Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

The pyrrole ring, mainly 3,4-dimethyl-1H-pyrrole, is present in several pharmacologically active substances and naturally occurring medications. The specific methyl group substitution patterns of 3,4-dimethyl-1H-pyrrole affect how it interacts with and reacts to biological targets, making it a unique and useful compound in several research fields.

However, new initiatives are still required to synthesise such molecules with their enhanced potency as effective drug molecules. They are usually synthesized multicomponent methodologies, and recent developments in this specific field of study are highlighted in this overview.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X371892250820230621
2025-08-26
2025-10-31
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X371892.html?itemId=/content/journals/cis/10.2174/012210299X371892250820230621&mimeType=html&fmt=ahah

References

  1. ArifT. BhosaleJ.D. KumarN. MandalT.K. BendreR.S. LavekarG.S. DaburR. Natural products – antifungal agents derived from plants.J Asian Nat Prod Res200911762163810.1080/1028602090294235020183299
    [Google Scholar]
  2. LahlouM. The success of natural products in drug discovery.Pharmacol Pharm201343173110.4236/pp.2013.43A003
    [Google Scholar]
  3. HortonD.A. BourneG.T. SmytheM.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures.Chem Rev2003103389393010.1021/cr020033s12630855
    [Google Scholar]
  4. LeeperF.J. KellyJ.M. Synthesis of 3,4-disubstituted pyrroles. A review.Org Prep Proced Int201345317121010.1080/00304948.2013.786590
    [Google Scholar]
  5. RungeF. F. Ueber einige Produkte der Steinkohlendestillation.Annalen der Physik2025107657810.1002/andp.18341070502
    [Google Scholar]
  6. BaeyerA. EmmerlingA. Reduction des Isatins zu Indigblau.Berichte der deutschen chemischen Gesellschaft20253151410.1002/cber.187000301169
    [Google Scholar]
  7. JouleJ.A. MillsK. Heterocyclic chemistryBlackwell Science2000
    [Google Scholar]
  8. JonesR.A. BeanG.P. The chemistry of pyrrolesAcademic Press1997
    [Google Scholar]
  9. KatritzkyA.R. RamsdenC.A. ScrivenE.F.V. TaylorR.J.K. Comprehensive heterocyclic chemistry IIIElsevier2008
    [Google Scholar]
  10. BaumannM. BaxendaleI.R. LeyS.V. NikbinN. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals.Beilstein J Org Chem2011744249510.3762/bjoc.7.5721647262
    [Google Scholar]
  11. EstévezV. VillacampaM. MenéndezJ.C. Multicomponent reactions for the synthesis of pyrroles.Chem Soc Rev201039114402442110.1039/b917644f20601998
    [Google Scholar]
  12. YurttaşL. ÖzkayY. KaplancıklıZ.A. TunalıY. KaracaH. Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives.J Enzyme Inhib Med Chem201328483083510.3109/14756366.2012.68804322651798
    [Google Scholar]
  13. IdhayadhullaA. Surendra KumarR. Abdul NasserA.J. ManilalA. Synthesis and antimicrobial activity of some new pyrrole derivatives.Bull Chem Soc Ethiop201226342943510.4314/bcse.v26i3.12
    [Google Scholar]
  14. BialerM. YagenB. MechoulamR. BeckerY. Structure-activity relationships of pyrroleamidine antiviral antibiotics. 1. Modifications of the alkylamidine side chain.J Med Chem197922111296130110.1021/jm00197a004230350
