Current Medicinal Chemistry - Volume 32, Issue 5, 2025
Volume 32, Issue 5, 2025
-
-
Concept and Evolution in 3D Printing for Excellence in Healthcare
More LessThree-dimensional printing (3DP) has gained popularity among scientists and researchers in every field due to its potential to drastically reduce energy costs for the production of customized products by utilizing less energy-intensive machines as well as minimizing material waste. The 3D printing technology is an additive manufacturing approach that uses material layer-by-layer fabrication to produce the digitally specified 3D model. The use of 3D printing technology in the pharmaceutical sector has the potential to revolutionize research and development by providing a quick and easy means to manufacture personalized one-off batches, each with unique dosages, distinct substances, shapes, and sizes, as well as variable release rates. This overview addresses the concept of 3D printing, its evolution, and its operation, as well as the most popular types of 3D printing processes utilized in the health care industry. It also discusses the application of these cutting-edge technologies to the pharmaceutical industry, advancements in various medical fields and medical equipment, 3D bioprinting, the most recent initiatives to combat COVID-19, regulatory frameworks, and the major challenges that this technology currently faces. In addition, we attempt to provide some futuristic approaches to 3DP applications.
-
-
-
Potentiality of Nucleoside as Antioxidant by Analysis on Oxidative Susceptibility, Drug Discovery, and Synthesis
More LessBy Zai-Qun LiuNucleosides are sensitive sites towards oxidations caused by endogenous and exogenous oxidative resources, and a large number of the produced DNA lesions behave as pathogenesis eventually. We herein analyze oxidative modes of nucleosides and structure-activity relationships of some clinical nucleoside drugs. Together with our previous findings on the inhibitory effects of nucleoside derivatives against DNA oxidation, all these results imply a possibility for nucleoside to be a new member in the family of antioxidants. Then, some novel synthetic routines of nucleoside analogs are collected to reveal the applicability in the construction of nucleoside antioxidants. Therefore, it is reasonable to envision that the nucleoside antioxidant will be a novel topic in the research of both nucleosides and antioxidants.
-
-
-
The Role of Genistein and its Derivatives in Ovarian Cancer: New Perspectives for Molecular Mechanisms and Clinical Applications
More LessAuthors: Shahla Chaichian, Banafsheh Nikfar, Sepideh Arbabi Bidgoli and Bahram MoazzamiGenistein (GEN) is a member of the polyphenol family, known chiefly for its effects on metabolic diseases and gynecological disorders. GEN has anti-cancer properties by inhibiting tumor proliferation, tumor metastasis, invasion, migration, and inducing apoptosis. Ovarian cancer (OC) is ranked 7th among the most common gynecological cancers. Despite its low incidence compared to other cancers, it is the first cause of death among gynecologic malignancies. Surgery and chemotherapy are the main options for treating this fatal cancer. Therefore, further investigations into GEN may aid in the discovery of novel therapeutics for preventing and/or treating OC. In this review, we aim to investigate the role of GEN in ovarian cancer. We investigate the anti-tumor effects of GEN on OC cell lines, including inducing apoptosis, suppressing tumor growth, and inhibiting metastasis. Also, we review the studies investigating GEN's roles as an adjuvant in therapeutic regimens with other chemotherapeutic agents (e.g., cisplatin, quercetin, and gemcitabine).
-
-
-
Therapeutic Chemoresistance in Ovarian Cancer: Emerging Hallmarks, Signaling Mechanisms and Alternative Pathways
More LessAuthors: Sumera Zaib, Hira Javed, Nehal Rana, Zainab Zaib, Shahid Iqbal and Imtiaz KhanOvarian cancer is the fifth leading cause of mortality and the most lethal gynecologic malignancy among females. It may arise from atypical borderline tumors (Type I) or serous tubal intraepithelial carcinoma (Type II). The diagnosis of cancer at its early stages is difficult because of non-specific symptoms, most patients are diagnosed at the advanced stage. Several drugs and therapeutic strategies are available to treat ovarian cancer such as surgery, chemotherapy, neoadjuvant therapy, and maintenance therapy. However, the cancer cells have developed resistance to a number of available therapies causing treatment failure. This emerging chemoresistance in ovarian cancer cells is becoming an obstacle due to alterations in multiple cellular processes. These processes involve altered drug target response, drug pumps, detoxification systems, lower sensitivity to apoptosis, and altered proliferation, and are responsible for developing resistance to anticancer medicines. Various research reports have evidenced that these altered processes might play a role in the emergence of resistance. This review addresses the recent advances in understanding the underlying mechanisms of ovarian cancer resistance and covers sophisticated alternative pathways to overcome these resistance mechanisms in patients.
