Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

As the number of viruses, bacteria, and tumors that are resistant to drugs continues to rise, there is a growing need for novel lead compounds to treat them. Marine fungi, due to their unique secondary metabolic pathways and vast biodiversity, have become a crucial source for lead compounds in drug development. This review utilizes bibliometric methods to analyze the research status of natural products from marine fungi in the past decade, revealing the hotspots and trends in this field from Web of Science database. Furthermore, this review summarizes the biological activities and effects on molecular mechanisms of novel natural compounds isolated from marine fungi in the past five years. These novel compounds belong to six different structural classes, such as alkaloids, terpenoids, anthraquinones, polyketones, They also exhibited highly potent biological properties, including antiviral, antitumor, antibacterial, antiinflammatory, and other properties. This review demonstrates the hotspots and trends of marine fungi research in recent years, as well as the variety of chemical structure and biological activities of their natural products, and it may provide guidance for those interested in discovering new drugs from marine fungi and specific targeting mechanisms.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673266304231015070956
2023-10-25
2025-09-28
Loading full text...

Full text loading...

References

  1. CarrollA.R. CoppB.R. DavisR.A. KeyzersR.A. PrinsepM.R. Marine natural products.Nat. Prod. Rep.202340227532510.1039/D2NP00083K36786022
    [Google Scholar]
  2. SegaranT.C. AzraM.N. LanananF. WangY. Microbe, climate change and marine environment: Linking trends and research hotspots.Mar. Environ. Res.202318910601510.1016/j.marenvres.2023.10601537291004
    [Google Scholar]
  3. CranfordP. BragerL. ElvinesD. WongD. LawB. A revised classification system describing the ecological quality status of organically enriched marine sediments based on total dissolved sulfides.Mar. Pollut. Bull.202015411108810.1016/j.marpolbul.2020.11108832319917
    [Google Scholar]
  4. WangM. ZhaoH. HuJ. XuZ. LinY. ZhouS. Penicilazaphilone C, a new azaphilone, induces apoptosis in gastric cancer by blocking the notch signaling pathway.Front. Oncol.20201011610.3389/fonc.2020.0011632117763
    [Google Scholar]
  5. LiuZ. ZhaoJ.Y. SunS.F. LiY. LiuY.B. Fungi: outstanding source of novel chemical scaffolds.J. Asian Nat. Prod. Res.20202229912010.1080/10286020.2018.148883330047298
    [Google Scholar]
  6. LombardiV.R.M. CarreraI. CorzoL. CacabelosR. Role of bioactive lipofishins in prevention of inflammation and colon cancer.Semin. Cancer Biol.20195617518410.1016/j.semcancer.2017.11.01229180118
    [Google Scholar]
  7. YunC.W. KimH.J. LeeS.H. Therapeutic application of diverse marine-derived natural products in cancer therapy.Anticancer Res.201939105261528410.21873/anticanres.1372131570422
    [Google Scholar]
  8. BarzkarN. Tamadoni JahromiS. PoorsaheliH.B. VianelloF. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology.Mar. Drugs201917846410.3390/md1708046431398953