    [Google Scholar]
  15. AlmericoA.M. DianaP. BarrajaP. DattoloG. MingoiaF. LoiA.G. ScintuF. MiliaC. PudduI. La CollaP. Glycosidopyrroles Part 1. Acyclic derivatives: 1-(2-hydroxyethoxy) methylpyrroles as potential anti-viral agents.Farmaco1998531334010.1016/S0014‑827X(97)00002‑59543724
    [Google Scholar]
  16. BattilocchioC. PoceG. AlfonsoS. PorrettaG.C. ConsalviS. SautebinL. PaceS. RossiA. GhelardiniC. Di Cesare MannelliL. SchenoneS. GiordaniA. Di FrancescoL. PatrignaniP. BiavaM. A class of pyrrole derivatives endowed with analgesic/anti-inflammatory activity.Bioorg Med Chem201321133695370110.1016/j.bmc.2013.04.03123680444
    [Google Scholar]
  17. MohamedM.S. KamelR. FathallahS.S. Synthesis of new pyrroles of potential anti-inflammatory activity.Arch Pharm (Weinheim)20113441283083910.1002/ardp.20110005621956581
    [Google Scholar]
  18. LiuK. LuH. HouL. QiZ. TeixeiraC. BarbaultF. FanB.T. LiuS. JiangS. XieL. Design, synthesis, and biological evaluation of N-carboxyphenylpyrrole derivatives as potent HIV fusion inhibitors targeting gp41.J Med Chem200851247843785410.1021/jm800869t19053778
    [Google Scholar]
  19. YangF. NickolsN.G. LiB.C. MarinovG.K. SaidJ.W. DervanP.B. Antitumor activity of a pyrrole-imidazole polyamide.Proc Natl Acad Sci USA201311051863186810.1073/pnas.122203511023319609
    [Google Scholar]
  20. NickolsN. YangF. RatikanJ. A. LiB. C. McBrideW. H. DervanP. B. Radiosensitization by high affinity programmable minor groove binders.Int J Radiat Oncol Biol Phys2013872S651S65210.1016/j.ijrobp.2013.06.1725
    [Google Scholar]
  21. SmithenD.A. YinH. BehM.H.R. HetuM. CameronT.S. McFarlandS.A. ThompsonA. Synthesis and Photobiological Activity of Ru(II) dyads derived from pyrrole-2-carboxylate thionoesters.Inorg Chem20175674121413210.1021/acs.inorgchem.7b0007228301148
    [Google Scholar]
  22. WangD. HuX. ZhaoG. Effect of the side chain size of 1-alkyl-pyrroles on antioxidant activity and ‘Laba’ garlic greening.Int J Food Sci Technol20254310188010.1111/j.1365‑2621.2008.01778.x
    [Google Scholar]
  23. WangQ. WangY. YangZ.Y. Synthesis, characterization, and the antioxidative activity of 4-{[(3,4-dimethyl pyrrole-2-carbonyl)hydrazono](phenyl)methyl}-3-methyl-1-phenylpyrazol-5-ol and Its zinc(II), copper(II), nickel(II) complexes.Chem Pharm Bull (Tokyo)20085671018102110.1248/cpb.56.101818591824
    [Google Scholar]
  24. CarsonJ.R. McKinstryD.N. WongS. 5-Benzoyl-1-methylpyrrole-2-acetic acids as antiinflammatory agents.J Med Chem197114764664710.1021/jm00289a0265164457
    [Google Scholar]
  25. MarchiniS. BrogginiM. SessaC. D’IncalciM. Development of distamycin-related DNA binding anticancer drugs.Expert Opin Investig Drugs20011091703171410.1517/13543784.10.9.170311772279
    [Google Scholar]
  26. PahanK. Lipid-lowering drugs.Cell Mol Life Sci200663101165117810.1007/s00018‑005‑5406‑716568248
    [Google Scholar]
  27. BhosaleJ.D. ShirolkarA.R. PeteU.D. ZadeC.M. MahajanD.P. HadoleC.D. PawarS.D. PatilU.D. DaburR. BendreR.S. Synthesis, characterization and biological activities of novel substituted formazans of 3,4-dimethyl-1H-pyrrole-2-carbohydrazide derivatives.J Pharm Res20137758258710.1016/j.jopr.2013.07.022
