Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Nanoceria is a well-known nanomaterial with various properties, including antioxidant, proangiogenic, and therapeutic effects. Despite its potential, there are still aspects that require further exploration, particularly its anti-inflammatory and antimicrobial activities.

Methods

The global demand for novel anti-inflammatory and antimicrobial drugs underscores the significance of understanding nanoceria in both contexts. In this study, we evaluated the effect of nanoceria on macrophage polarization to better understand its anti-inflammatory effects. Additionally, we investigated the mechanism of action of nanoceria against (ATCC 32045), (ATCC 22019), i (ATCC 6258), and .

Results

The results demonstrated that nanoceria can polarize macrophages toward an anti-inflammatory profile, revealing the cellular mechanisms involved in the anti-inflammatory response. Concerning the antimicrobial effect, it was observed that nanoceria have a more pronounced impact on , leading to the formation of pronounced pores on the surface of this species.

Conclusion

Finally, biochemical analysis revealed transitory alterations, mainly in liver enzymes. The data support the use of nanoceria as a potential anti-inflammatory and antimicrobial drug and elucidate some of the mechanisms involved, shedding light on the properties of this nanodrug.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673285605231229112525
2024-01-23
2025-09-28
Loading full text...

Full text loading...

References

  1. PrestinaciF. PezzottiP. PantostiA. Antimicrobial resistance: A global multifaceted phenomenon.Pathog. Glob. Health2015109730931810.1179/2047773215Y.000000003026343252
    [Google Scholar]
  2. MendelsohnE. RossN. Zambrana-TorrelioC. Van BoeckelT. P. LaxminarayanR. DaszakP. Global patterns and correlates in the emergence of antimicrobial resistance in humans.Proc. Biol. Sci.2023290108510.1098/rspb.2023.1085
    [Google Scholar]
  3. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. Robles AguilarG. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. Kashef HamadaniB.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. Clotaire DonatienR. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. Duong BichT. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. Young SharmaT.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑0
    [Google Scholar]
  4. BadescuB. BudaV. RomanescuM. LombreaA. DanciuC. DalleurO. DohouA.M. DumitrascuV. CretuO. LickerM. MunteanD. Current state of knowledge regarding who critical priority pathogens: Mechanisms of resistance and proposed solutions through candidates such as essential oils.Plants20221114178910.3390/plants1114178935890423
    [Google Scholar]
  5. MiethkeM. PieroniM. WeberT. BrönstrupM. HammannP. HalbyL. ArimondoP.B. GlaserP. AigleB. BodeH.B. MoreiraR. LiY. LuzhetskyyA. MedemaM.H. PernodetJ-L. StadlerM. TormoJ.R. GenilloudO. TrumanA.W. WeissmanK.J. TakanoE. SabatiniS. StegmannE. Brötz-OesterheltH. WohllebenW. SeemannM. EmptingM. HirschA.K.H. LoretzB. LehrC-M. TitzA. HerrmannJ. JaegerT. AltS. HesterkampT. WinterhalterM. SchieferA. PfarrK. HoeraufA. GrazH. GrazM. LindvallM. RamurthyS. KarlénA. van DongenM. PetkovicH. KellerA. PeyraneF. DonadioS. FraisseL. PiddockL.J.V. GilbertI.H. MoserH.E. MüllerR. Towards the sustainable discovery and development of new antibiotics.Nat. Rev. Chem.202151072674910.1038/s41570‑021‑00313‑1
