Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

MicroRNAs (miRNAs) have emerged as crucial regulators of gene expression, playing pivotal roles in various biological processes, including cancer development and progression. Among them, miR-125b has garnered significant attention due to its multifaceted functional roles in human hepatocellular carcinoma (HCC). Extensive research has revealed that miR-125b plays a dual role in HCC, acting as both a tumor suppressor and an oncogene, depending on the context. As a tumor suppressor, miR-125b inhibits HCC by targeting key oncogenic pathways and genes involved in cell proliferation, migration, invasion, and angiogenesis. Its downregulation in HCC is frequently observed and correlates with aggressive tumor characteristics and poor prognosis. Conversely, miR-125b can also function as an oncogene in specific HCC subtypes or under certain conditions. It has been shown to promote HCC growth, metastasis, and therapeutic resistance by targeting tumor suppressor genes, modulating the epithelial-mesenchymal transition (EMT) process, and enhancing cancer stem cell-like properties. The upregulation of miR-125b in HCC has been associated with advanced disease stages and unfavorable clinical outcomes. Furthermore, a complex network of regulatory mechanisms influences the dysregulation of miR-125b expression in HCC. Understanding these regulatory mechanisms is crucial for deciphering the precise functional roles of miR-125b in HCC and exploring its potential as a diagnostic biomarker or therapeutic target. In the current review study, we comprehensively elucidated the diverse functional roles of miR-125b in HCC, providing a comprehensive overview of its regulatory mechanisms and impact on key cellular processes involved in HCC progression.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240304247240529074123
2024-06-07
2025-10-26
Loading full text...

Full text loading...

References

  1. SayinerM. GolabiP. YounossiZ.M. Disease burden of hepatocellular carcinoma: A global perspective.Dig. Dis. Sci.201964491091710.1007/s10620‑019‑05537‑2 30835028
    [Google Scholar]
  2. FengM. PanY. KongR. ShuS. Therapy of primary liver cancer.Innovation20201210003210.1016/j.xinn.2020.100032 32914142
    [Google Scholar]
  3. CampbellC. WangT. McNaughtonA.L. BarnesE. MatthewsP.C. Risk factors for the development of hepatocellular carcinoma (HCC) in chronic hepatitis B virus (HBV) infection: A systematic review and meta‐analysis.J. Viral Hepat.202128349350710.1111/jvh.13452 33305479
    [Google Scholar]
  4. ShenH. YuH. LiQ. Hepatocyte-derived VEGFA accelerates the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma via activating hepatic stellate cells.Acta Pharmacol. Sin.202243112917292810.1038/s41401‑022‑00907‑5 35508720
    [Google Scholar]
  5. TanJ.L. Sidhu-BrarS. WoodmanR. ChinnarathaM.A. Regular aspirin use is associated with a reduced risk of hepatocellular carcinoma (HCC) in chronic liver disease: A systematic review and meta-analysis.J. Gastrointest. Cancer202354232533110.1007/s12029‑022‑00842‑y 35717551
    [Google Scholar]
  6. KomiyamaS. YamadaT. TakemuraN. KokudoN. HaseK. KawamuraY.I. Profiling of tumour-associated microbiota in human hepatocellular carcinoma.Sci. Rep.20211111058910.1038/s41598‑021‑89963‑1 34012007
    [Google Scholar]
  7. KurmaK. ManchesO. ChuffartF. DEN-induced rat model reproduces key features of human hepatocellular carcinoma.Cancers20211319498110.3390/cancers13194981 34638465