    [Google Scholar]
  28. ChenY.-M. ZhangZ.-P. HuangX.-Y. LiX.-N. WangY. Crystal structure of 3,4-dimethyl-1H-pyrrole- 2-carbohydrazide.Z Kristallogr NCS202522652953010.1524/ncrs.2011.0235
    [Google Scholar]
  29. BharK. MondalD.S. MondalD. Ideologues established Yash Churna’s authenticity using pharmacognostic, physicochemical, and chromatographic approaches.Neuroquantology202220101049810.14704/nq.2022.20.10.NQ551021
    [Google Scholar]
  30. LeeC. LeeY. LeeJ.G. BuglassA.J. Development of a simultaneous multiple solid-phase microextraction-single shot-gas chromatography/mass spectrometry method and application to aroma profile analysis of commercial coffee.J Chromatogr A20131295244110.1016/j.chroma.2013.04.05623672978
    [Google Scholar]
  31. ShokryE. de OliveiraA.E. AvelinoM.A.G. de DeusM.M. FilhoN.R.A. Earwax: A neglected body secretion or a step ahead in clinical diagnosis? A pilot study.J Proteomics20171599210110.1016/j.jprot.2017.03.00528286320
    [Google Scholar]
  32. XiaoY. HuangY. ChenY. ZhuM. HeC. LiZ. WangY. LiuZ. Characteristic fingerprints and change of volatile organic compounds of dark teas during solid-state fermentation with Eurotium cristatum by using HS-GC-IMS, HS-SPME-GC-MS, E-nose and sensory evaluation.Lebensm Wiss Technol202216911392510.1016/j.lwt.2022.113925
    [Google Scholar]
  33. XingH. MuK. KittsD.D. YaylayanV.A. Molecular basis for the simultaneous enhancement of the aroma-generating capacity and bioactivity of maillard reaction precursors through mechanochemistry.J Agric Food Chem20227042136371365010.1021/acs.jafc.2c0564436226926
    [Google Scholar]
  34. EfeovbokhanV.E. AkinneyeD. AyeniA.O. OmoleyeJ.A. BoladeO. OniB.A. Experimental dataset investigating the effect of temperature in the presence or absence of catalysts on the pyrolysis of plantain and yam peels for bio-oil production.Data Brief20203110580410.1016/j.dib.2020.10580432577450
    [Google Scholar]
  35. Xu-YanD. Ping-PingL. FangW. Mu-lanJ. Ying-ZhongZ. Guang-MingL. HongC. Yuan-DiZ. The impact of processing on the profile of volatile compounds in sesame oil.European J Lipid Sci Technol202511427710.1002/ejlt.201100059
    [Google Scholar]
  36. SudibyoH. BudhijantoB. CabreraD.V. MahannadaA. MarbeliaL. PrasetyoD.J. AnwarM. Kinetic and thermodynamic evidence of the paal–knorr and debus–radziszewski reactions underlying formation of pyrroles and imidazoles in hydrothermal liquefaction of glucose–glycine mixtures.Energy Fuels20243843343335610.1021/acs.energyfuels.3c05051
    [Google Scholar]
  37. ImaiS. AkitaK. TomotakeM. SawadaH. Identification of two novel pigment precursors and a reddish-purple pigment involved in the blue-green discoloration of onion and garlic.J Agric Food Chem200654384384710.1021/jf051981816448192
    [Google Scholar]
  38. BumaginaN.A. KrasovskayaZ.S. KsenofontovA.A. AntinaE.V. BerezinM.B. Reactivity and zinc affinity of dipyrromethenes as colorimetric sensors: Structural and solvation effects.J Mol Liq202439912439710.1016/j.molliq.2024.124397
    [Google Scholar]
  39. Delage-LaurinL. SwagerT.M. Liquid crystalline magneto-optically active peralkylated azacoronene.JACS Au2023371965197410.1021/jacsau.3c0021237502152
    [Google Scholar]
