.1016/j.canlet.2021.06.027 34216688
    [Google Scholar]
  67. XieW. ChuM. SongG. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer.Semin. Cancer Biol.20228330331810.1016/j.semcancer.2020.11.004 33207266
    [Google Scholar]
  68. LiangH. CuiZ. SongQ. TUG1 as a therapy target in pancreatic cancer.Dig. Dis. Sci.202065123756375710.1007/s10620‑020‑06636‑1 33026604
    [Google Scholar]
  69. LuY. TangL. ZhangZ. Long noncoding RNA TUG1/miR-29c axis affects cell proliferation, invasion, and migration in human pancreatic cancer.Dis. Markers2018201811010.1155/2018/6857042 30595764
    [Google Scholar]
  70. QIN C-FZHAO F-L. Long non-coding RNA TUG1 can promote proliferation and migration of pancreatic cancer via EMT pathway.Eur. Rev. Med. Pharmacol. Sci.2017211023772384
    [Google Scholar]
  71. ZhaoL. SunH. KongH. ChenZ. ChenB. ZhouM. The Lncrna-TUG1/EZH2 axis promotes pancreatic cancer cell proliferation, migration and emt phenotype formation through sponging Mir-382.Cell. Physiol. Biochem.20174262145215810.1159/000479990 28813705
    [Google Scholar]
  72. XuK. ZhangL. Inhibition of TUG1/miRNA-299-3p axis represses pancreatic cancer malignant progression via suppression of the notch1 pathway.Dig. Dis. Sci.20206561748176010.1007/s10620‑019‑05911‑0 31655908
    [Google Scholar]
  73. LiY. LiG. GuoX. YaoH. WangG. LiC. Non-coding RNA in bladder cancer.Cancer Lett.2020485384410.1016/j.canlet.2020.04.023 32437725
    [Google Scholar]
  74. XinmeiK. WeLi Prognostic value of long non-coding RNA TUG1 in various tumors.Oncotarget20178396565965656
    [Google Scholar]
  75. GuoP. ZhangG. MengJ. HeQ. LiZ. GuanY. Upregulation of long noncoding RNA TUG1 promotes bladder cancer cell proliferation, migration, and invasion by inhibiting miR-29c.Oncol. Res.20182671083109110.3727/096504018X15152085755247 29321088
    [Google Scholar]
  76. YuG. ZhouH. XuK. MengL. LangB. Mir-29c-3p targeting TUG1 affects migration and invasion of bladder cancer cells by regulating CAPN7 expression.Nan Fang Yi Ke Da Xue Xue Bao202040913251331 32990242
    [Google Scholar]
  77. YuG. ZhouH. YaoW. MengL. LangB. lncRNA TUG1 promotes cisplatin resistance by regulating CCND2 via epigenetically silencing miR-194-5p in bladder cancer.Mol. Ther. Nucleic Acids20191625727110.1016/j.omtn.2019.02.017 30925453
    [Google Scholar]
  78. TanJ QiuK LiM LiangY Double‐negative feedback loop between long non‐coding RNA TUG1 and miR‐145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells.FEBS Lett201558920PartB)(20 Pt B3175318110.1016/j.febslet.2015.08.020 26318860
    [Google Scholar]
  79. LiuQ. LiuH. ChengH. LiY. LiX. ZhuC. Downregulation of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells.OncoTargets Ther.2017102461247110.2147/OTT.S124595 28503069
    [Google Scholar]
  80. YuanJ.B. GuL. ChenL. YinY. FanB.Y. Annexin A8 regulated by lncRNA-TUG1/miR-140-3p axis promotes bladder cancer progression and metastasis.Mol. Ther. Oncolytics202122365110.1016/j.omto.2021.04.008 34401471
    [Google Scholar]
  81. TanJ. LiuB. ZhouL. LncRNA TUG1 promotes bladder cancer malignant behaviors by regulating the miR-320a/FOXQ1 axis.Cell. Signal.20229111021610.1016/j.cellsig.2021.110216 34920123
    [Google Scholar]
  82. FattahiS. Kosari-MonfaredM. GolpourM. LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: A novel approach to personalized medicine.J. Cell. Physiol.202023543189320610.1002/jcp.29260 31595495
    [Google Scholar]
  83. XiaW. ZhangQ. LiQ. LiangX. Relationship between long non-coding RNA TUG1 and prognosis of patients with gastric carcinoma.Medicine20209949e2352210.1097/MD.0000000000023522 33285765
    [Google Scholar]
  84. JiT.T. HuangX. JinJ. PanS.H. ZhugeX.J. Inhibition of long non-coding RNA TUG1 on gastric cancer cell transference and invasion through regulating and controlling the expression of miR-144/c-Met axis.Asian Pac. J. Trop. Med.20169550851210.1016/j.apjtm.2016.03.026 27261864
    [Google Scholar]
  85. JinY. CaoJ. HuX. ChengH. Long noncoding RNA TUG1 upregulates VEGFA to enhance malignant behaviors in stomach adenocarcinoma by sponging miR‐29c‐3p.J. Clin. Lab. Anal.20213512e2410610.1002/jcla.24106 34762771
    [Google Scholar]
  86. FuL. WangZ. JiangF. High Expression of EIF4G2 Mediated by the TUG1/Hsa-miR-26a-5p axis is associated with poor prognosis and immune infiltration of gastric cancer.J. Oncol.2022202212510.1155/2022/9342283 36157241
    [Google Scholar]
