Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

The human leukocyte antigen (HLA, also known as the major histocompatibility complex or MHC) system, is responsible for immune monitoring of the intracellular proteome of all nucleated cells. The presentation of antigen peptides separates malignant or infected cells from their healthy counterparts and forms aberrant cells tagged as the foundation for identification. Therefore, peptide-MHC molecules can give potential diagnostic targets for cancer or infection. TCR-like antibodies recognize specific peptides that bind to MHC molecules, allowing them to target Such inaccessible cytoplasmic or nuclear tumors or virus-associated antigens. It binds to MHC, presenting peptides found on the surface of target cells. These antibodies have shown promising clinical applications in diagnosing and imaging cancer and infected cells. This review presents the current situation of TCR-like antibodies and its prospects for application in the field of intracellular antigen diagnostics. It also lists the potential application targets of TCR, like antibodies in various disease diagnoses, providing valuable information for developing diagnostic reagents and selecting targets in the future.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240297179240514030532
2024-05-27
2025-10-26
Loading full text...

Full text loading...

References

  1. KlebanoffC.A. ChandranS.S. BakerB.M. QuezadaS.A. RibasA. T cell receptor therapeutics: Immunological targeting of the intracellular cancer proteome.Nat. Rev. Drug Discov.20232212996101710.1038/s41573‑023‑00809‑z 37891435
    [Google Scholar]
  2. CorseE. GottschalkR.A. AllisonJ.P. Strength of TCR-peptide/MHC interactions and in vivo T cell responses.J. Immunol.201118695039504510.4049/jimmunol.1003650 21505216
    [Google Scholar]
  3. RockK.L. ShenL. Cross‐presentation: Underlying mechanisms and role in immune surveillance.Immunol. Rev.2005207116618310.1111/j.0105‑2896.2005.00301.x 16181335
    [Google Scholar]
  4. Rodríguez-PintoD. B cells as antigen presenting cells.Cell. Immunol.20052382677510.1016/j.cellimm.2006.02.005 16574086
    [Google Scholar]
  5. NeefjesJ. JongsmaM.L.M. PaulP. BakkeO. Towards a systems understanding of MHC class I and MHC class II antigen presentation.Nat. Rev. Immunol.2011111282383610.1038/nri3084 22076556
    [Google Scholar]
  6. BlumJ.S. WearschP.A. CresswellP. Pathways of antigen processing.Annu. Rev. Immunol.201331144347310.1146/annurev‑immunol‑032712‑095910 23298205
    [Google Scholar]
  7. MareevaT. Martinez-HackertE. SykulevY. How a T cell receptor-like antibody recognizes major histocompatibility complex-bound peptide.J. Biol. Chem.200828343290532905910.1074/jbc.M804996200 18703505
    [Google Scholar]
  8. FenisA. DemariaO. GauthierL. VivierE. Narni-MancinelliE. New immune cell engagers for cancer immunotherapy.Nat. Rev. Immunol.202411610.1038/s41577‑023‑00982‑7 38273127
    [Google Scholar]
  9. HøydahlL.S. FrickR. SandlieI. LøsetG.Å. Targeting the MHC ligandome by use of TCR-like antibodies.Antibodies (Basel)2019823210.3390/antib8020032 31544838
    [Google Scholar]
  10. RaybouldM.I. NissleyD.A. KumarS. DeaneC.M. Computationally profiling peptide: MHC recognition by T-cell receptors and T-cell receptor-mimetic antibodies.BioRxiv2022
    [Google Scholar]
  11. Stewart-JonesG. WadleA. HombachA. Rational development of high-affinity T-cell receptor-like antibodies.Proc. Natl. Acad. Sci. USA2009106145784578810.1073/pnas.0901425106 19307587
