Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Biofilm formation often has detrimental effects from clinical and industrial perspectives. They are found to be resistant to antibiotics, detergents, ., causing their treatment and cure to be onerous. Therefore, it becomes a necessity to develop novel methods to inhibit it. Iron is an essential regulator of bacterial biofilm formation. Studies suggest that by modulating iron concentration using either iron-chelating substances or iron salts, biofilm inhibition can be achieved depending on the mechanism of biofilm formation. This approach inhibits the expression of several genes responsible for adherence and colonization of bacteria. The use of nanoparticles is gaining rapid interest for biofilm inhibition. The ability of nanoparticles to act as antibacterial agents depends on their surface-to-mass ratio. Owing to their small size, certain metal nanoparticles can penetrate the EPS and inhibit bacterial adhesion and biofilm formation. Nanoparticles (NP) bring about cell lysis by interacting with cell membranes or producing Reactive Oxygen Species (ROS). Owing to the mechanical, thermal, or physiochemical properties of nanocomposite material, it is also studied for biofilm inhibition in various organisms. A widely appreciated method of NP synthesis is green synthesis, which makes use of plant extracts and microorganisms. Interestingly, plant extracts inherently are known to possess antimicrobial and anti-biofilm effects owing to their bioactive compounds. Plants synthesize secondary metabolites such as steroids, terpenoids, alkaloids, quinones, tannins, flavonoids, ., for their defense, pollination, flavor, . Plant extracts made using appropriate solvents can be used to inhibit biofilm formed on various surfaces. They have been known to reduce biofilm by hindering exopolysaccharide formation and quorum sensing. In this review, we aim to describe these potential methods of biofilm inhibition.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X265522231006041656
2023-10-23
2025-09-16
Loading full text...

Full text loading...

/deliver/fulltext/cis/1/1/CIS-1-E2210299X265522.html?itemId=/content/journals/cis/10.2174/012210299X265522231006041656&mimeType=html&fmt=ahah

References

  1. GarrettT.R. BhakooM. ZhangZ. Bacterial adhesion and biofilms on surfaces.Prog. Nat. Sci.20081891049105610.1016/j.pnsc.2008.04.001
    [Google Scholar]
  2. WatnickP. KolterR. Biofilm, city of microbes.J. Bacteriol.2000182102675267910.1128/JB.182.10.2675‑2679.200010781532
    [Google Scholar]
  3. JeffersonK.K. What drives bacteria to produce a biofilm?FEMS Microbiol. Lett.2004236216317310.1111/j.1574‑6968.2004.tb09643.x15251193
    [Google Scholar]
  4. FlemmingH.C. NeuT.R. WozniakD.J. The EPS matrix: The “house of biofilm cells”.J. Bacteriol.2007189227945794710.1128/JB.00858‑0717675377
    [Google Scholar]
  5. LimoliD. H. JonesC. J. WozniakD. J. Bacterial extracellular polysaccharides in biofilm formation and function.Microbiol Spectr20173310
    [Google Scholar]
  6. AnnousB.A. FratamicoP.M. SmithJ.L. Scientific status summary.J. Food Sci.2009741R24R3710.1111/j.1750‑3841.2008.01022.x19200115
    [Google Scholar]
  7. Mattila-SandholmT. WirtanenG. Biofilm formation in the industry: A review.Food Rev. Int.19928457360310.1080/87559129209540953
    [Google Scholar]
  8. HarrisonJ.J. CeriH. StremickC.A. TurnerR.J. Biofilm susceptibility to metal toxicity.Environ. Microbiol.20046121220122710.1111/j.1462‑2920.2004.00656.x15560820
    [Google Scholar]
  9. JamalM. AhmadW. AndleebS. JalilF. ImranM. NawazM.A. HussainT. AliM. RafiqM. KamilM.A. Bacterial biofilm and associated infections.J. Chin. Med. Assoc.201881171110.1016/j.jcma.2017.07.01229042186
    [Google Scholar]