-
-
-
Quercetin and microRNA Interplay in Apoptosis Regulation: A New Therapeutic Strategy for Cancer?
More LessAuthors: Zicheng Wang, Yanqing Liu and Zatollah AsemiCancer is known as a global problem for the health and economy. Following cancer onset, apoptosis is the primary mechanism countering the tumor cells' growth. Most anticancer agents initiate apoptosis to remove tumor cells. Phytochemicals have appeared as a beneficial treatment option according to their less adverse effects. In recent decades, quercetin has been highlighted due to its high pharmacological benefits, and various literature has suggested it as a potential anti-proliferative agent against different kinds of cancers. The microRNAs (miRNAs) play key roles in cancer treatment, progression, and apoptosis. This review reviewed the effect of quercetin on miRNAs contributing to the induction or inhibition of apoptosis in cancers.
-
-
-
Quinolines: A Promising Heterocyclic Scaffold for Cancer Therapeutics
More LessAuthors: Yinshen Zhao, Chaoyang Zhang, Wan Liu, Zhiyuan Guo, Yuqi Zhang, Yuqi Wu, Chenyu Wei, Jianing Wu and Xianguang YangThe quinoline scaffold is a widely recognized heterocycle with applications across various disease categories, ranging from malaria and viral infections to bacterial infections, high cholesterol, and even tumors. Consequently, quinoline plays a crucial role in the development of new drugs, and the field greatly benefits from advancements in computer-aided drug design. This review aims to provide insights into the evolution of quinoline and its derivatives, offering a comprehensive exploration of both marketed and developing drugs. Furthermore, the function and mechanism of quinoline compounds are introduced. Many studies rely on cell experiments to demonstrate drug cytotoxicity. In the concluding section of this review, the interaction between quinoline compounds and targets is simulated using computer-aided drug design methods. A thorough analysis is conducted on the potential influencing factors affecting the binding state between quinoline compounds and targets. Notably, the Pi-Alkyl interaction emerges as a significant contributor, while hydrogen bonding is identified as a pivotal bond in these interactions. This review serves as a valuable overview of the potential contributions of quinoline compounds to cancer treatment. It seamlessly combines the essential functions of marketed quinoline drugs with the promise held by emerging quinoline-based compounds. Additionally, the simulation of interactions between quinoline compounds and proteins through computer-aided design enhances our understanding of these compounds' efficacy.
-
-
-
Composite or Modified Hydroxyapatite Microspheres as Drug Delivery Carrier for Bone and Tooth Tissue Engineering
More LessAuthors: Zhe Wang, Jiaxin Shang and Zheng ZhangSince hydroxyapatite (HAp) is an important constituent of bone and teeth, it has excellent biocompatibility and bioactivity, good osteoconductive effects and the ability to induce bone formation as a material for bone or tooth repair and replacement. At present, widely used HAp microspheres have some characteristics, such as large specific surface area, light mass, good injection properties, good fluidity, and low aggregation ability, but they are difficult to really meet the biological and clinical needs due to their own mechanical property defects, such as low strength, brittleness, and poor plasticity. Based on the current research status of HAp microspheres, we summarize the research progress of various types of composite microspheres, including inorganic materials, natural polymer materials and synthetic polymer materials, and further analyze the advantages of HAp composite microspheres loaded with drug molecules, proteins and bioactive factors, so as to explore the development prospect of HAp composite microspheres as scaffolds for constructing sustained release systems. It provides a theoretical basis and research direction to prepare HAp composite micro-spheres with superior comprehensive properties so that they can be better applied in bone tissue regeneration and tooth regeneration engineering.
-
-
-
DsbA-L: A Promising Therapeutic Target for Metabolic Diseases
More LessThe increasing incidence of metabolic diseases, including obesity and diabetes, is a serious social public problem. Therefore, there is an urgent need to find effective prevention and treatment measures for these diseases. DsbA-L is a protein that is widely expressed in many tissues and is closely related to metabolism. Emerging evidence shows that DsbA-L plays an important role in antioxidative stress, promoting the synthesis and secretion of adiponectin and maintaining mitochondrial homeostasis, and the abnormalities of these functions are also closely related to the occurrence and development of metabolic diseases. Here, we reviewed the tissue expression patterns and regulatory factors of DsbA-L, summarized its biological functions and the current research progress of DsbA-L in metabolic diseases, and found that DsbA-L may be a promising target for metabolic diseases.