    [Google Scholar]
  12. HwangM.S. MillerM.S. ThirawatananondP. Structural engineering of chimeric antigen receptors targeting HLA-restricted neoantigens.Nat. Commun.2021121527110.1038/s41467‑021‑25605‑4 34489470
    [Google Scholar]
  13. HsiueE.H.C. WrightK.M. DouglassJ. Targeting a neoantigen derived from a common TP53 mutation.Science20213716533eabc869710.1126/science.abc8697 33649166
    [Google Scholar]
  14. DahanR. ReiterY. T-cell-receptor-like antibodies – generation, function and applications.Expert Rev. Mol. Med.201214e610.1017/erm.2012.2 22361332
    [Google Scholar]
  15. HoogenboomH.R. Selecting and screening recombinant antibody libraries.Nat. Biotechnol.20052391105111610.1038/nbt1126 16151404
    [Google Scholar]
  16. WeidanzJ.A. HawkinsO. VermaB. HildebrandW.H. TCR-like biomolecules target peptide/MHC Class I complexes on the surface of infected and cancerous cells.Int. Rev. Immunol.2011305-632834010.3109/08830185.2011.604880 22053972
    [Google Scholar]
  17. TrenevskaI. LiD. BanhamA.H. Therapeutic antibodies against intracellular tumor antigens.Front. Immunol.20178100110.3389/fimmu.2017.01001 28868054
    [Google Scholar]
  18. SantichB.H. LiuH. LiuC. CheungN-K.V. Generation of TCR-like antibodies using phage display.Methods Mol. Biol.20151348191294
    [Google Scholar]
  19. ZhangT. WangZ. Monoclonal antibody development for cancer treatment using the phage display library platform.Biologics202441557410.3390/biologics4010005
    [Google Scholar]
  20. FrançaR.K.A. StudartI.C. BezerraM.R.L. Progress on phage display technology: Tailoring antibodies for cancer immunotherapy.Viruses2023159190310.3390/v15091903 37766309
    [Google Scholar]
  21. LiY. YangK. KongD. YeJ. Advances in phage display based nano immunosensors for cholera toxin.Front. Immunol.202314122439710.3389/fimmu.2023.1224397 37781379
    [Google Scholar]
  22. NguyenH. Expanding the Scope of mRNA display by Chemical Approaches2023
    [Google Scholar]
  23. PedrioliA. OxeniusA. Single B cell technologies for monoclonal antibody discovery.Trends Immunol.202142121143115810.1016/j.it.2021.10.008 34743921
    [Google Scholar]
  24. BashirS. PaeshuyseJ. Construction of antibody phage libraries and their application in veterinary immunovirology.Antibodies (Basel)2020922110.3390/antib9020021 32503103
    [Google Scholar]
  25. Chá-CháH.C.S. Application of phage display technology on the diagnosis of infectious diseases: Discovery of Zika-specific peptides.PortugalUniversidade da Madeira2021
    [Google Scholar]
  26. AndréA.S. MoutinhoI. DiasJ.N.R. Aires-da-SilvaF. In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties.Front. Microbiol.20221396212410.3389/fmicb.2022.962124 36225354
    [Google Scholar]
  27. WinterG. GriffithsA.D. HawkinsR.E. HoogenboomH.R. Making antibodies by phage display technology.Annu. Rev. Immunol.199412143345510.1146/annurev.iy.12.040194.002245 8011287
    [Google Scholar]
  28. SilvaM.T. Silva PestanaN.T. The in vivo extracellular life of facultative intracellular bacterial parasites: Role in pathogenesis.Immunobiology2013218332533710.1016/j.imbio.2012.05.011 22795971
    [Google Scholar]
  29. DraméM. BuchrieserC. EscollP. Danger-associated metabolic modifications during bacterial infection of macrophages.Int. Immunol.202032747548310.1093/intimm/dxaa035 32441740
    [Google Scholar]