    [Google Scholar]
  9. KhalifaS.A.M. EliasN. FaragM.A. ChenL. SaeedA. HegazyM.E.F. MoustafaM.S. Abd El-WahedA. Al-MousawiS.M. MusharrafS.G. ChangF.R. IwasakiA. SuenagaK. AlajlaniM. GöranssonU. El-SeediH.R. Marine natural products: a source of novel anticancer drugs.Mar. Drugs201917949110.3390/md1709049131443597
    [Google Scholar]
  10. GhsseinG. EzzeddineZ. The key element role of metallophores in the pathogenicity and virulence of Staphylococcus aureus: areview.Biology (Basel)20221110152510.3390/biology1110152536290427
    [Google Scholar]
  11. GhsseinG. EzzeddineZ. A review of Pseudomonas aeruginosa metallophores: pyoverdine, pyochelin and pseudopaline.Biology (Basel)20221112171110.3390/biology1112171136552220
    [Google Scholar]
  12. GhsseinG. MatarS. Chelating mechanisms of transition metals by bacterial metallophores “pseudopaline and staphylopine”: a quantum chemical assessment.Computation (Basel)2018645610.3390/computation6040056
    [Google Scholar]
  13. ZakariaN.N. ConveyP. Gomez-FuentesC. ZulkharnainA. SabriS. ShaharuddinN.A. AhmadS.A. Oil bioremediation in the marine environment of Antarctica: A review and bibliometric keyword cluster analysis.Microorganisms20219241910.3390/microorganisms902041933671443
    [Google Scholar]
  14. OveryD. RämäT. OosterhuisR. WalkerA. PangK.L. The neglected marine fungi, sensu stricto, and their isolation for natural products’ discovery.Mar. Drugs20191714210.3390/md1701004230634599
    [Google Scholar]
  15. GonçalvesM.F.M. EstevesA.C. AlvesA. Marine fungi: opportunities and challenges.Encyclopedia20222155957710.3390/encyclopedia2010037
    [Google Scholar]
  16. HasanS. AnsariM. AhmadA. MishraM. Major bioactive metabolites from marine fungi: A Review.Bioinformation201511417618110.6026/9732063001117626124556
    [Google Scholar]
  17. EzzeddineZ. GhsseinG. Towards new antibiotics classes targeting bacterial metallophores.Microb. Pathog.202318210622110.1016/j.micpath.2023.10622137391099
    [Google Scholar]
  18. ZhouS. WangM. FengQ. LinY. ZhaoH. A study on biological activity of marine fungi from different habitats in coastal regions.Springerplus201651196610.1186/s40064‑016‑3658‑327933244
    [Google Scholar]
  19. WangW. LiaoY. TangC. HuangX. LuoZ. ChenJ. CaiP. Cytotoxic and antibacterial compounds from the coral-derived fungus Aspergillus tritici SP2-8-1.Mar. Drugs2017151134810.3390/md1511034829112138
    [Google Scholar]
  20. El-BondklyE.A.M. El-BondklyA.A.M. El-BondklyA.A.M. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration.Heliyon202173e0636210.1016/j.heliyon.2021.e0636233869822
    [Google Scholar]
  21. MarjuniA. AdjiT.B. FerdianaR. Unsupervised software defect prediction using median absolute deviation threshold based spectral classifier on signed Laplacian matrix.J. Big Data2019618710.1186/s40537‑019‑0250‑z
    [Google Scholar]
  22. KimE.S. Recent advances of actinomycetes.Biomolecules202111213410.3390/biom1102013433494267
    [Google Scholar]
  23. SeelingerM. PopescuR. GiessriglB. JarukamjornK. UngerC. WallnöferB. Fritzer-SzekeresM. SzekeresT. DiazR. JägerW. FrischR. KoppB. KrupitzaG. Methanol extract of the ethnopharmaceutical remedy Smilax spinosa exhibits anti-neoplastic activity.Int. J. Oncol.20124131164117210.3892/ijo.2012.153822752086