  40. RobbenU. LindnerI. GärtnerW. New open-chain tetrapyrroles as chromophores in the plant photoreceptor phytochrome.J Am Chem Soc200813034113031131110.1021/ja076728y18671352
    [Google Scholar]
  41. WarrenM.J. ScottA.I. Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors.Trends Biochem Sci1990151248649110.1016/0968‑0004(90)90304‑T2077690
    [Google Scholar]
  42. BattersbyA.R. Tetrapyrroles: the pigments of life.Nat Prod Rep200017650752610.1039/b002635m11152419
    [Google Scholar]
  43. OndrusA. E. MovassaghiM. Total synthesis and study of myrmicarin alkaloids.Chem Commun (Camb)200945284151416510.1039/b903995n
    [Google Scholar]
  44. WilliamsonN.R. FineranP.C. LeeperF.J. SalmondG.P.C. The biosynthesis and regulation of bacterial prodiginines.Nat Rev Microbiol200641288789910.1038/nrmicro153117109029
    [Google Scholar]
  45. MaedaH. MihashiY. HaketaY. Heteroaryl-substituted C3-bridged oligopyrroles: Potential building subunits of anion-responsive π-conjugated oligomers.Org Lett200810153179318210.1021/ol801014z18576661
    [Google Scholar]
  46. KrosA. van HövelS.W.F.M. NolteR.J.M. SommerdijkN.A.J.M. A printable glucose sensor based on a poly(pyrrole)-latex hybrid material.Sens Actuators B Chem200180322923310.1016/S0925‑4005(01)00909‑1
    [Google Scholar]
  47. CidarérC. HoffmannM. OelmannJ. WolframB. BröringM. One-Pot preparation of non-symmetric meso-aryl-bodipys: Functional derivatives with unusual reactivity.Eur J Org Chem201720171778610.1002/ejoc.201601243
    [Google Scholar]
  48. HamiltonS. HepherM.J. SommervilleJ. Polypyrrole materials for detection and discrimination of volatile organic compounds.Sens Actuators B Chem2005107142443210.1016/j.snb.2004.11.001
    [Google Scholar]
  49. LoudetA. BurgessK. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties.Chem Rev2007107114891493210.1021/cr078381n17924696
    [Google Scholar]
  50. GuernionN.J.L. HayesW. 3- and 3,4-Substituted pyrroles and thiophenes and their corresponding polymers: A review.Curr Org Chem20048763765110.2174/1385272043370771
    [Google Scholar]
  51. OthaG. Disubstituted polypyrroles and articles of manufacture coated therewith.1985
  52. TraynorL. Polymethylene pyrroles and electrically conductive polymers thereof.1984
  53. OnoN. MiyagawaH. UetaT. OgawaT. TaniH. Synthesis of 3,4-diarylpyrroles and conversion into dodecaarylporphyrins: A new approach to porphyrins with altered redox potentials.J Chem Society, Perkin Trans19981159510.1039/a801185k
    [Google Scholar]
  54. MyersR.E. Chemical oxidative polymerization as a synthetic route to electrically conducting polypyrroles.J Electron Mater1986152616910.1007/BF02649904
    [Google Scholar]
  55. DaburR. DiwediS.K. YadavV. MishraV. SinghR. SinghH. SharmaG.L. Efficacy of 2-(3,4-dimethyl-2,5-dihydro-1h-pyrrole-2-yl)-1-methylethyl pentanoate in a murine model of invasive aspergillosis.Antimicrob Agents Chemother200549104365436710.1128/AAC.49.10.4365‑4367.200516189123
    [Google Scholar]
  56. DaburR. MandalT.K. SharmaG.L. Post-antifungal effects of the antifungal compound 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate on Aspergillus fumigatus. J Med Microbiol200756681581810.1099/jmm.0.47120‑017510268