  30. ThakurA. MikkelsenH. JungersenG. Intracellular pathogens: Host immunity and microbial persistence strategies.J. Immunol. Res.20192019135654047510.1155/2019/1356540
    [Google Scholar]
  31. MosaadY.M. Clinical role of human leukocyte antigen in health and disease.Scand. J. Immunol.201582428330610.1111/sji.12329 26099424
    [Google Scholar]
  32. KostyuD.D. HannickL.I. TraweekJ.L. GhanayemM. HeilpernD. DawsonD.V. HLA class I polymorphism: Structure and function and still questions.Hum. Immunol.199757111810.1016/S0198‑8859(97)00175‑4 9438190
    [Google Scholar]
  33. SidneyJ. PetersB. FrahmN. BranderC. SetteA. HLA class I supertypes: A revised and updated classification.BMC Immunol.20089111510.1186/1471‑2172‑9‑1 18211710
    [Google Scholar]
  34. WyattR.C. LanzoniG. RussellM.A. GerlingI. RichardsonS.J. What the HLA-I!—Classical and non-classical HLA class I and their potential roles in type 1 diabetes.Curr. Diab. Rep.2019191215910.1007/s11892‑019‑1245‑z 31820163
    [Google Scholar]
  35. ChooS.Y. The HLA system: Genetics, immunology, clinical testing, and clinical implications.Yonsei Med. J.2007481112310.3349/ymj.2007.48.1.11 17326240
    [Google Scholar]
  36. OrtegaP.A. Silva-MirandaM. Torres-LariosA. Selection of a single domain antibody, specific for an HLA-bound epitope of the mycobacterial Ag85B antigen.Front. Immunol.20201157781510.3389/fimmu.2020.577815 33117380
    [Google Scholar]
  37. DassS.A. NorazmiM.N. AcostaA. SarmientoM.E. TyeG.J. TCR-like domain antibody against Mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A*11 and HLA-A*24.Int. J. Biol. Macromol.202015530531410.1016/j.ijbiomac.2020.03.229 32240734
    [Google Scholar]
  38. SattentauQ. Avoiding the void: Cell-to-cell spread of human viruses.Nat. Rev. Microbiol.200861181582610.1038/nrmicro1972 18923409
    [Google Scholar]
  39. RyuW-S. Molecular Virology of Human Pathogenic Viruses.AmsterdamElsevier201731
    [Google Scholar]
  40. PeiY. RobertsonE.S. The central role of the ubiquitin–proteasome system in EBV-mediated oncogenesis.Cancers (Basel)202214361110.3390/cancers14030611 35158879
    [Google Scholar]
  41. InobeT. MatouschekA. Paradigms of protein degradation by the proteasome.Curr. Opin. Struct. Biol.20142415616410.1016/j.sbi.2014.02.002 24632559
    [Google Scholar]
  42. TanakaK. The proteasome: Overview of structure and functions.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.2009851123610.2183/pjab.85.12 19145068
    [Google Scholar]
  43. LeeS.Y. KoD.H. SonM.J. KimJ.A. JungK. KimY.S. Affinity maturation of a t-cell receptor-like antibody specific for a cytomegalovirus pp65-derived peptide presented by HLA-A*02:01.Int. J. Mol. Sci.2021225234910.3390/ijms22052349 33652936
    [Google Scholar]
  44. YangS. ZhaoM. JiaS. Macrophage: Key player in the pathogenesis of autoimmune diseases.Front. Immunol.202314108031010.3389/fimmu.2023.1080310 36865559
    [Google Scholar]
  45. BachmannM.F. KopfM. On the role of the innate immunity in autoimmune disease.J. Exp. Med.200119312F47F5010.1084/jem.193.12.F47 11413199
    [Google Scholar]
  46. JörgS. GrohmeD.A. ErzlerM. Environmental factors in autoimmune diseases and their role in multiple sclerosis.Cell. Mol. Life Sci.201673244611462210.1007/s00018‑016‑2311‑1 27491297
    [Google Scholar]
  47. GoodnowC.C. Multistep pathogenesis of autoimmune disease.Cell20071301253510.1016/j.cell.2007.06.033 17632054
    [Google Scholar]