    [Google Scholar]
  6. IwuC.D. KorstenL. OkohA.I. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health.MicrobiologyOpen202099e103510.1002/mbo3.103532710495
    [Google Scholar]
  7. LiuG. ThomsenL.E. OlsenJ.E. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: A mini-review.J. Antimicrob. Chemother.202277355656710.1093/jac/dkab45034894259
    [Google Scholar]
  8. World Health Organization Lack of new antibiotics threatens global efforts to contain drug-resistant infections.2020Available from: https://www.who.int/news/item/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections (Access in November 16, 2023).
  9. HegemannJ.D. BirkelbachJ. WaleschS. MüllerR. Current developments in antibiotic discovery.EMBO Rep.2023241e5618410.15252/embr.20225618436541849
    [Google Scholar]
  10. Chinemerem NwobodoD. UgwuM.C. Oliseloke AnieC. Al-OuqailiM.T.S. Chinedu IkemJ. Victor ChigozieU. SakiM. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace.J. Clin. Lab. Anal.2022369e2465510.1002/jcla.2465535949048
    [Google Scholar]
  11. DequinP.F. AubronC. FaureH. GarotD. GuillotM. HamzaouiO. LemialeV. MaizelJ. MootienJ.Y. OsmanD. SimonM. ThilleA.W. VinsonneauC. KuteifanK. The place of new antibiotics for gram-negative bacterial infections in intensive care: Report of a consensus conference.Ann. Intensive Care20231315910.1186/s13613‑023‑01155‑437400647
    [Google Scholar]
  12. CookM.A. WrightG.D. The past, present, and future of antibiotics.Sci. Transl. Med.202214657eabo779310.1126/scitranslmed.abo779335947678
    [Google Scholar]
  13. PrasadN.K. SeipleI.B. CirzR.T. RosenbergO.S. Leaks in the pipeline: A failure analysis of gram-negative antibiotic development from 2010 to 2020.Antimicrob. Agents Chemother.2022665e00054-2210.1128/aac.00054‑2235471042
    [Google Scholar]
  14. MeizlishM.L. FranklinR.A. ZhouX. MedzhitovR. Tissue homeostasis and inflammation.Annu. Rev. Immunol.202139155758110.1146/annurev‑immunol‑061020‑05373433651964
    [Google Scholar]
  15. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  16. BinduS. MazumderS. BandyopadhyayU. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective.Biochem. Pharmacol.202018011414710.1016/j.bcp.2020.11414732653589
    [Google Scholar]
  17. da Cruz LageR. MarquesC.D.L. OliveiraT.L. ResendeG.G. KohemC.L. SaadC.G. XimenesA.C. GonçalvesC.R. BianchiW.A. de Souza MeirellesE. KeisermanM.W. ChiereghinA. CampanholoC.B. LyrioA.M. SchainbergC.G. PieruccettiL.B. YazbekM.A. PalominosP.E. GoncalvesR.S.G. AssadR.L. BonfiglioliR. LimaS.M.A.A.L. CarneiroS. AzevedoV.F. AlbuquerqueC.P. BernardoW.M. Sampaio-BarrosP.D. de Medeiros PinheiroM. Brazilian recommendations for the use of nonsteroidal anti-inflammatory drugs in patients with axial spondyloarthritis.Adv. Rheumatol.2021611410.1186/s42358‑020‑00160‑633468245
    [Google Scholar]
  18. SaifiM.A. SealS. GoduguC. Nanoceria, the versatile nanoparticles: Promising biomedical applications.J. Control. Release202133816418910.1016/j.jconrel.2021.08.03334425166
    [Google Scholar]
  19. SadidiH. HooshmandS. AhmadabadiA. Javad HoseiniS. BainoF. VatanpourM. KargozarS. Cerium oxide nanoparticles (Nanoceria): Hopes in soft tissue engineering.Molecules20202519455910.3390/molecules2519455933036163
    [Google Scholar]