    [Google Scholar]
  24. UccellaS. DottermuschM. EricksonL. WarmbierJ. MontoneK. SaegerW. Inflammatory and infectious disorders in endocrine pathology.End Pathol202313110.1007/s12022‑023‑09771‑3
    [Google Scholar]
  25. XuJ. YiM. DingL. HeS. A review of anti-inflammatory compounds from marine fungi, 2000–2018.Mar. Drugs2019171163610.3390/md1711063631717541
    [Google Scholar]
  26. Pinedo-RivillaC. AleuJ. Durán-PatrónR. Cryptic metabolites from marine-derived microorganisms using OSMAC and epigenetic approaches.Mar. Drugs20222028410.3390/md2002008435200614
    [Google Scholar]
  27. ChenJ. ZhangP. YeX. WeiB. EmamM. ZhangH. WangH. The structural diversity of marine microbial secondary metabolites based on co-culture strategy: 2009–2019.Mar. Drugs202018944910.3390/md1809044932867339
    [Google Scholar]
  28. GrecoG. TurriniE. CatanzaroE. FimognariC. Marine anthraquinones: pharmacological and toxicological issues.Mar. Drugs202119527210.3390/md1905027234068184
    [Google Scholar]
  29. ZhaoH. JiR. ZhaX. XuZ. LinY. ZhouS. Investigation of the bactericidal mechanism of Penicilazaphilone C on Escherichia coli based on 4D label-free quantitative proteomic analysis.Eur. J. Pharm. Sci.202217910629910.1016/j.ejps.2022.10629936179970
    [Google Scholar]
  30. JinL. QuanC. HouX. FanS. Potential pharmacological resources: natural bioactive compounds from marine-derived fungi.Mar. Drugs20161447610.3390/md1404007627110799
    [Google Scholar]
  31. JacksonC.B. FarzanM. ChenB. ChoeH. Mechanisms of SARS-CoV-2 entry into cells.Nat. Rev. Mol. Cell Biol.202223132010.1038/s41580‑021‑00418‑x34611326
    [Google Scholar]
  32. BouvetM. LugariA. PosthumaC.C. ZevenhovenJ.C. BernardS. BetziS. ImbertI. CanardB. GuillemotJ.C. LécineP. PfefferleS. DrostenC. SnijderE.J. DecrolyE. MorelliX. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes.J. Biol. Chem.201428937257832579610.1074/jbc.M114.57735325074927
    [Google Scholar]
  33. GonzalezB.L. de OliveiraN.C. RitterM.R. ToninF.S. MeloE.B. SanchesA.C.C. Fernandez-LlimosF. PetrucoM.V. de MelloJ.C.P. ChierritoD. de Medeiros AraújoD.C. The naturally-derived alkaloids as a potential treatment for COVID-19: A scoping review.Phytother. Res.20223672686270910.1002/ptr.744235355337
    [Google Scholar]
  34. ZhouG. SunC. HouX. CheQ. ZhangG. GuQ. LiuC. ZhuT. LiD. Ascandinines A-D, indole diterpenoids, from the sponge-derived fungus Aspergillus candidus HDN15-152.J. Org. Chem.20218632431243610.1021/acs.joc.0c0257533472001
    [Google Scholar]
  35. SongY. YangJ. YuJ. LiJ. YuanJ. WongN.K. JuJ. Chlorinated bis-indole alkaloids from deep-sea derived Streptomyces sp. SCSIO 11791 with antibacterial and cytotoxic activities.J. Antibiot. (Tokyo)202073854254710.1038/s41429‑020‑0307‑432332871
    [Google Scholar]
  36. ParkJ.S. ChoE. HwangJ.Y. ParkS.C. ChungB. KwonO.S. SimC.J. OhD.C. OhK.B. ShinJ. Bioactive bis(indole) alkaloids from a Spongosorites sp. sponge.Mar. Drugs2020191310.3390/md1901000333374750
    [Google Scholar]