  48. WeisslerK.A. CatonA.J. The role of T‐cell receptor recognition of peptide: MHC complexes in the formation and activity of Foxp3 + regulatory T cells.Immunol. Rev.20142591112210.1111/imr.12177 24712456
    [Google Scholar]
  49. De JongJ.M.H. SchuurhuisD.H. Ioan-FacsinayA. Dendritic cells, but not macrophages or B cells, activate major histocompatibility complex class II‐restricted CD4 + T cells upon immune‐complex uptake in vivo.Immunology2006119449950610.1111/j.1365‑2567.2006.02464.x 16995881
    [Google Scholar]
  50. GovermanJ. Autoimmune T cell responses in the central nervous system.Nat. Rev. Immunol.20099639340710.1038/nri2550 19444307
    [Google Scholar]
  51. WieberK. ZimmerC.L. HertlM. Detection of autoreactive CD4+ T cells by MHC class II multimers in HLA-linked human autoimmune diseases.J. Clin. Invest.20211319e14867410.1172/JCI148674 33938450
    [Google Scholar]
  52. SakowskaJ ArcimowiczŁ JankowiakM Autoimmunity and cancer—two sides of the same coin.Front. Immunol.20221379323410.3389/fimmu.2022.793234 35634292
    [Google Scholar]
  53. HeQ. JiangX. ZhouX. WengJ. Targeting cancers through TCR-peptide/MHC interactions.J. Hematol. Oncol.201912113910.1186/s13045‑019‑0812‑8 31852498
    [Google Scholar]
  54. BaoL. BoX.C. CaoH.W. QianC. WangZ. LiB. Engineered T cells and their therapeutic applications in autoimmune diseases.Zool. Res.202243215016510.24272/j.issn.2095‑8137.2021.363 35008131
    [Google Scholar]
  55. PisetskyD.S. Pathogenesis of autoimmune disease.Nat. Rev. Nephrol.202319850952410.1038/s41581‑023‑00720‑1 37165096
    [Google Scholar]
  56. StaruszkiewiczM. Pituch-NoworolskaA. SkoczenS. Uncommon types of autoantibodies – Detection and clinical associations.Autoimmun. Rev.202322310326310.1016/j.autrev.2022.103263 36563770
    [Google Scholar]
  57. LebwohlB. SandersD.S. GreenP.H.R. Coeliac disease.Lancet201839110115708110.1016/S0140‑6736(17)31796‑8 28760445
    [Google Scholar]
  58. JiangW. BirtleyJ.R. HungS.C. In vivo clonal expansion and phenotypes of hypocretin-specific CD4+ T cells in narcolepsy patients and controls.Nat. Commun.2019101524710.1038/s41467‑019‑13234‑x 31748512
    [Google Scholar]
  59. MartinR. SospedraM. EiermannT. OlssonT. Multiple sclerosis: Doubling down on MHC.Trends Genet.202137978479710.1016/j.tig.2021.04.012 34006391
    [Google Scholar]
  60. SteenbakkersP.G.A. BaetenD. RoversE. Localization of MHC class II/human cartilage glycoprotein-39 complexes in synovia of Rheumatoid arthritis patients using complex-specific monoclonal antibodies.J. Immunol.2003170115719572710.4049/jimmunol.170.11.5719 12759455
    [Google Scholar]
  61. IshinaI.A. ZakharovaM.Y. KurbatskaiaI.N. MamedovA.E. BelogurovA.A.Jr GabibovA.G. MHC class II presentation in autoimmunity.Cells202312231410.3390/cells12020314 36672249
    [Google Scholar]
  62. LiY. JiangW. MellinsE.D. TCR-like antibodies targeting autoantigen-mhc complexes: A mini-review.Front. Immunol.20221396843210.3389/fimmu.2022.968432 35967436
    [Google Scholar]
  63. FrickR. HøydahlL.S. PetersenJ. A high-affinity human TCR-like antibody detects celiac disease gluten peptide–MHC complexes and inhibits T cell activation.Sci. Immunol.2021662eabg492510.1126/sciimmunol.abg4925 34417258
    [Google Scholar]
  64. SabarwalA. KumarK. SinghR.P. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders.Environ. Toxicol. Pharmacol.20186310311410.1016/j.etap.2018.08.018 30199797
    [Google Scholar]