    [Google Scholar]
  8. OgunwobiO.O. HarricharranT. HuamanJ. Mechanisms of hepatocellular carcinoma progression.World J. Gastroenterol.201925192279229310.3748/wjg.v25.i19.2279 31148900
    [Google Scholar]
  9. KoulourisA. TsagkarisC. SpyrouV. PappaE. TroullinouA. NikolaouM. Hepatocellular carcinoma: An overview of the changing landscape of treatment options.J. Hepatocell. Carcinoma2021838740110.2147/JHC.S300182 34012929
    [Google Scholar]
  10. Sasaki-TanakaR. RayR. MoriyamaM. RayR.B. KandaT. Molecular changes in relation to alcohol consumption and hepatocellular carcinoma.Int. J. Mol. Sci.20222317967910.3390/ijms23179679 36077080
    [Google Scholar]
  11. WenndtA. MutuaF. GraceD. ThomasL.F. LambertiniE. Quantitative assessment of aflatoxin exposure and hepatocellular carcinoma (HCC) risk associated with consumption of select Nigerian staple foods.Front. Sustain. Food Syst.20237112854010.3389/fsufs.2023.1128540
    [Google Scholar]
  12. ZunicaE.R.M. HeintzE.C. AxelrodC.L. KirwanJ.P. Obesity Management in the primary prevention of hepatocellular carcinoma.Cancers20221416405110.3390/cancers14164051 36011044
    [Google Scholar]
  13. ShinH.S. JunB.G. YiS.W. Impact of diabetes, obesity, and dyslipidemia on the risk of hepatocellular carcinoma in patients with chronic liver diseases.Clin. Mol. Hepatol.202228477378910.3350/cmh.2021.0383 35934813
    [Google Scholar]
  14. YanC. NiuY. MaL. TianL. MaJ. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma.J. Transl. Med.202220145210.1186/s12967‑022‑03630‑1 36195876
    [Google Scholar]
  15. TanD.J.H. NgC.H. LinS.Y. Clinical characteristics, surveillance, treatment allocation, and outcomes of non-alcoholic fatty liver disease-related hepatocellular carcinoma: A systematic review and meta-analysis.Lancet Oncol.202223452153010.1016/S1470‑2045(22)00078‑X 35255263
    [Google Scholar]
  16. KimD.H. HongS.B. ChoiS.H. Surveillance failure in ultrasound for hepatocellular carcinoma: A systematic review and meta-analysis.Gut202271121221310.1136/gutjnl‑2020‑323615 33649047
    [Google Scholar]
  17. WangL. WuM. LiR. XuX. ZhuC. FengX. MVI-Mind: A novel deep-learning strategy using computed tomography (CT)-based radiomics for end-to-end high efficiency prediction of microvascular invasion in hepatocellular carcinoma.Cancers20221412295610.3390/cancers14122956 35740620
    [Google Scholar]
  18. ParkH.J. KimS.Y. SingalA.G. Abbreviated magnetic resonance imaging vs ultrasound for surveillance of hepatocellular carcinoma in high‐risk patients.Liver Int.20224292080209210.1111/liv.15110 34817921
    [Google Scholar]
  19. HanifH. AliM.J. SusheelaA.T. Update on the applications and limitations of alpha-fetoprotein for hepatocellular carcinoma.World J. Gastroenterol.202228221622910.3748/wjg.v28.i2.216 35110946
    [Google Scholar]
  20. SasZ. CendrowiczE. WeinhäuserI. RygielT.P. Tumor microenvironment of hepatocellular carcinoma: Challenges and opportunities for new treatment options.Int. J. Mol. Sci.2022237377810.3390/ijms23073778 35409139
    [Google Scholar]
  21. CostentinC. AudureauE. ParkY.N. ERS: A simple scoring system to predict early recurrence after surgical resection for hepatocellular carcinoma.Liver Int.202343112538254710.1111/liv.15683 37577984
    [Google Scholar]
  22. JiangC. SunX.D. QiuW. ChenY.G. SunD.W. LvG.Y. Conversion therapy in liver transplantation for hepatocellular carcinoma: What’s new in the era of molecular and immune therapy?Hepatobiliary Pancreat. Dis. Int.202322171310.1016/j.hbpd.2022.10.006 36825482