  20. TangJ.L.Y. MoonshiS.S. TaH.T. Nanoceria: An innovative strategy for cancer treatment.Cell. Mol. Life Sci.20238024610.1007/s00018‑023‑04694‑y36656411
    [Google Scholar]
  21. ThakurN. MannaP. DasJ. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle.J. Nanobiotechnol.20191718410.1186/s12951‑019‑0516‑931291944
    [Google Scholar]
  22. SunY. SunX. LiX. LiW. LiC. ZhouY. WangL. DongB. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization.Biomaterials202126812061410.1016/j.biomaterials.2020.12061433360771
    [Google Scholar]
  23. MajumdarS. AlmeidaI.C. ArigiE.A. ChoiH. VerBerkmoesN.C. Trujillo-ReyesJ. Flores-MargezJ.P. WhiteJ.C. Peralta-VideaJ.R. Gardea-TorresdeyJ.L. Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris): A proteomic analysis.Environ. Sci. Technol.20154922132831329310.1021/acs.est.5b0345226488752
    [Google Scholar]
  24. ErnstL.M. PuntesV. How does immunomodulatory nanoceria work? ROS and immunometabolism.Front. Immunol.20221375017510.3389/fimmu.2022.75017535401546
    [Google Scholar]
  25. WangM. HeH. LiuD. MaM. ZhangY. Preparation, characterization and multiple biological properties of peptide-modified cerium oxide nanoparticles.Biomolecules2022129127710.3390/biom1209127736139116
    [Google Scholar]
  26. DashnyamK. LeeJ-H. SinghR.K. YoonJ-Y. LeeJ.H. JinG-Z. KimH-W. Optimally dosed nanoceria attenuates osteoarthritic degeneration of joint cartilage and subchondral bone.Chem. Eng. J.202142213006610.1016/j.cej.2021.130066
    [Google Scholar]
  27. KhuranaA. SaifiM.A. GoduguC. Nanoceria ameliorates fibrosis, inflammation, and cellular stress in experimental chronic pancreatitis.ACS Biomater. Sci. Eng.2023921030104210.1021/acsbiomaterials.2c0093336695711
    [Google Scholar]
  28. DomalaA. BaleS. GoduguC. Protective effects of nanoceria in imiquimod induced psoriasis by inhibiting the inflammatory responses.Nanomedicine202015152210.2217/nnm‑2018‑051531868114
    [Google Scholar]
  29. RanasingheK.S. SinghR. LeshchevD. VasquezA. StavitskiE. FosterI. Synthesis of nanoceria with varied ratios of Ce3+/Ce4+ utilizing soluble borate glass.Nanomaterials20221214236310.3390/nano1214236335889588
    [Google Scholar]
  30. AsgharzadehF. HashemzadehA. RahmaniF. YaghoubiA. NazariS.E. AvanA. MehrS.M.H. SoleimanpourS. KhazaeiM. Cerium oxide nanoparticles acts as a novel therapeutic agent for ulcerative colitis through anti-oxidative mechanism.Life Sci.202127811950010.1016/j.lfs.2021.11950033862111
    [Google Scholar]
  31. KalashnikovaI. ChungS.J. NafiujjamanM. HillM.L. SizibaM.E. ContagC.H. KimT. Ceria-based nanotheranostic agent for rheumatoid arthritis.Theranostics20201026118631188010.7150/thno.4906933204316
    [Google Scholar]
  32. BarkerE. ShepherdJ. AsencioI.O. The use of cerium compounds as antimicrobials for biomedical applications.Molecules2022279267810.3390/molecules2709267835566026
    [Google Scholar]
  33. Eka PutriG. RildaY. SyukriS. LabanniA. AriefS. Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method.J. Mater. Res. Technol.2021152355236410.1016/j.jmrt.2021.09.075
    [Google Scholar]
  34. QiM. LiW. ZhengX. LiX. SunY. WangY. LiC. WangL. Cerium and its oxidant-based nanomaterials for antibacterial applications: A state-of-the-art review.Front. Mater.2020721310.3389/fmats.2020.00213
    [Google Scholar]
  35. ZhangM. ZhangC. ZhaiX. LuoF. DuY. YanC. Antibacterial mechanism and activity of cerium oxide nanoparticles.Sci. China Mater.201962111727173910.1007/s40843‑019‑9471‑7
