Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Aims

This study aims to identify and evaluate novel KRAS G12C inhibitors using methods, focusing on molecular docking and ADMET profiling to optimize binding affinity, pharmacokinetics, and safety profiles.

Background

The KRAS G12C mutation is a key driver of oncogenesis in aggressive cancers, including non-small cell lung cancer. Although inhibitors such as sotorasib have been developed, challenges like hepatotoxicity and resistance limit their clinical use.

Objectives

This study seeks to design and assess potential KRAS G12C inhibitors with superior binding interactions and pharmacokinetic properties compared to existing drugs.

Materials and Methods

Molecular docking simulations were conducted to evaluate the binding affinities of inhibitors, followed by ADMET profiling to assess pharmacokinetics, drug-likeness, and toxicity.

Results

Novel compounds, such as CID_137278727, demonstrated higher binding affinities (-10.8 kcal/mol) and favourable ADMET profiles compared to sotorasib (-8.1 kcal/mol). Key interactions with residues GLU62, TYR96, and CYS12 were identified, though hepatotoxicity remains a concern.

Conclusion

approaches have identified promising KRAS G12C inhibitors with enhanced efficacy and pharmacokinetics, highlighting the potential of computational methods in advancing targeted therapies for KRAS-driven cancers.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X372076250528015126
2025-06-10
2025-10-26
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X372076.html?itemId=/content/journals/cis/10.2174/012210299X372076250528015126&mimeType=html&fmt=ahah