  10. ShikumaN.J. HadfieldM.G. Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae.Biofouling2010261394610.1080/0892701090328281420390555
    [Google Scholar]
  11. EnningD. GarrelfsJ. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem.Appl. Environ. Microbiol.20148041226123610.1128/AEM.02848‑1324317078
    [Google Scholar]
  12. ShresthaL. FanH.M. TaoH.R. HuangJ.D. Recent strategies to combat biofilms using antimicrobial agents and therapeutic approaches.Pathogens202211329210.3390/pathogens1103029235335616
    [Google Scholar]
  13. LuL. HuW. TianZ. YuanD. YiG. ZhouY. ChengQ. ZhuJ. LiM. Developing natural products as potential anti-biofilm agents.Chin. Med.20191411110.1186/s13020‑019‑0232‑230936939
    [Google Scholar]
  14. SahliC. MoyaS.E. LomasJ.S. Gravier-PelletierC. BriandetR. HémadiM. Recent advances in nanotechnology for eradicating bacterial biofilm.Theranostics20221252383240510.7150/thno.6729635265216
    [Google Scholar]
  15. GreenbergE.P. BaninE. Ironing out the biofilm problem:The role of iron in biofilm formation.Control of Biofilm Infections by Signal Manipulation. BalabanN. Berlin HeidelbergSpringer2008Vol. 214115610.1007/7142_2007_014
    [Google Scholar]
  16. MoonJ.H. KimC. LeeH.S. KimS.W. LeeJ.Y. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia.J. Med. Microbiol.20136291307131610.1099/jmm.0.053553‑023329319
    [Google Scholar]
  17. EscolarL. Pérez-MartínJ. de LorenzoV. Opening the iron box: Transcriptional metalloregulation by the Fur protein.J. Bacteriol.1999181206223622910.1128/JB.181.20.6223‑6229.199910515908
    [Google Scholar]
  18. SunF. GaoH. ZhangY. WangL. FangN. TanY. GuoZ. XiaP. ZhouD. YangR. Fur is a repressor of biofilm formation in Yersinia pestis.PLoS One2012712e5239210.1371/journal.pone.005239223285021
    [Google Scholar]
  19. JohnsonM. CockayneA. WilliamsP.H. MorrisseyJ.A. Iron-responsive regulation of biofilm formation in staphylococcus aureus involves fur-dependent and fur-independent mechanisms.J. Bacteriol.2005187238211821510.1128/JB.187.23.8211‑8215.200516291697
    [Google Scholar]
  20. MuskD.J. BankoD.A. HergenrotherP.J. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa.Chem. Biol.200512778979610.1016/j.chembiol.2005.05.00716039526
    [Google Scholar]
  21. RaadI.I. FangX. KeutgenX.M. JiangY. SherertzR. HachemR. The role of chelators in preventing biofilm formation and catheter-related bloodstream infections.Curr. Opin. Infect. Dis.200821438539210.1097/QCO.0b013e32830634d818594291
    [Google Scholar]
  22. MuskD.J.Jr HergenrotherP.J. Chelated iron sources are inhibitors of Pseudomonas aeruginosa biofilms and distribute efficiently in an in vitro model of drug delivery to the human lung.J. Appl. Microbiol.2008105238038810.1111/j.1365‑2672.2008.03751.x18284482
    [Google Scholar]
  23. WattsR.E. TotsikaM. ChallinorV.L. MabbettA.N. UlettG.C. De VossJ.J. SchembriM.A. Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli.Infect. Immun.201280133334410.1128/IAI.05594‑1121930757
    [Google Scholar]
  24. AliS.G. AnsariM.A. KhanH.M. JalalM. MahdiA.A. CameotraS.S. Antibacterial and antibiofilm potential of green synthesized silver nanoparticles against imipenem resistant clinical isolates of P. aeruginosa.Bionanoscience20188254455310.1007/s12668‑018‑0505‑8
    [Google Scholar]
  25. AliS.S. Biofilm formation and siderophore production by pseudomonas aeruginosa isolated from wounds infection.IJNTR2016292023
    [Google Scholar]
  26. WilsonB.R. BogdanA.R. MiyazawaM. HashimotoK. TsujiY. Siderophores in iron metabolism: From mechanism to therapy potential.Trends Mol. Med.201622121077109010.1016/j.molmed.2016.10.00527825668
    [Google Scholar]
  27. BerluttiF. MoreaC. BattistoniA. SarliS. CiprianiP. SupertiF. AmmendoliaM.G. ValentiP. Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia.Int. J. Immunopathol. Pharmacol.200518466167010.1177/03946320050180040716388713