  37. BaoJ. ZhaiH. ZhuK. YuJ.H. ZhangY. WangY. JiangC.S. ZhangX. ZhangY. ZhangH. Bioactive pyridone alkaloids from a deep-sea-derived fungus Arthrinium sp. UJNMF0008.Mar. Drugs201816517410.3390/md1605017429786655
    [Google Scholar]
  38. WibowoJ.T. AhmadiP. RahmawatiS.I. BayuA. PutraM.Y. KijjoaA. Marine-derived indole alkaloids and their biological and pharmacological activities.Mar. Drugs2021201310.3390/md2001000335049859
    [Google Scholar]
  39. DiX. WangS. OskarssonJ.T. RougerC. TasdemirD. HardardottirI. FreysdottirJ. WangX. MolinskiT.F. OmarsdottirS. Bromotryptamine and imidazole alkaloids with anti-inflammatory activity from the bryozoan Flustra foliacea. J. Nat. Prod.202083102854286610.1021/acs.jnatprod.0c0012633016699
    [Google Scholar]
  40. JiangM. WuZ. GuoH. LiuL. ChenS. A review of terpenes from marine-derived fungi: 2015–2019.Mar. Drugs202018632110.3390/md1806032132570903
    [Google Scholar]
  41. CaoX. ShiY. WuX. WangK. HuangS. SunH. DickschatJ.S. WuB. Talaromyolides A-D and talaromytin: polycyclic meroterpenoids from the fungus Talaromyces sp. CX11.Org. Lett.201921166539654210.1021/acs.orglett.9b0246631364857
    [Google Scholar]
  42. LiH.L. XuR. LiX.M. YangS.Q. MengL.H. WangB.G. Simpterpenoid A, a meroterpenoid with a highly functionalized cyclohexadiene moiety featuring gem-propane-1,2-dione and methylformate groups, from the mangrove-derived Penicillium simplicissimum MA-332.Org. Lett.20182051465146810.1021/acs.orglett.8b0032729450994
    [Google Scholar]
  43. LiH.L. LiX.M. YangS.Q. MengL.H. LiX. WangB.G. Prenylated phenol and benzofuran derivatives from Aspergillus terreus EN-539, an endophytic fungus derived from marine red alga Laurencia okamurai. Mar. Drugs2019171160510.3390/md1711060531653083
    [Google Scholar]
  44. DaiL.T. YangL. KongF.D. MaQ.Y. XieQ.Y. DaiH.F. YuZ.F. ZhaoY.X. Cytotoxic indole-diterpenoids from the marine-derived fungus Penicillium sp. KFD28.Mar. Drugs2021191161310.3390/md1911061334822484
    [Google Scholar]
  45. LiuY.F. YueY.F. FengL.X. ZhuH.J. CaoF. Asperienes A–D, Bioactive sesquiterpenes from the marine-derived fungus Aspergillus flavus. Mar. Drugs2019171055010.3390/md1710055031561527
    [Google Scholar]
  46. LiuY.J. ZhangJ.L. LiC. MuX.G. LiuX.L. WangL. ZhaoY.C. ZhangP. LiX.D. ZhangX.X. Antimicrobial secondary metabolites from the seawater-derived fungus Aspergillus sydowii SW9.Molecules20192424459610.3390/molecules2424459631888157
    [Google Scholar]
  47. LiX.D. LiX. LiX.M. YinX.L. WangB.G. Antimicrobial bisabolane-type sesquiterpenoids from the deep-sea sediment-derived fungus Aspergillus versicolor SD-330.Nat. Prod. Res.202135224265427110.1080/14786419.2019.169679231782317
    [Google Scholar]
  48. LiX.D. LiX.M. YinX.L. LiX. WangB.G. Antimicrobial sesquiterpenoid derivatives and monoterpenoids from the deep-sea sediment-derived fungus Aspergillus versicolor SD-330.Mar. Drugs2019171056310.3390/md1710056331569593
    [Google Scholar]
  49. LiF. SunW. ZhangS. GaoW. LinS. YangB. ChaiC. LiH. WangJ. HuZ. ZhangY. New cyclopiane diterpenes with anti-inflammatory activity from the sea sediment-derived fungus Penicillium sp. TJ403-2.Chin. Chem. Lett.202031119720110.1016/j.cclet.2019.04.036
    [Google Scholar]