    [Google Scholar]
  23. DengM. LiS.H. GuoR.P. Recent advances in local thermal ablation therapy for hepatocellular carcinoma.Am. Surg.20238951966197310.1177/00031348211054532 34743609
    [Google Scholar]
  24. YuanG. LiuZ. WangW. Multifunctional nanoplatforms application in the transcatheter chemoembolization against hepatocellular carcinoma.J. Nanobiotechnology20232116810.1186/s12951‑023‑01820‑7 36849981
    [Google Scholar]
  25. TianB.W. YanL.J. DingZ.N. Early alpha-fetoprotein response predicts prognosis of immune checkpoint inhibitor and targeted therapy for hepatocellular carcinoma: A systematic review with meta-analysis.Expert Rev. Gastroenterol. Hepatol.2023171738310.1080/17474124.2022.2156859 36476076
    [Google Scholar]
  26. RimassaL. FinnR.S. SangroB. Combination immunotherapy for hepatocellular carcinoma.J. Hepatol.202379250651510.1016/j.jhep.2023.03.003 36933770
    [Google Scholar]
  27. FuX. YangY. ZhangD. Molecular mechanism of albumin in suppressing invasion and metastasis of hepatocellular carcinoma.Liver Int.202242369670910.1111/liv.15115 34854209
    [Google Scholar]
  28. FanX. SongZ. QinW. YuT. PengB. ShenY. Potential common molecular mechanisms between periodontitis and hepatocellular carcinoma: A bioinformatic analysis and validation.Cancer Genomics Proteomics202320660261610.21873/cgp.20409 37889061
    [Google Scholar]
  29. Al NoshokatyT. MesbahN. Abo-ElmattyD. AbulsoudA. Abdel-HamedA. Hepatocellular carcinoma pathogenesis: Epigenetics and relationship with cancer hallmarks.Rec Pharmac Biomed Sci20226113615710.21608/rpbs.2022.168918.1180
    [Google Scholar]
  30. Khashkhashi MoghadamS. BakhshinejadB. KhalafizadehA. Mahmud HussenB. BabashahS. Non‐coding RNA‐associated competitive endogenous RNA regulatory networks: Novel diagnostic and therapeutic opportunities for hepatocellular carcinoma.J. Cell. Mol. Med.202226228730510.1111/jcmm.17126 34907642
    [Google Scholar]
  31. TojjariA. SaeedA. SinghM. CavalcanteL. SahinI.H. SaeedA. A comprehensive review on cancer vaccines and vaccine strategies in hepatocellular carcinoma.Vaccines2023118135710.3390/vaccines11081357 37631925
    [Google Scholar]
  32. ChavdaV.P. BalarP.C. PatelS.B. Interventional nanotheranostics in hepatocellular carcinoma.Nanotheranostics20237212814110.7150/ntno.80120 36793354
    [Google Scholar]
  33. BooraS. SharmaV. KaushikS. BhupatirajuA.V. SinghS. KaushikS. Hepatitis B virus-induced hepatocellular carcinoma: A persistent global problem.Braz. J. Microbiol.202354267968910.1007/s42770‑023‑00970‑y 37059940
    [Google Scholar]
  34. ZhouK. LimT. DodgeJ.L. TerraultN.A. WilkensL.R. SetiawanV.W. Population‐attributable risk of modifiable lifestyle factors to hepatocellular carcinoma: The multi‐ethnic cohort.Aliment. Pharmacol. Ther.2023581899810.1111/apt.17523 37051717
    [Google Scholar]
  35. YangJ. YangZ. ZengX. YuS. GaoL. JiangY. Benefits and harms of screening for hepatocellular carcinoma in high-risk populations: Systematic review and meta-analysis.J. Natl. Canc. Cent.20233317518510.1016/j.jncc.2023.02.001
    [Google Scholar]
  36. WangZ. LiN. CaiP. ZhangC. CaoG. YinJ. Mechanism of HBx carcinogenesis interaction with non-coding RNA in hepatocellular carcinoma.Front. Oncol.202313124919810.3389/fonc.2023.1249198 37746253
    [Google Scholar]
  37. JesenkoT. BrezarS.K. CemazarM. Targeting Non-Coding RNAs for the development of novel hepatocellular carcinoma therapeutic approaches.Pharmaceutics2023154124910.3390/pharmaceutics15041249 37111734