  65. WieczorekM. AbualrousE.T. StichtJ. Major histocompatibility complex (MHC) class I and MHC class II proteins: Conformational plasticity in antigen presentation.Front. Immunol.2017829210.3389/fimmu.2017.00292 28367149
    [Google Scholar]
  66. CohenM. ReiterY. T-cell receptor-like antibodies: Targeting the intracellular proteome therapeutic potential and clinical applications.Antibodies (Basel)20132451753410.3390/antib2030517
    [Google Scholar]
  67. JonesH.F. MolviZ. KlattM.G. DaoT. ScheinbergD.A. Empirical and rational design of T cell receptor-based immunotherapies.Front. Immunol.20211158538510.3389/fimmu.2020.585385 33569049
    [Google Scholar]
  68. LaiJ. ChooJ.A.L. TanW.J. TCR–like antibodies mediate complement and antibody-dependent cellular cytotoxicity against Epstein-Barr virus–transformed B lymphoblastoid cells expressing different HLA-A*02 microvariants.Sci. Rep.201771992310.1038/s41598‑017‑10265‑6 28855662
    [Google Scholar]
  69. AhmedM. Lopez-AlbaiteroA. PankovD. TCR-mimic bispecific antibodies targeting LMP2A show potent activity against EBV malignancies.JCI Insight201834e9780510.1172/jci.insight.97805 29467338
    [Google Scholar]
  70. GuoY. LeiK. TangL. Neoantigen vaccine delivery for personalized anticancer immunotherapy.Front. Immunol.20189149910.3389/fimmu.2018.01499 30013560
    [Google Scholar]
  71. LiuX. XuY. XiongW. Development of a TCR-like antibody and chimeric antigen receptor against NY-ESO-1/HLA-A2 for cancer immunotherapy.J. Immunother. Cancer2022103e00403510.1136/jitc‑2021‑004035 35338087
    [Google Scholar]
  72. HeldG. MatsuoM. EpelM. Dissecting cytotoxic T cell responses towards the NY‐ESO‐1 protein by peptide/MHC‐specific antibody fragments.Eur. J. Immunol.200434102919292910.1002/eji.200425297 15368308
    [Google Scholar]
  73. SaeedM. SchootenE. van BrakelM. ColeD.K. Ten HagenT.L.M. DebetsR. T cells expressing a TCR-like antibody selected against the heteroclitic variant of a shared MAGE-A epitope do not recognise the cognate epitope.Cancers (Basel)2020125125510.3390/cancers12051255 32429338
    [Google Scholar]
  74. RaskinS. Van PeltS. TonerK. Novel TCR-like CAR-T cells targeting an HLA*0201-restricted SSX2 epitope display strong activity against acute myeloid leukemia.Mol. Ther. Methods Clin. Dev.20212329630610.1016/j.omtm.2021.09.008 34729377
    [Google Scholar]
  75. HewittE.W. The MHC class I antigen presentation pathway: Strategies for viral immune evasion.Immunology2003110216316910.1046/j.1365‑2567.2003.01738.x 14511229
    [Google Scholar]
  76. HeQ. LiuZ. LiuZ. LaiY. ZhouX. WengJ. TCR-like antibodies in cancer immunotherapy.J. Hematol. Oncol.20191219910.1186/s13045‑019‑0788‑4 31521180
    [Google Scholar]
  77. GascoigneN.R.J. TCR-like antibody and GITR signaling lead to effective CAR-T against solid tumor.Mol. Ther.202432356957110.1016/j.ymthe.2024.02.014 38382528
    [Google Scholar]
  78. MeyerM. ParpoulasC. BarthélémyT. MediMer: A versatile do-it-yourself peptide-receptive MHC class I multimer platform for tumor neoantigen-specific T cell detection.Front. Immunol.202414129456510.3389/fimmu.2023.1294565 38239352
    [Google Scholar]
  79. DolanB.P. QuantitatingM.H.C. Class I ligand production and presentation using TCR-like antibodies Antigen Processing.New York CitySpringer2019149157
    [Google Scholar]
  80. ChanierT. ChamesP. Nanobody engineering: Toward next generation immunotherapies and immunoimaging of cancer.Antibodies (Basel)2019811310.3390/antib8010013 31544819