    [Google Scholar]
  36. ZandiM. HosseiniF. AdliA.H. SalmanzadehS. BehboudiE. HalvaeiP. KhosraviA. AbbasiS. State-of-the-art cerium nanoparticles as promising agents against human viral infections.Biomed. Pharmacother.202215611386810.1016/j.biopha.2022.11386836257210
    [Google Scholar]
  37. NiuJ. WangK. KolattukudyP.E. Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract.J. Pharmacol. Exp. Ther.20113381536110.1124/jpet.111.17997821464334
    [Google Scholar]
  38. Abdal DayemA. HossainM. LeeS. KimK. SahaS. YangG.M. ChoiH. ChoS.G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles.Int. J. Mol. Sci.201718112010.3390/ijms1801012028075405
    [Google Scholar]
  39. AguiarT.K.B. NetoN.A.S. FreitasC.D.T. SilvaA.F.B. BezerraL.P. MalveiraE.A. BrancoL.A.C. MesquitaF.P. GoldmanG.H. AlencarL.M.R. OliveiraJ.T.A. Santos-OliveiraR. SouzaP.F.N. Antifungal potential of synthetic peptides against Cryptococcus neoformans: Mechanism of action studies reveal synthetic peptides induce membrane-pore formation, DNA degradation, and apoptosis.Pharmaceutics2022148167810.3390/pharmaceutics1408167836015304
    [Google Scholar]
  40. RexJ.H. Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard.NCCLS20082814 https://clsi.org/media/1461/m27a3_sample.pdf
    [Google Scholar]
  41. ChoiJ. ReipaV. HitchinsV.M. GoeringP.L. MalinauskasR.A. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles.Toxicol. Sci.2011123113314310.1093/toxsci/kfr14921652737
    [Google Scholar]
  42. BattagliniM. TapeinosC. CavaliereI. MarinoA. AnconaA. GarinoN. CaudaV. PalazonF. DebellisD. CiofaniG. Design, fabrication, and in vitro evaluation of nanoceria-loaded nanostructured lipid carriers for the treatment of neurological diseases.ACS Biomater. Sci. Eng.20195267068210.1021/acsbiomaterials.8b0103333405830
    [Google Scholar]
  43. Martín-FabianiI. KohM.L. DalmasF. ElidottirK.L. HinderS.J. JurewiczI. LansalotM. Bourgeat-LamiE. KeddieJ.L. Design of waterborne nanoceria/polymer nanocomposite UV-absorbing coatings: Pickering versus blended particles.ACS Appl. Nano Mater.2018183956396810.1021/acsanm.8b00736
    [Google Scholar]
  44. Villanueva-FloresF. Castro-LugoA. RamírezO.T. PalomaresL.A. Understanding cellular interactions with nanomaterials: Towards a rational design of medical nanodevices.Nanotechnology2020311313200210.1088/1361‑6528/ab5bc831770746
    [Google Scholar]
  45. BehzadiS. SerpooshanV. TaoW. HamalyM.A. AlkawareekM.Y. DreadenE.C. BrownD. AlkilanyA.M. FarokhzadO.C. MahmoudiM. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A28585944
    [Google Scholar]
  46. ChoyE.H. De BenedettiF. TakeuchiT. HashizumeM. JohnM.R. KishimotoT. Translating IL-6 biology into effective treatments.Nat. Rev. Rheumatol.202016633534510.1038/s41584‑020‑0419‑z32327746
    [Google Scholar]
  47. KaurS. BansalY. KumarR. BansalG. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors.Bioorg. Med. Chem.202028511532710.1016/j.bmc.2020.11532731992476
    [Google Scholar]
  48. PapadopoulosZ. The role of the cytokine TNF-α in choroidal neovascularization: A systematic review.Eye202310.1038/s41433‑023‑02634‑537380786
    [Google Scholar]
  49. VarfolomeevE. VucicD. Intracellular regulation of TNF activity in health and disease.Cytokine2018101263210.1016/j.cyto.2016.08.03527623350
    [Google Scholar]