    [Google Scholar]
  57. Rajesh SharmaG.L. Studies on antimycotic properties of Datura metel.J Ethnopharmacol2002802-319319710.1016/S0378‑8741(02)00036‑312007710
    [Google Scholar]
  58. DaburR. AliM. SinghH. GuptaJ. SharmaG.L. A novel antifungal pyrrole derivative from Datura metel leaves.Pharmazie2004597568570[From NLM Medline.]15296098
    [Google Scholar]
  59. DaburR. ChhillarA.K. YadavV. KamalP.K. GuptaJ. SharmaG.L. In vitro antifungal activity of 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative.J Med Microbiol200554654955210.1099/jmm.0.45968‑015888463
    [Google Scholar]
  60. KleinspehnG.G. A novel route to certain 2-pyrrolecarboxylic esters and nitriles 1,2.J Am Chem Soc19557761546154810.1021/ja01611a043
    [Google Scholar]
  61. ByunY.-S. LightnerD. A. Synthesis and properties of a bilirubin analog with propionic acid groups replaced by carboxyl.J Heterocycl Chem19912810.1002/jhet.5570280707
    [Google Scholar]
  62. StopferC. H. D'AndreaR. W. Pyrroles and pyrazolines from the ring closure of azines.J Heterocyclic Chem20257365110.1002/jhet.5570070328
    [Google Scholar]
  63. IchimuraK. IchikawaS. ImamuraK. Syntheses of 3,4-Dimethylpyrrole.Bull Chem Soc Jpn19764941157115810.1246/bcsj.49.1157
    [Google Scholar]
  64. ChengD. O. BowmanT. L. LegoffE. Synthesis and michael reaction of 3,4-dimethylpyrrol.J Heterocyclic Chem20251351145114710.1002/jhet.5570130549
    [Google Scholar]
  65. BaldwinJ. E. BottaroJ. C. A general synthesis of pyrroles from aldehydes and ketones.J Chem Soc Chem Commun198219821162462510.1039/C39820000624
    [Google Scholar]
  66. BogerD.L. ColemanR.S. PanekJ.S. YohannesD. Thermal cycloaddition of dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate with electron-rich olefins: 1,2-diazine and pyrrole introduction. Preparation of octamethylporphin (OMP).J Org Chem198449234405440910.1021/jo00197a015
    [Google Scholar]
  67. ChenQ. WangT. ZhangY. WangQ. MaJ. Large scale, efficient synthesis of 9-unsubstituted dipyrrinone.Synth Commun20023271031104010.1081/SCC‑120003151
    [Google Scholar]
  68. BhattacharyaA. CherukuriS. PlataR.E. PatelN. TamezV. GrossoJ.A. PeddicordM. PalaniswamyV.A. Remarkable solvent effect in Barton–Zard pyrrole synthesis: Application in an efficient one-step synthesis of pyrrole derivatives.Tetrahedron Lett200647315481548410.1016/j.tetlet.2006.05.167
    [Google Scholar]
  69. MilgramB.C. EskildsenK. RichterS.M. ScheidtW.R. ScheidtK.A. Microwave-assisted Piloty-Robinson synthesis of 3,4-disubstituted pyrroles.J Org Chem200772103941394410.1021/jo070389+17432915
    [Google Scholar]
  70. CortésG.F. AvilaJ.Z.G. MaldonadoG.L.A. RzepaH. S. SnyderJ. P. LeachC. Electronic Conference on Heterocyclic Chemistry.LondonRoyal Society of Chemistry1997
    [Google Scholar]
  71. HelmsA. HeilerD. McLendonG. Electron transfer in bis-porphyrin donor-acceptor compounds with polyphenylene spacers shows a weak distance dependence.J Am Chem Soc1992114156227623810.1021/ja00041a047
    [Google Scholar]
/content/journals/cis/10.2174/012210299X371892250820230621
Loading
/content/journals/cis/10.2174/012210299X371892250820230621
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test