  50. XuZ. JiR. ZhaX. ZhaoH. ZhouS. The aqueous extracts of Ageratum conyzoides inhibit inflammation by suppressing NLRP3 inflammasome activation.J. Ethnopharmacol.202330911635310.1016/j.jep.2023.11635336907476
    [Google Scholar]
  51. Hafez GhoranS. TaktazF. AyatollahiS.A. KijjoaA. Anthraquinones and their analogues from marine-derived fungi: chemistry and biological activities.Mar. Drugs202220847410.3390/md2008047435892942
    [Google Scholar]
  52. PangX. LinX. TianY. LiangR. WangJ. YangB. ZhouX. KaliyaperumalK. LuoX. TuZ. LiuY. Three new polyketides from the marine sponge-derived fungus Trichoderma sp. SCSIO41004.Nat. Prod. Res.201832110511110.1080/14786419.2017.133828628592143
    [Google Scholar]
  53. WangC.N. LuH.M. GaoC.H. GuoL. ZhanZ.Y. WangJ.J. LiuY.H. XiangS.T. WangJ. LuoX.W. Cytotoxic benzopyranone and xanthone derivatives from a coral symbiotic fungus Cladosporium halotolerans GXIMD 02502.Nat. Prod. Res.202135245596560310.1080/14786419.2020.179936332713199
    [Google Scholar]
  54. SobolevskayaM.P. BerdyshevD.V. ZhuravlevaO.I. DenisenkoV.A. DyshlovoyS.A. von AmsbergG. KhudyakovaY.V. KirichukN.N. AfiyatullovS.S. Polyketides metabolites from the marine sediment-derived fungus Thermomyces lanuginosus Tsikl. KMM 4681.Phytochem. Lett.20214111411810.1016/j.phytol.2020.11.014
    [Google Scholar]
  55. ShiT. HouX.M. LiZ.Y. CaoF. ZhangY.H. YuJ.Y. ZhaoD.L. ShaoC.L. WangC.Y. Harzianumnones A and B: two hydroxyanthraquinones from the coral-derived fungus Trichoderma harzianum.RSC Advances2018849275962760110.1039/C8RA04865G35542739
    [Google Scholar]
  56. LiJ. ZhengY.B. KurtánT. LiuM.X. TangH. ZhuangC.L. ZhangW. Anthraquinone derivatives from a coral associated fungus Stemphylium lycopersici.Nat. Prod. Res.202034152116212310.1080/14786419.2019.157604130856351
    [Google Scholar]
  57. SongZ.M. ZhangJ.L. ZhouK. YueL.M. ZhangY. WangC.Y. WangK.L. XuY. Anthraquinones as potential antibiofilm agents against methicillin-resistant Staphylococcus aureus. Front. Microbiol.20211270982610.3389/fmicb.2021.70982634539607
    [Google Scholar]
  58. DuX. LiuD. HuangJ. ZhangC. ProkschP. LinW. Polyketide derivatives from the sponge associated fungus Aspergillus europaeus with antioxidant and NO inhibitory activities.Fitoterapia201813019019710.1016/j.fitote.2018.08.03030193789
    [Google Scholar]
  59. HwangJ.Y. ParkS.C. ByunW.S. OhD.C. LeeS.K. OhK.B. ShinJ. Bioactive bianthraquinones and meroterpenoids from a marine-derived Stemphylium sp. fungus.Mar. Drugs202018943610.3390/md1809043632825785
    [Google Scholar]
  60. ZhangL. XuL. WangY. LiuJ. TanG. HuangF. HeN. LuZ. A novel therapeutic vaccine based on graphene oxide nanocomposite for tumor immunotherapy.Chin. Chem. Lett.20223384089409510.1016/j.cclet.2022.01.071
    [Google Scholar]
  61. LuS. WangJ. ShengR. FangY. GuoR. Novel bioactive polyketides isolated from marine actinomycetes: an update review from 2013 to 2019.Chem. Biodivers.20201712e200056210.1002/cbdv.20200056233206470
    [Google Scholar]
  62. LuoX. YangJ. ChenF. LinX. ChenC. ZhouX. LiuS. LiuY. Structurally diverse polyketides from the mangrove-derived fungus Diaporthe sp. SCSIO 41011 with their anti-influenza a virus activities.Front Chem.2018628210.3389/fchem.2018.0028230050898