  50. DaneshniaF. de Almeida JúniorJ.N. IlkitM. LombardiL. PerryA.M. GaoM. NobileC.J. EggerM. PerlinD.S. ZhaiB. HohlT.M. GabaldónT. ColomboA.L. HoeniglM. ArastehfarA. Worldwide emergence of fluconazole-resistant Candida parapsilosis: current framework and future research roadmap.Lancet Microbe202346e470e48010.1016/S2666‑5247(23)00067‑837121240
    [Google Scholar]
  51. MenezesE.A. Vasconcelos JúniorA.A. CunhaF.A. CunhaM.C.S.O. BrazB.H.L. CapeloL.G. SilvaC.L.F. Identificação molecular e suscetibilidade antifúngica de Candida parapsilosis isoladas no Ceará, Brasil.J. Bras. Patol. Med. Lab.201248641542010.1590/S1676‑24442012000600005
    [Google Scholar]
  52. DuanZ. ChenX. DuL. LiuC. ZengR. ChenQ. LiM. Inflammation induced by Candida parapsilosis in THP-1 cells and human Peripheral Blood Mononuclear Cells (PBMCs).Mycopathologia201718211-121015102310.1007/s11046‑017‑0187‑828801727
    [Google Scholar]
  53. TóthA. ZajtaE. CsonkaK. VágvölgyiC. NeteaM.G. GácserA. Specific pathways mediating inflammasome activation by Candida parapsilosis.Sci. Rep.2017714312910.1038/srep4312928225025
    [Google Scholar]
  54. CavalheiroM. TeixeiraM.C. Candida biofilms: Threats, challenges, and promising strategies.Front. Med.201852810.3389/fmed.2018.0002829487851
    [Google Scholar]
  55. TrofaD. GácserA. NosanchukJ.D. Candida parapsilosis, an emerging fungal pathogen.Clin. Microbiol. Rev.200821460662510.1128/CMR.00013‑0818854483
    [Google Scholar]
  56. RamageG. MartínezJ.P. López-RibotJ.L. Candida biofilms on implanted biomaterials: A clinically significant problem.FEMS Yeast Res.20066797998610.1111/j.1567‑1364.2006.00117.x17042747
    [Google Scholar]
  57. PappC. BohnerF. KocsisK. VargaM. SzekeresA. BodaiL. WillisJ.R. GabaldónT. TóthR. NosanchukJ.D. VágvölgyiC. GácserA. Triazole evolution of Candida parapsilosis results in cross-resistance to other antifungal drugs, influences stress responses, and alters virulence in an antifungal drug-dependent manner.MSphere202055e00821-2010.1128/mSphere.00821‑2033115837
    [Google Scholar]
  58. ChoiH. LeeD.G. Antifungal activity and pore-forming mechanism of astacidin 1 against Candida albicans.Biochimie2014105586310.1016/j.biochi.2014.06.01424955933
    [Google Scholar]
  59. SéguyL. GrooA.C. GouxD. HennequinD. Malzert-FréonA. Design of non-haemolytic nanoemulsions for intravenous administration of hydrophobic APIs.Pharmaceutics20201212114110.3390/pharmaceutics1212114133255606
    [Google Scholar]
  60. YaoY. ZangY. QuJ. TangM. ZhangT. The toxicity of metallic nanoparticles on liver: The subcellular damages, mechanisms, and outcomes.Int. J. Nanomed.2019148787880410.2147/IJN.S21290731806972
    [Google Scholar]
  61. TaubR. Liver regeneration: From myth to mechanism.Nat. Rev. Mol. Cell Biol.200451083684710.1038/nrm148915459664
    [Google Scholar]
  62. MichalopoulosG.K. BhushanB. Liver regeneration: Biological and pathological mechanisms and implications.Nat. Rev. Gastroenterol. Hepatol.2021181405510.1038/s41575‑020‑0342‑432764740
    [Google Scholar]
  63. YuH. LiuD. ShuG. JinF. DuY. Recent advances in nanotherapeutics for the treatment and prevention of acute kidney injury.Asian J. Pharmaceut. Sci.202116443244310.1016/j.ajps.2020.11.001
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673285605231229112525
Loading
/content/journals/cmc/10.2174/0109298673285605231229112525
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test