    [Google Scholar]
  38. YangL. GuanY. LiuZ. Role of ferroptosis and its non-coding RNA regulation in hepatocellular carcinoma.Front. Pharmacol.202314117740510.3389/fphar.2023.1177405 37124203
    [Google Scholar]
  39. ZhangH. ZhangX. YuJ. Integrated analysis of altered lncRNA, circRNA, microRNA, and mRNA expression in hepatocellular carcinoma carrying TERT promoter mutations.J. Hepatocell. Carcinoma202291201121510.2147/JHC.S385026 36471741
    [Google Scholar]
  40. LinX. WangK. LuoC. YangM. WuJ. MicroRNA biosensors for early detection of hepatocellular carcinoma.Chemosensors202311950410.3390/chemosensors11090504
    [Google Scholar]
  41. RaniV. SengarR.S. Biogenesis and mechanisms of microRNA‐mediated gene regulation.Biotechnol. Bioeng.2022119368569210.1002/bit.28029 34979040
    [Google Scholar]
  42. YanJ. ZhongX. ZhaoY. WangX. Role and mechanism of miRNA in cardiac microvascular endothelial cells in cardiovascular diseases.Front. Cardiovasc. Med.202411135615210.3389/fcvm.2024.1356152 38545341
    [Google Scholar]
  43. ZhangP. WuW. ChenQ. ChenM. Non-Coding RNAs and their integrated networks.J. Integr. Bioinform.20191632019002710.1515/jib‑2019‑0027 31301674
    [Google Scholar]
  44. ZhuS.F. YuanW. DuY.L. WangB.L. Research progress of lncRNA and miRNA in hepatic ischemia-reperfusion injury.Hepatobiliary Pancreat. Dis. Int.2023221455310.1016/j.hbpd.2022.07.008 35934611
    [Google Scholar]
  45. PengB. ThengP.Y. LeM.T.N. Essential functions of miR‐125b in cancer.Cell Prolif.2021542e1291310.1111/cpr.12913 33332677
    [Google Scholar]
  46. TaoY.C. WangY.H. WangM.L. Upregulation of microRNA-125b-5p alleviates acute liver failure by regulating the Keap1/Nrf2/HO-1 pathway.Front. Immunol.20221398866810.3389/fimmu.2022.988668 36268033
    [Google Scholar]
  47. ViridianaC.A.A. ÁngelV.F.M. RuthR.E.G. MicroRNAs: Beyond post-transcriptional regulation of mRNAs.MicroRNA202110422923910.2174/2211536611666211228102045 34963441
    [Google Scholar]
  48. WangY. ZengG. JiangY. The emerging roles of miR-125b in cancers.Cancer Manag. Res.2020121079108810.2147/CMAR.S232388 32104088
    [Google Scholar]
  49. PiatopoulouD. AvgerisM. MarmarinosA. miR-125b predicts childhood acute lymphoblastic leukaemia poor response to BFM chemotherapy treatment.Br. J. Cancer2017117680181210.1038/bjc.2017.256 28787435
    [Google Scholar]
  50. ErginK. ÇetinkayaR. Regulation of microRNAs.Methods Mol. Biol.2022225713210.1007/978‑1‑0716‑1170‑8_1
    [Google Scholar]
  51. Bozgeyı̇kİ. miRNAs, cancer, and unconventional miRNA functions.Bull Biotechnol202341364110.51539/biotech.1239945
    [Google Scholar]
  52. ZhangX LiuF YangF MengZ ZengY. Selectivity of Exportin 5 binding to human precursor microRNAs.RNA Biol202118sup273073710.1080/15476286.2021.1984096 34592896
    [Google Scholar]
  53. LeeY.Y. LeeH. KimH. KimV.N. RohS.H. Structure of the human DICER–pre-miRNA complex in a dicing state.Nature2023615795133133810.1038/s41586‑023‑05723‑3 36813958
    [Google Scholar]
  54. GirayB.G. EmekdasG. TezcanS. Profiles of serum microRNAs; miR-125b-5p and miR223-3p serve as novel biomarkers for HBV-positive hepatocellular carcinoma.Mol. Biol. Rep.20144174513451910.1007/s11033‑014‑3322‑3 24595450
    [Google Scholar]
  55. IwakawaH. TomariY. Life of RISC: Formation, action, and degradation of RNA-induced silencing complex.Mol. Cell2022821304310.1016/j.molcel.2021.11.026 34942118
    [Google Scholar]