  87. RenK. LiZ. LiY. ZhangW. HanX. Long Noncoding RNA Taurine-upregulated gene 1 promotes cell proliferation and invasion in gastric cancer via negatively modulating miRNA-145-5p.Oncol. Res.201725578979810.3727/096504016X14783677992682 27983921
    [Google Scholar]
  88. ZhangM. HuangS. LongD. MiR-381 inhibits migration and invasion in human gastric carcinoma through downregulatedting SOX4.Oncol. Lett.20171433760376610.3892/ol.2017.6637 28927144
    [Google Scholar]
  89. OuC. LiG. Long non-coding RNA TUG1: A novel therapeutic target in small cell lung cancer.J. Thorac. Dis.201797E644E64510.21037/jtd.2017.06.94 28840034
    [Google Scholar]
  90. LiuH. WangS.S. GuanJ.Z. QinH.F. Regulatory effect and mechanism of the long non-coding RNA TUG1 on the proliferation, apoptosis, and migration of lung cancer cells.Asian J. Surg.20224561338134010.1016/j.asjsur.2022.02.011 35249784
    [Google Scholar]
  91. NiuY. MaF. HuangW. Long non-coding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2.Mol. Cancer2017161510.1186/s12943‑016‑0575‑6 28069000
    [Google Scholar]
  92. LiK. NiuH. WangY. LncRNA TUG1 contributes to the tumorigenesis of lung adenocarcinoma by regulating miR-138-5p-HIF1A axis.Int. J. Immunopathol. Pharmacol.20213510.1177/20587384211048265 34608813
    [Google Scholar]
  93. ShenghuGuo Long non-coding RNA TUG1 enhances chemosensitivity in non-small cell lung cancer by impairing microRNA-221-dependent PTEN inhibition.AGING2019111875537569
    [Google Scholar]
  94. LinP.C. HuangH.D. ChangC.C. Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2.BMC Cancer201616158310.1186/s12885‑016‑2569‑6 27485439
    [Google Scholar]
  95. ZhangE. YinD. SunM. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression.Cell Death Dis.201455e124310.1038/cddis.2014.201 24853421
    [Google Scholar]
  96. Ghafouri-FardS. Shirvani-FarsaniZ. HussenB.M. TaheriM. The critical roles of lncRNAs in the development of osteosarcoma.Biomed. Pharmacother.202113511121710.1016/j.biopha.2021.111217 33433358
    [Google Scholar]
  97. WangLiang Long non-coding RNA TUG1 promotes colorectal cancer metastasis via EMT pathway.Oncotarget2016732517135171910.18632/oncotarget.10563
    [Google Scholar]
  98. LiL. LiuS. PengL. The identification and preliminary study of lncRNA TUG1 and its related genes in Hepatocellular Carcinoma.Arch. Med. Sci.20191861582159510.5114/aoms.2019.89707 36457956
    [Google Scholar]
  99. YuJ. WangY. PengS. The high expression of lncRNA TUG1 correlates with progressive tumor condition and less satisfying survival profiles in prostate cancer patients.Transl. Cancer Res.2019851817182510.21037/tcr.2019.08.33 35116932
    [Google Scholar]
  100. MaY. DiY. LiQ. LncRNAs as epigenetic regulators of epithelial to mesenchymal transition in pancreatic cancer.Discover Oncology20221316110.1007/s12672‑022‑00522‑0 35819532
    [Google Scholar]
  101. IlievR. KleinovaR. JuracekJ. Overexpression of long non-coding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer.Tumour Biol.20163710133851339010.1007/s13277‑016‑5177‑9 27460088
    [Google Scholar]
  102. BaratiehZ. Aberrant expression of PlncRNA-1 and TUG1: potential biomarkers for gastric cancer diagnosis and clinically monitoring cancer progression.Fut Medi201711210771090
    [Google Scholar]
  103. RicciutiB. MencaroniC. PaglialungaL. Long noncoding RNAs: new insights into non-small cell lung cancer biology, diagnosis and therapy.Med. Oncol.20163321810.1007/s12032‑016‑0731‑2 26786153
    [Google Scholar]
  104. NilandC.N. MerryC.R. KhalilA.M. Emerging roles for long non-coding RNAs in cancer and neurological disorders.Front. Genet.201232510.3389/fgene.2012.00025 22375145
    [Google Scholar]
  105. YoonJ.H. AbdelmohsenK. GorospeM. Functional interactions among microRNAs and long noncoding RNAs.Semin. Cell Dev. Biol.20143491410.1016/j.semcdb.2014.05.015 24965208
    [Google Scholar]
  106. ZhuJ. ShiH. LiuH. WangX. LiF. Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis.Oncotarget2017839652536526410.18632/oncotarget.18224 29029428
    [Google Scholar]
  107. KhalilA.M. GuttmanM. HuarteM. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression.Proc. Natl. Acad. Sci.200910628116671167210.1073/pnas.0904715106 19571010
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240298173240427042624
Loading
/content/journals/cmm/10.2174/0115665240298173240427042624
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): human cancer; lncRNA; molecular mechanisms; ncRNA; therapeutic target; TUG1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test