References

  1. CoxA.D. FesikS.W. KimmelmanA.C. LuoJ. DerC.J. Drugging the undruggable RAS: Mission possible?Nat. Rev. Drug Discov.2014131182885110.1038/nrd438925323927
    [Google Scholar]
  2. HobbsG.A. DerC.J. RossmanK.L. RAS isoforms and mutations in cancer at a glance.J. Cell Sci.201612971287129210.1242/jcs.18287326985062
    [Google Scholar]
  3. PapkeB. DerC.J. Drugging RAS: Know the enemy.Science201735563301158116328302824
    [Google Scholar]
  4. DownwardJ. RAS synthetic lethal screens revisited: Still seeking the elusive prize?Clin. Cancer Res.20152181802180910.1158/1078‑0432.CCR‑14‑218025878361
    [Google Scholar]
  5. PriorI.A. HoodF.E. HartleyJ.L. The frequency of ras mutations in cancer.Cancer Res.202080142969297410.1158/0008‑5472.CAN‑19‑368232209560
    [Google Scholar]
  6. OstremJ.M. PetersU. SosM.L. WellsJ.A. ShokatK.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions.Nature2013503747754855110.1038/nature1279624256730
    [Google Scholar]
  7. MaurerT. GarrentonL.S. OhA. PittsK. AndersonD.J. SkeltonN.J. FauberB.P. PanB. MalekS. StokoeD. LudlamM.J. BowmanK.K. WuJ. GiannettiA.M. StarovasnikM.A. MellmanI. JacksonP.K. RudolphJ. WangW. FangG. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity.Proc. Natl. Acad. Sci. USA2012109145299530410.1073/pnas.111651010922431598
    [Google Scholar]
  8. BannouraS.F. UddinM.H. NagasakaM. FaziliF. Al-HallakM.N. PhilipP.A. El-RayesB. AzmiA.S. Targeting KRAS in pancreatic cancer: New drugs on the horizon.Cancer Metastasis Rev.202140381983510.1007/s10555‑021‑09990‑234499267
    [Google Scholar]
  9. CanonJ. RexK. SaikiA.Y. MohrC. CookeK. BagalD. GaidaK. HoltT. KnutsonC.G. KoppadaN. LanmanB.A. WernerJ. RapaportA.S. San MiguelT. OrtizR. OsgoodT. SunJ.R. ZhuX. McCarterJ.D. VolakL.P. HoukB.E. FakihM.G. O’NeilB.H. PriceT.J. FalchookG.S. DesaiJ. KuoJ. GovindanR. HongD.S. OuyangW. HenaryH. ArvedsonT. CeeV.J. LipfordJ.R. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity.Nature2019575778121722310.1038/s41586‑019‑1694‑131666701
    [Google Scholar]
  10. HallinJ. EngstromL.D. HargisL. CalinisanA. ArandaR. BriereD.M. SudhakarN. BowcutV. BaerB.R. BallardJ.A. BurkardM.R. FellJ.B. FischerJ.P. VigersG.P. XueY. GattoS. Fernandez-BanetJ. PavlicekA. VelastaguiK. ChaoR.C. BartonJ. PierobonM. BaldelliE. PatricoinE.F.III CassidyD.P. MarxM.A. RybkinI.I. JohnsonM.L. OuS.I. LitoP. PapadopoulosK.P. JänneP.A. OlsonP. ChristensenJ.G. The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients.Cancer Discov.2020101547110.1158/2159‑8290.CD‑19‑116731658955
    [Google Scholar]
  11. SkoulidisF. LiB.T. DyG.K. PriceT.J. FalchookG.S. WolfJ. ItalianoA. SchulerM. BorghaeiH. BarlesiF. KatoT. Curioni-FontecedroA. SacherA. SpiraA. RamalingamS.S. TakahashiT. BesseB. AndersonA. AngA. TranQ. MatherO. HenaryH. NgarmchamnanrithG. FribergG. VelchetiV. GovindanR. Sotorasib for lung cancers with KRAS p.G12C mutation.N. Engl. J. Med.2021384252371238110.1056/NEJMoa210369534096690
    [Google Scholar]
  12. JänneP.A. RielyG.J. GadgeelS.M. HeistR.S. OuS.I. PachecoJ.M. JohnsonM.L. SabariJ.K. LeventakosK. YauE. BazhenovaL. NegraoM.V. PennellN.A. ZhangJ. AnderesK. Der-TorossianH. KheohT. VelasteguiK. YanX. ChristensenJ.G. ChaoR.C. SpiraA.I. Adagrasib in non-small-cell lung cancer harboring a KRASG12C mutation.N. Engl. J. Med.2022387212013110.1056/NEJMoa220461935658005
    [Google Scholar]
  13. Bekaii-SaabT.S. YaegerR. SpiraA.I. PelsterM.S. SabariJ.K. HafezN. BarveM. VelasteguiK. YanX. ShettyA. Der-TorossianH. PantS. Adagrasib in advanced solid tumors harboring a KRASG12C mutation.J. Clin. Oncol.202341254097410610.1200/JCO.23.0043437099736
    [Google Scholar]
  14. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd154915520816
    [Google Scholar]
  15. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  16. TrottO. OlsonA.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  17. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W.Jr Computational methods in drug discovery.Pharmacol. Rev.201466133439510.1124/pr.112.00733624381236
    [Google Scholar]
  18. HouT. WangJ. LiY. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine.J. Chem. Inf. Model.20074762408241510.1021/ci700207617929911
    [Google Scholar]
  19. van de WaterbeemdH. GiffordE. ADMET in silico modelling: Towards prediction paradise?Nat. Rev. Drug Discov.20032319220410.1038/nrd103212612645
    [Google Scholar]
  20. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  21. ChengF. LiW. LiuG. TangY. In silico ADMET prediction: Recent advances, current challenges and future trends.Curr. Top. Med. Chem.201313111273128910.2174/1568026611313999003323675935
    [Google Scholar]
  22. ShiZ.D. PangK. WuZ.X. DongY. HaoL. QinJ.X. Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies.Signal Transduct. Target. Ther.20238112110.1038/s41392‑023‑01383‑x
    [Google Scholar]
  23. ZhuC. GuanX. ZhangX. LuanX. SongZ. ChengX. ZhangW. QinJ.J. Targeting KRAS mutant cancers: From druggable therapy to drug resistance.Mol. Cancer202221115910.1186/s12943‑022‑01629‑235922812
    [Google Scholar]
  24. AwadM.M. LiuS. RybkinI.I. ArbourK.C. DillyJ. ZhuV.W. JohnsonM.L. HeistR.S. PatilT. RielyG.J. JacobsonJ.O. YangX. PerskyN.S. RootD.E. LowderK.E. FengH. ZhangS.S. HaigisK.M. HungY.P. ShollL.M. WolpinB.M. WieseJ. ChristiansenJ. LeeJ. SchrockA.B. LimL.P. GargK. LiM. EngstromL.D. WatersL. LawsonJ.D. OlsonP. LitoP. OuS.I. ChristensenJ.G. JänneP.A. AguirreA.J. Acquired resistance to KRASG12C inhibition in cancer.N. Engl. J. Med.2021384252382239310.1056/NEJMoa210528134161704
    [Google Scholar]
  25. NokinM.J. MiraA. PatruccoE. RicciutiB. CousinS. SoubeyranI. RAS-ON inhibition overcomes clinical resistance to KRAS G12C-OFF covalent blockade.Nat. Commun.2024151118
    [Google Scholar]
  26. LanmanB.A. AllenJ.R. AllenJ.G. AmegadzieA.K. AshtonK.S. BookerS.K. ChenJ.J. ChenN. FrohnM.J. GoodmanG. KopeckyD.J. LiuL. LopezP. LowJ.D. MaV. MinattiA.E. NguyenT.T. NishimuraN. PickrellA.J. ReedA.B. ShinY. SiegmundA.C. TamayoN.A. TegleyC.M. WaltonM.C. WangH.L. WurzR.P. XueM. YangK.C. AchantaP. BartbergerM.D. CanonJ. HollisL.S. McCarterJ.D. MohrC. RexK. SaikiA.Y. San MiguelT. VolakL.P. WangK.H. WhittingtonD.A. ZechS.G. LipfordJ.R. CeeV.J. Discovery of a covalent inhibitor of KRASG12C (AMG 510) for the treatment of solid tumors.J. Med. Chem.2020631526510.1021/acs.jmedchem.9b0118031820981
    [Google Scholar]
  27. OyedeleA.K. OgunlanaA.T. BoyenleI.D. IbrahimN.O. GbadeboI.O. OwolabiN.A. AyoolaA.M. FrancisA.C. EyinadeO.H. AdelusiT.I. Pharmacophoric analogs of sotorasib-entrapped KRAS G12C in its inactive GDP-bound conformation: covalent docking and molecular dynamics investigations.Mol. Divers.20232741795180710.1007/s11030‑022‑10534‑136271195
    [Google Scholar]
  28. RCSB PDB - 6OIM: Crystal structure of human KRAS G12C covalently bound to AMG 510.2019Available from: https://www.rcsb.org/structure/6OIM
/content/journals/cis/10.2174/012210299X372076250528015126
Loading
/content/journals/cis/10.2174/012210299X372076250528015126
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test