    [Google Scholar]
  81. WeiW. YounisM.H. LanX. LiuJ. CaiW. Nanobody theranostics on the horizon.J. Nucl. Med.202263101475147910.2967/jnumed.122.263907
    [Google Scholar]
  82. Van ElssenC.H.M.J. RashidianM. VrbanacV. Noninvasive imaging of human immune responses in a human xenograft model of graft-versus-host disease.J. Nucl. Med.20175861003100810.2967/jnumed.116.186007 28209904
    [Google Scholar]
  83. RashidianM. KeliherE.J. DouganM. Use of 18F-2-fluorodeoxyglucose to label antibody fragments for immuno-positron emission tomography of pancreatic cancer.ACS Cent. Sci.20151314214710.1021/acscentsci.5b00121 26955657
    [Google Scholar]
  84. OrenR. Hod-MarcoM. Haus-CohenM. Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds.J. Immunol.2014193115733574310.4049/jimmunol.1301769 25362181
    [Google Scholar]
  85. KamarádováK. HrochováK. SalavecM. BeladaD. T-cell receptor antibodies expression in benign and malignant cutaneous lymphoid infiltrates in comparison with T-cell receptor gene rearrangement and its diagnostic utility in borderline cases.Pathol. Res. Pract.20202161215327910.1016/j.prp.2020.153279 33186884
    [Google Scholar]
  86. HouX. WangG. FanW. T-cell receptor repertoires as potential diagnostic markers for patients with COVID-19.Int. J. Infect. Dis.202111330831710.1016/j.ijid.2021.10.033 34688948
    [Google Scholar]
  87. de MassonA. O’MalleyJ.T. ElcoC.P. High-throughput sequencing of the T cell receptor β gene identifies aggressive early-stage mycosis fungoides.Sci. Transl. Med.201810440eaar589410.1126/scitranslmed.aar5894 29743350
    [Google Scholar]
  88. BardiM.S. JarduliL.R. JorgeA.J. HLA-A, B and DRB1 allele and haplotype frequencies in volunteer bone marrow donors from the north of Parana State.Rev. Bras. Hematol. Hemoter.2011341253010.5581/1516‑8484.20120010 23049380
    [Google Scholar]
  89. NovelliA. AndreaniM. BiancolellaM. HLA allele frequencies and susceptibility to COVID ‐19 in a group of 99 Italian patients.HLA202096561061410.1111/tan.14047 32827207
    [Google Scholar]
  90. DuanZ. HoM. T-Cell receptor mimic antibodies for cancer immunotherapy.Mol. Cancer Ther.20212091533154110.1158/1535‑7163.MCT‑21‑0115 34172530
    [Google Scholar]
  91. YangX. XieS. YangX. Opportunities and challenges for antibodies against intracellular antigens.Theranostics20199257792780610.7150/thno.35486 31695801
    [Google Scholar]
  92. del ValleA. Acosta-RiveroN. LabordeR.J. Sticholysin II shows similar immunostimulatory properties to LLO stimulating dendritic cells and MHC-I restricted T cell responses of heterologous antigen.Toxicon2021200384710.1016/j.toxicon.2021.06.020 34237340
    [Google Scholar]
  93. ModiT. GervaisD. SmithS. Characterization of the UK anthrax vaccine and human immunogenicity.Hum. Vaccin. Immunother.202117374775810.1080/21645515.2020.1799668 32897798
    [Google Scholar]
  94. TakayaA. YamamotoT. TokoyodaK. Humoral Immunity vs. Salmonella.Front. Immunol.202010315510.3389/fimmu.2019.03155 32038650
    [Google Scholar]
  95. HarmsJ.S. KhanM. HallC. Brucella peptide cross-reactive major histocompatibility complex class I presentation activates SIINFEKL-specific T cell receptor-expressing T cells.Infect. Immun.2018867e00281e1810.1128/IAI.00281‑18 29735518
    [Google Scholar]