  56. SvoronosA.A. CampbellS.G. EngelmanD.M. MicroRNA function can be reversed by altering target gene expression levels.iScience2021241010320810.1016/j.isci.2021.103208 34755085
    [Google Scholar]
  57. WangY. WeiY. FanX. MicroRNA ‐125b as a tumor suppressor by targeting MMP11 in breast cancer.Thorac. Cancer20201161613162010.1111/1759‑7714.13441 32291953
    [Google Scholar]
  58. TianK. LiuW. ZhangJ. MicroRNA-125b exerts antitumor functions in cutaneous squamous cell carcinoma by targeting the STAT3 pathway.Cell. Mol. Biol. Lett.20202511210.1186/s11658‑020‑00207‑y 32161621
    [Google Scholar]
  59. ZhengZ. QuJ.Q. YiH.M. MiR-125b regulates proliferation and apoptosis of nasopharyngeal carcinoma by targeting A20/NF-κB signaling pathway.Cell Death Dis.201786e2855e510.1038/cddis.2017.211 28569771
    [Google Scholar]
  60. YangD. ZhanM. ChenT. miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer.Sci. Rep.2017714310910.1038/srep43109 28256505
    [Google Scholar]
  61. MatuszykJ. KlopotowskaD. miR‐125b lowers sensitivity to apoptosis following mitotic arrest: Implications for breast cancer therapy.J. Cell. Physiol.2020235106335634410.1002/jcp.29610 32052874
    [Google Scholar]
  62. DivisatoG. PassaroF. RussoT. ParisiS. The key role of MicroRNAs in self-renewal and differentiation of embryonic stem cells.Int. J. Mol. Sci.20202117628510.3390/ijms21176285 32877989
    [Google Scholar]
  63. WangJ.K. WangZ. LiG. MicroRNA-125 in immunity and cancer.Cancer Lett.201945413414510.1016/j.canlet.2019.04.015 30981762
    [Google Scholar]
  64. RasheedZ. RasheedN. AbdulmonemW.A. KhanM.I. MicroRNA-125b-5p regulates IL-1β induced inflammatory genes via targeting TRAF6-mediated MAPKs and NF-κB signaling in human osteoarthritic chondrocytes.Sci. Rep.201991688210.1038/s41598‑019‑42601‑3 31053727
    [Google Scholar]
  65. SinghD. KhanM.A. SiddiqueH.R. Role of p53-miRNAs circuitry in immune surveillance and cancer development: A potential avenue for therapeutic intervention.Semin. Cell Dev. Biol.2022124152510.1016/j.semcdb.2021.04.003
    [Google Scholar]
  66. ZhangX. LiT. HanY.N. miR-125b promotes colorectal cancer migration and invasion by dual-targeting CFTR and CGN.Cancers20211322571010.3390/cancers13225710 34830864
    [Google Scholar]
  67. MaC. TangX. TangQ. Curcumol repressed cell proliferation and angiogenesis via SP1/mir-125b-5p/VEGFA axis in non-small cell lung cancer.Front. Pharmacol.202213104411510.3389/fphar.2022.1044115 36467048
    [Google Scholar]
  68. ChaoC.T. YehH.Y. YuanT.H. ChiangC.K. ChenH.W. MicroRNA‐125b in vascular diseases: An updated systematic review of pathogenetic implications and clinical applications.J. Cell. Mol. Med.20192395884589410.1111/jcmm.14535 31301111
    [Google Scholar]
  69. XuL. LiY. YinL. miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3.Theranostics20188205593560910.7150/thno.27425 30555566
    [Google Scholar]
  70. WeiL.M. SunR.P. DongT. MiR-125b-2 knockout increases high-fat diet-induced fat accumulation and insulin resistance.Sci. Rep.20201012196910.1038/s41598‑020‑77714‑7 33319811
    [Google Scholar]
  71. GuoJ. YangX. ChenJ. Exosomal miR-125b-5p derived from adipose-derived mesenchymal stem cells enhance diabetic hindlimb ischemia repair via targeting alkaline ceramidase 2.J. Nanobiotechnology202321118910.1186/s12951‑023‑01954‑8 37308908
    [Google Scholar]
  72. SpirinaL.V. KovalevaI.V. ChizhevskayaS.Y. ChebodaevaA.V. TarasenkoN.V. Autophagy-Related MicroRNA: Tumor miR-125b and thyroid cancers.Genes202314368510.3390/genes14030685 36980957