    [Google Scholar]
  28. MessersmithR.E. SageF.C. JohnsonJ.K. LangevinS.A. ForsythE.R. HartM.T. HoffmanC.M. Iron sequestration by galloyl-silane nano coatings inhibits biofilm formation of sulfitobacter sp.Biomimetics2023817910.3390/biomimetics801007936810410
    [Google Scholar]
  29. WuY. OuttenF.W. IscR. IscR controls iron-dependent biofilm formation in escherichia coli by regulating type i fimbria expression.J. Bacteriol.200919141248125710.1128/JB.01086‑0819074392
    [Google Scholar]
  30. PoggialiE. CassinerioE. ZanaboniL. CappelliniM.D. An update on iron chelation therapy.Blood Transfus.201210441142210.2450/2012.0008‑1222790257
    [Google Scholar]
  31. WakabayashiH. YamauchiK. KobayashiT. YaeshimaT. IwatsukiK. YoshieH. Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and prevotella intermedia.Antimicrob. Agents Chemother.20095383308331610.1128/AAC.01688‑0819451301
    [Google Scholar]
  32. MeyA.R. CraigS.A. PayneS.M. Characterization of Vibrio cholerae RyhB: The RyhB regulon and role of ryhB in biofilm formation.Infect. Immun.20057395706571910.1128/IAI.73.9.5706‑5719.200516113288
    [Google Scholar]
  33. PercivalS.L. KiteP. EastwoodK. MurgaR. CarrJ. ArduinoM.J. DonlanR.M. Tetrasodium EDTA as a novel central venous catheter lock solution against biofilm.Infect. Control Hosp. Epidemiol.200526651551910.1086/50257716018425
    [Google Scholar]
  34. JudaM. PaprotaK. JaD. GoK. Edta as a potential agent preventing formation of staphylococcus epidermidis biofilm on polichloride vinyl biomaterials.Ann. Agric. Environ. Med.2008152237241
    [Google Scholar]
  35. LinM.H. ShuJ.C. HuangH.Y. ChengY.C. Involvement of iron in biofilm formation by staphylococcus aureus.PLoS One201273e3438810.1371/journal.pone.003438822479621
    [Google Scholar]
  36. LiF. HuangK. WangJ. YuanK. YangY. LiuY. ZhouX. KongK. YangT. HeJ. LiuC. AoH. LiuF. LiuQ. TangT. YangS. A dual functional Ti-Ga alloy: Inhibiting biofilm formation and osteoclastogenesis differentiation via disturbing iron metabolism.Biomater. Res.20232712410.1186/s40824‑023‑00362‑136978196
    [Google Scholar]
  37. ModarresiF. AziziO. ShakibaieM.R. MotamedifarM. MosadeghE. MansouriS. Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii.Virulence20156215216110.1080/21505594.2014.100300125622119
    [Google Scholar]
  38. GentileV. FrangipaniE. BonchiC. MinandriF. RunciF. ViscaP. Iron and acinetobacter baumannii biofilm formation.Pathogens20143370471910.3390/pathogens303070425438019
    [Google Scholar]
  39. ShakerimoghaddamA. GhaemiE.A. JamalliA. Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichiacoli. Iran. J. Basic Med. Sci.201720445145610.22038/ijbms.2017.858928804616
    [Google Scholar]
  40. LeeJ.H. KimY.G. ChoM.H. LeeJ. ZnO nanoparticles inhibit pseudomonas aeruginosa biofilm formation and virulence factor production.Microbiol. Res.20141691288889610.1016/j.micres.2014.05.00524958247
    [Google Scholar]
  41. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: Present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S12195628243086
    [Google Scholar]
  42. FuP.P. XiaQ. HwangH.M. RayP.C. YuH. Mechanisms of nanotoxicity: Generation of reactive oxygen species.J. Food Drug Anal.2014221647510.1016/j.jfda.2014.01.00524673904
    [Google Scholar]
  43. BeythN. Houri-HaddadY. DombA. KhanW. HazanR. Alternative antimicrobial approach: Nano-antimicrobial materials.Evid. Based Complement. Alternat. Med.2015201511610.1155/2015/24601225861355
    [Google Scholar]
  44. SharmaP. JhaA.B. DubeyR.S. PessarakliM. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.J. Bot.2012201212610.1155/2012/217037
    [Google Scholar]