    [Google Scholar]
  63. ZhouJ. ZhangH. YeJ. WuX. WangW. LinH. YanX. LazaroJ.E.H. WangT. NamanC.B. HeS. Cytotoxic polyketide metabolites from a marine mesophotic zone chalinidae sponge-associated fungus Pleosporales sp. NBUF144.Mar. Drugs202119418610.3390/md1904018633810590
    [Google Scholar]
  64. LeiH. LeiJ. ZhouX. HuM. NiuH. SongC. ChenS. LiuY. ZhangD. Cytotoxic polyketides from the marine sponge-derived fungus Pestalotiopsis heterocornis XWS03F09.Molecules20192414265510.3390/molecules2414265531336683
    [Google Scholar]
  65. LongL. WangR. ChiangH.Y. DingW. LiY.X. ChenF. QianP.Y. Discovery of antibiofilm activity of elasnin against marine biofilms and its application in the marine antifouling coatings.Mar. Drugs20211911910.3390/md1901001933466541
    [Google Scholar]
  66. ChengZ. XuW. LiuL. LiS. YuanW. LuoZ. ZhangJ. ChengY. LiQ. Peniginsengins B–E, new farnesylcyclohexenones from the deep sea-derived fungus Penicillium sp. YPGA11.Mar. Drugs2018161035810.3390/md1610035830275364
    [Google Scholar]
  67. ZhangY.H. DuH.F. GaoW.B. LiW. CaoF. WangC.Y. Anti-inflammatory polyketides from the marine-derived fungus Eutypella scoparia. Mar. Drugs202220848610.3390/md2008048636005490
    [Google Scholar]
  68. TianL.L. RenH. XiJ.M. FangJ. ZhangJ.Z. WuQ.X. Diverse anti-inflammation and anti-cancer polyketides isolated from the endophytic fungi Alternaria sp. MG1.Fitoterapia202115310500010.1016/j.fitote.2021.10500034303765
    [Google Scholar]
  69. BaiM. ZhengC.J. HuangG.L. MeiR.Q. WangB. LuoY.P. ZhengC. NiuZ.G. ChenG.Y. Bioactive meroterpenoids and isocoumarins from the mangrove-derived fungus Penicillium sp. TGM112.J. Nat. Prod.20198251155116410.1021/acs.jnatprod.8b0086630990038
    [Google Scholar]
  70. LiuM. OhashiM. TangY. Engineered biosynthesis of fungal 4-quinolone natural products.Org. Lett.202022166637664110.1021/acs.orglett.0c0242632806159
    [Google Scholar]
  71. ChoiB.K. JoS.H. ChoiD.K. TrinhP.T.H. LeeH.S. CaoC.V. VanT.T.T. ShinH.J. Anti-neuroinflammatory agent, restricticin B, from the marine-derived fungus Penicillium janthinellum and its inhibitory activity on the NO production in BV-2 microglia cells.Mar. Drugs202018946510.3390/md1809046532937930
    [Google Scholar]
  72. ChuL. HuangJ. MuhammadM. DengZ. GaoJ. Genome mining as a biotechnological tool for the discovery of novel marine natural products.Crit. Rev. Biotechnol.202040557158910.1080/07388551.2020.175105632308042
    [Google Scholar]
  73. YangZ. HeJ. WeiX. JuJ. MaJ. Exploration and genome mining of natural products from marine Streptomyces.Appl. Microbiol. Biotechnol.20201041677610.1007/s00253‑019‑10227‑031773207
    [Google Scholar]
  74. De RopA.S. RombautJ. WillemsT. De GraeveM. VanhaeckeL. HulpiauP. De MaeseneireS.L. De MolM.L. SoetaertW.K. Novel alkaloids from marine actinobacteria: Discovery and characterization.Mar. Drugs2021201610.3390/md2001000635049861
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673266304231015070956
Loading
/content/journals/cmc/10.2174/0109298673266304231015070956
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test