    [Google Scholar]
  73. Banzhaf-StrathmannJ. EdbauerD. Good guy or bad guy: The opposing roles of microRNA 125b in cancer.Cell Commun. Signal.20141213010.1186/1478‑811X‑12‑30 24774301
    [Google Scholar]
  74. ToroA.U. ShuklaS.K. BansalP. Emerging role of MicroRNA-based theranostics in hepatocellular carcinoma.Mol. Biol. Rep.20235097681769110.1007/s11033‑023‑08586‑z 37418086
    [Google Scholar]
  75. LiangL. WongC.M. YingQ. MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2.Hepatology20105251731174010.1002/hep.23904 20827722
    [Google Scholar]
  76. AlpiniG. GlaserS.S. ZhangJ.P. Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer.J. Hepatol.20115561339134510.1016/j.jhep.2011.04.015 21703189
    [Google Scholar]
  77. JiaH.Y. WangY.X. YanW.T. MicroRNA-125b functions as a tumor suppressor in hepatocellular carcinoma cells.Int. J. Mol. Sci.20121378762877410.3390/ijms13078762 22942733
    [Google Scholar]
  78. ZhaoA. ZengQ. XieX. MicroRNA-125b induces cancer cell apoptosis through suppression of Bcl-2 expression.J. Genet. Genomics2012391293510.1016/j.jgg.2011.12.003 22293115
    [Google Scholar]
  79. KimJ.K. NohJ.H. JungK.H. Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b.Hepatology20135731055106710.1002/hep.26101 23079745
    [Google Scholar]
  80. GongJ. ZhangJ-P. LiB. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R.Oncogene201332253071307910.1038/onc.2012.318 22824797
    [Google Scholar]
  81. Ngo-Yin FanD. Ho-Ching TsangF. Hoi-Kam TamA. Histone lysine methyltransferase, suppressor of variegation 3-9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b.Hepatology201357263764710.1002/hep.26083 22991213
    [Google Scholar]
  82. JiangJ.X. GaoS. PanY.Z. YuC. SunC.Y. Overexpression of microRNA-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase II.Mol. Med. Rep.2014102995100210.3892/mmr.2014.2271 24865963
    [Google Scholar]
  83. LiJ. FangL. YuW. WangY. MicroRNA-125b suppresses the migration and invasion of hepatocellular carcinoma cells by targeting transcriptional coactivator with PDZ-binding motif.Oncol. Lett.2015941971197510.3892/ol.2015.2973 25789078
    [Google Scholar]
  84. ZhaoL. WangW. miR-125b suppresses the proliferation of hepatocellular carcinoma cells by targeting Sirtuin7.Int. J. Clin. Exp. Med.20158101846918475 26770454
    [Google Scholar]
  85. XiongF. MaH. QuY. WenF. BaoX. HanD. Profiles of serum miR-99a, let-7c and miR-125b in hepatitis B virus (HBV)-associated chronic hepatitis, liver cirrhosis and hepatocellular carcinoma.Int. J. Clin. Exp. Pathol.2016970877095
    [Google Scholar]
  86. XuL. WeiB. HuiH. LiuY. Association of serum microRNA-125b and HBV-related hepatocellular carcinoma in Chinese Han patients.Int. J. Clin. Exp. Med.20181136993703
    [Google Scholar]
  87. RenW.W. LiD.D. ChenX. MicroRNA-125b reverses oxaliplatin resistance in hepatocellular carcinoma by negatively regulating EVA1A mediated autophagy.Cell Death Dis.20189554710.1038/s41419‑018‑0592‑z 29749374
    [Google Scholar]
  88. El-NaidanyS.S. ZidE. RedaF. NadaA. FoudaE. Clinical significance of MiR-130b and MiR-125b as biomarkers in hepatocellular carcinoma.Asian Pac. J. Cancer Prev.20222382687269310.31557/APJCP.2022.23.8.2687 36037122
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240304247240529074123
Loading
/content/journals/cmm/10.2174/0115665240304247240529074123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test