  45. JeslineA. JohnN.P. NarayananP.M. VaniC. MuruganS. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus.Appl. Nanosci.20155215716210.1007/s13204‑014‑0301‑x
    [Google Scholar]
  46. KalishwaralalK. BarathManiKanthS. PandianS.R.K. DeepakV. GurunathanS. Silver nanoparticles impede the biofilm formation by pseudomonas aeruginosa and staphylococcus epidermidis.Colloids Surf. B Biointerfaces201079234034410.1016/j.colsurfb.2010.04.01420493674
    [Google Scholar]
  47. HashimotoM. YanagiuchiH. KitagawaH. YamaguchiS. HondaY. Effect of metal nanoparticles on biofilm formation of streptococcus mutans.Nano Biomed.2017926168
    [Google Scholar]
  48. RamachandranR. SangeethaD. Antibiofilm efficacy of silver nanoparticles against biofilm forming multidrug resistant clinical isolates.Pharma. Innov. J.20176113643
    [Google Scholar]
  49. BarrasA. SzuneritsS. MarconL. Monfilliette-DupontN. BoukherroubR. Functionalization of diamond nanoparticles using “click” chemistry.Langmuir20102616131681317210.1021/la101709q20695555
    [Google Scholar]
  50. SeilJ.T. WebsterT.J. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces.Acta Biomater.2011762579258410.1016/j.actbio.2011.03.01821421087
    [Google Scholar]
  51. DwivediS. WahabR. KhanF. MishraY.K. MusarratJ. Al-KhedhairyA.A. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination.PLoS One2014911e11128910.1371/journal.pone.011128925402188
    [Google Scholar]
  52. MankeA. WangL. RojanasakulY. Mechanisms of nanoparticle-induced oxidative stress and toxicity.BioMed Res. Int.2013201311510.1155/2013/94291624027766
    [Google Scholar]
  53. AlgburiA. ComitoN. KashtanovD. DicksL. M. T. ChikindasM. L. Control of biofilm formation: Antibiotics and beyond.Appl. Environ. Microbiol.2017833e025081610.1128/AEM.02508‑16
    [Google Scholar]
  54. Bianchini FulindiR. Domingues RodriguesJ. Lemos BarbosaT.W. Goncalves GarciaA.D. de Almeida La PortaF. PratavieiraS. ChiavacciL.A. Pessoa Araújo JuniorJ. da CostaP.I. MartinezL.R. Zinc-based nanoparticles reduce bacterial biofilm formation.Microbiol. Spectr.2023112e04831-2210.1128/spectrum.04831‑2236853055
    [Google Scholar]
  55. QayyumS. OvesM. KhanA.U. Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles.PLoS One2017128e018136310.1371/journal.pone.018136328771501
    [Google Scholar]
  56. IravaniS. Green synthesis of metal nanoparticles using plants.Green Chem.20111310263810.1039/c1gc15386b
    [Google Scholar]
  57. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.00726843966
    [Google Scholar]
  58. IshwaryaR. VaseeharanB. KalyaniS. BanumathiB. GovindarajanM. AlharbiN.S. KadaikunnanS. Al-anbrM.N. KhaledJ.M. BenelliG. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity.J. Photochem. Photobiol. B201817824925810.1016/j.jphotobiol.2017.11.00629169140
    [Google Scholar]
  59. CaiL. ChenJ. LiuZ. WangH. YangH. DingW. Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against ralstonia solanacearum. Front. Microbiol.2018979010.3389/fmicb.2018.0079029922237
    [Google Scholar]
  60. CowanM.M. Plant products as antimicrobial agents.Clin. Microbiol. Rev.199912456458210.1128/CMR.12.4.56410515903
    [Google Scholar]
  61. QuaveC.L. LisaR.W. PlanoL.R.W. PantusoT. BennettB.C. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus.J. Ethnopharmacol.2008118341842810.1016/j.jep.2008.05.005
    [Google Scholar]
  62. NamasivayamS.K.R. RoyE.A. Anti biofilm effect of medicinal plant extracts against clinical isolate of biofilm of escherichia coli.Int. J. Pharma. Pharmaceut. Sci.2013525
    [Google Scholar]
  63. SánchezE. Rivas MoralesC. CastilloS. Leos-RivasC. García-BecerraL. Ortiz MartínezD.M. Antibacterial and antibiofilm activity of methanolic plant extracts against nosocomial microorganisms.Evid. Based Complement. Alternat. Med.201620161810.1155/2016/157269727429633
    [Google Scholar]