-
-
-
Marine Fungi: A Prosperous Source of Novel Bioactive Natural Products
More LessAuthors: Rong Ji, Xiangru Zha and Songlin ZhouAs the number of viruses, bacteria, and tumors that are resistant to drugs continues to rise, there is a growing need for novel lead compounds to treat them. Marine fungi, due to their unique secondary metabolic pathways and vast biodiversity, have become a crucial source for lead compounds in drug development. This review utilizes bibliometric methods to analyze the research status of natural products from marine fungi in the past decade, revealing the hotspots and trends in this field from Web of Science database. Furthermore, this review summarizes the biological activities and effects on molecular mechanisms of novel natural compounds isolated from marine fungi in the past five years. These novel compounds belong to six different structural classes, such as alkaloids, terpenoids, anthraquinones, polyketones, etc. They also exhibited highly potent biological properties, including antiviral, antitumor, antibacterial, antiinflammatory, and other properties. This review demonstrates the hotspots and trends of marine fungi research in recent years, as well as the variety of chemical structure and biological activities of their natural products, and it may provide guidance for those interested in discovering new drugs from marine fungi and specific targeting mechanisms.
-
-
-
Effect of Statins on Superoxide Dismutase Level: A Systematic Review
More LessBackground and ObjectiveThe literature suggests that statins may increase superoxide dismutase (SOD) levels by different mechanisms. These effects may contribute to the antioxidant and anti-inflammatory effects of statins, which are thought to be beneficial in preventing cardiovascular events. However, there are also conflicting results concerning the effect of statins on SOD levels. The goal of this systematic review was to evaluate the effect of statin therapy on SOD activity.
MethodsThis systematic review was performed based on the PRISMA statement. The terms (“statin” or “HMG-CoA reductase inhibitor” OR “lipid-lowering agents” OR “Atorvastatin” OR “Simvastatin” OR “Pravastatin” OR “Fluvastatin” OR “Lovastatin”) AND (“superoxide dismutase” OR “SOD” OR “anti-oxidative” OR “oxidative stress”) were searched in database systems Google Scholar, PubMed/MEDLINE, and Scopus from inception to April 2022.
ResultsA total of 14 controlled clinical trials - 10 randomized and 4 non-randomized - were found to be eligible. Four studies measured SOD levels in plasma, six in serum, two in red blood cells, one in venous blood, and one on both red blood cells and venous blood matrices. Seven clinical trials used atorvastatin, six used simvastatin, and four used rosuvastatin. Six studies reported an increase in SOD activity, seven found no significant changes, and one showed a reduced SOD activity.
ConclusionOur systematic review suggests that treatment with statins has a positive effect on SOD activity. However, evidence from further randomized controlled trials is required to confirm the potential antioxidant effect of statin therapy.
-
-
-
Nanoceria Anti-inflammatory and Antimicrobial Nanodrug: Cellular and Molecular Mechanism of Action
More LessIntroductionNanoceria is a well-known nanomaterial with various properties, including antioxidant, proangiogenic, and therapeutic effects. Despite its potential, there are still aspects that require further exploration, particularly its anti-inflammatory and antimicrobial activities.
MethodsThe global demand for novel anti-inflammatory and antimicrobial drugs underscores the significance of understanding nanoceria in both contexts. In this study, we evaluated the effect of nanoceria on macrophage polarization to better understand its anti-inflammatory effects. Additionally, we investigated the mechanism of action of nanoceria against Cryptococcus neoformans (ATCC 32045), Candida parapsilosis (ATCC 22019), Candida krusei (ATCC 6258), and Candida albicans.
ResultsThe results demonstrated that nanoceria can polarize macrophages toward an anti-inflammatory profile, revealing the cellular mechanisms involved in the anti-inflammatory response. Concerning the antimicrobial effect, it was observed that nanoceria have a more pronounced impact on Candida parapsilosis, leading to the formation of pronounced pores on the surface of this species.
ConclusionFinally, biochemical analysis revealed transitory alterations, mainly in liver enzymes. The data support the use of nanoceria as a potential anti-inflammatory and antimicrobial drug and elucidate some of the mechanisms involved, shedding light on the properties of this nanodrug.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)
Most Read This Month