  96. BernhardtA.L. ZeunJ. MarecekM. Influence of DM-sensitivity on immunogenicity of MHC class II restricted antigens.J. Immunother. Cancer202197e00240110.1136/jitc‑2021‑002401 34266882
    [Google Scholar]
  97. KimS.J. SinJ.I. KimM.J. CD8+ T cells directed against a peptide epitope derived from peptidoglycan-associated lipoprotein of Legionella pneumophila confer disease protection.Front. Immunol.20201160441310.3389/fimmu.2020.604413 33363545
    [Google Scholar]
  98. DassS.A. NorazmiM.N. DominguezA.A. MiguelM.E.S.G.S. TyeG.J. Generation of a T cell receptor (TCR)-like single domain antibody (sDAb) against a Mycobacterium Tuberculosis (Mtb) heat shock protein (HSP) 16kDa antigen presented by Human Leukocyte Antigen (HLA)-A*02.Mol. Immunol.201810118919610.1016/j.molimm.2018.07.001 30007228
    [Google Scholar]
  99. BewarderM. HeldG. ThurnerL. Characterization of an HLA-restricted and human cytomegalovirus-specific antibody repertoire with therapeutic potential.Cancer Immunol. Immunother.20206981535154810.1007/s00262‑020‑02564‑1 32300857
    [Google Scholar]
  100. DragonA.C. ZimmermannK. NerreterT. CAR-T cells and TRUCKs that recognize an EBNA-3C-derived epitope presented on HLA-B*35 control Epstein-Barr virus-associated lymphoproliferation.J. Immunother. Cancer202082e00073610.1136/jitc‑2020‑000736 33127653
    [Google Scholar]
  101. GhaffariS. Upchurch-AngeK. GimlinS. A single-domain TCR-like antibody selective for the Qa-1b/Qdm peptide complex enhances tumoricidal activity of NK cells via blocking the NKG2A immune checkpoint.J. Immunol.202220892246225510.4049/jimmunol.2100790 35418467
    [Google Scholar]
  102. MatsumotoY. KishidaK. MatsumotoM. A TCR-like antibody against a proinsulin-containing fusion peptide ameliorates type 1 diabetes in NOD mice.Biochem. Biophys. Res. Commun.202153468068610.1016/j.bbrc.2020.11.019 33208230
    [Google Scholar]
  103. BakerR.L. RihanekM. HohensteinA.C. Hybrid insulin peptides are autoantigens in type 1 diabetes.Diabetes20196891830184010.2337/db19‑0128 31175101
    [Google Scholar]
  104. DaoT. MunS. KorontsvitT. A TCR mimic monoclonal antibody for the HPV-16 E7-epitope p11-19/HLA-A*02:01 complex.PLoS One2022173e026553410.1371/journal.pone.0265534 35298559
    [Google Scholar]
  105. ChangA.Y. DaoT. GejmanR.S. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens.J. Clin. Invest.201712772705271810.1172/JCI92335 28628042
    [Google Scholar]
  106. LiuH. XuY. XiangJ. Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver cancer.J Clin Invest Clin Cancer Res2017232478488
    [Google Scholar]
  107. LaiJ. WangY. WuS.S. Elimination of melanoma by sortase A-generated TCR-like antibody-drug conjugates (TL-ADCs) targeting intracellular melanoma antigen MART-1.Biomaterials201817815816910.1016/j.biomaterials.2018.06.017 29933102
    [Google Scholar]
  108. WangS.S. LuongK. GraceyF.M. A novel peptide-MHC targeted chimeric antigen receptor T Cell forms a T Cell-like immune synapse.Biomedicines2021912187510.3390/biomedicines9121875 34944696
    [Google Scholar]
  109. LiuY. LiuG. WangJ. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors.Sci. Transl. Med.202113586eabb519110.1126/scitranslmed.abb5191 33762437
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240297179240514030532
Loading
/content/journals/cmm/10.2174/0115665240297179240514030532
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antigen; cancer cell; diagnostics; MHC; TCR - like antibody
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test