  64. SandasiM. LeonardC.M. ViljoenA.M. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes.Lett. Appl. Microbiol.2010501303510.1111/j.1472‑765X.2009.02747.x19874481
    [Google Scholar]
  65. TrentinD.S. GiordaniR.B. ZimmerK.R. da SilvaA.G. da SilvaM.V. CorreiaM.T.S. BaumvolI.J.R. MacedoA.J. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles.J. Ethnopharmacol.2011137132733510.1016/j.jep.2011.05.03021651970
    [Google Scholar]
  66. ShuklaV. BhathenaZ. Sustained release of a purified tannin component of terminalia chebula from a titanium implant surface prevents biofilm formation by staphylococcus aureus.Appl. Biochem. Biotechnol.201517573542355610.1007/s12010‑015‑1525‑225680711
    [Google Scholar]
  67. SlobodníkováL. FialováS. RendekováK. KováčJ. MučajiP. Antibiofilm activity of plant polyphenols.Molecules20162112171710.3390/molecules2112171727983597
    [Google Scholar]
  68. MorsiR.E. LabenaA. KhamisE.A. Core/shell (ZnO/polyacrylamide) nanocomposite: In-situ emulsion polymerization, corrosion inhibition, anti-microbial and anti-biofilm characteristics.J. Taiwan Inst. Chem. Eng.20166351252210.1016/j.jtice.2016.03.037
    [Google Scholar]
  69. RajkumariJ. BusiS. VasuA.C. ReddyP. Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1.Microb. Pathog.201710726126910.1016/j.micpath.2017.03.04428377235
    [Google Scholar]
  70. RamasamyM. LeeJ.H. LeeJ. Development of gold nanoparticles coated with silica containing the antibiofilm drug cinnamaldehyde and their effects on pathogenic bacteria.Int. J. Nanomedicine2017122813282810.2147/IJN.S13278428435260
    [Google Scholar]
  71. AbinayaM. VaseeharanB. DivyaM. SharmiliA. GovindarajanM. AlharbiN.S. KadaikunnanS. KhaledJ.M. BenelliG. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors.J. Trace Elem. Med. Biol.2018459310310.1016/j.jtemb.2017.10.00229173489
    [Google Scholar]
  72. BhattacharyyaP. AgarwalB. GoswamiM. MaitiD. BaruahS. TribediP. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae.Antonie van Leeuwenhoek20181111899910.1007/s10482‑017‑0930‑728889242
    [Google Scholar]
  73. ShakibaieM. ForootanfarH. GolkariY. Mohammadi-KhorsandT. ShakibaieM.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis.J. Trace Elem. Med. Biol.20152923524110.1016/j.jtemb.2014.07.02025175509
    [Google Scholar]
  74. Prateeksha RaoC.V. DasA.K. BarikS.K. SinghB.N. ZnO/Curcumin nanocomposites for enhanced inhibition of pseudomonas aeruginosa virulence via lasr-rhlr quorum sensing systems.Mol. Pharm.20191683399341310.1021/acs.molpharmaceut.9b0017931260316
    [Google Scholar]
  75. PalmieriV. BugliF. CacaciM. PeriniG. MaioF.D. DeloguG. TorelliR. ContiC. SanguinettiM. SpiritoM.D. ZanoniR. PapiM. Graphene oxide coatings prevent Candida albicans biofilm formation with a controlled release of curcumin-loaded nanocomposites.Nanomedicine201813222867287910.2217/nnm‑2018‑018330431405
    [Google Scholar]
  76. GholapH. PatilR. YadavP. BanpurkarA. OgaleS. GadeW. CdTe–TiO 2 nanocomposite: An impeder of bacterial growth and biofilm.Nanotechnology2013241919510110.1088/0957‑4484/24/19/19510123579550
    [Google Scholar]
  77. MitwalliH. BalhaddadA.A. AlSahafiR. OatesT.W. MeloM.A.S. XuH.H.K. WeirM.D. Novel CaF2 nanocomposites with antibacterial function and fluoride and calcium ion release to inhibit oral biofilm and protect teeth.J. Funct. Biomater.20201135610.3390/jfb1103005632752248
    [Google Scholar]
  78. HasanI. QaisF.A. HusainF.M. KhanR.A. AlsalmeA. AlenaziB. UsmanM. JaafarM.H. AhmadI. Eco-friendly green synthesis of dextrin based poly (methyl methacrylate) grafted silver nanocomposites and their antibacterial and antibiofilm efficacy against multi-drug resistance pathogens.J. Clean. Prod.20192301148115510.1016/j.jclepro.2019.05.157
    [Google Scholar]
  79. AljaafariA. AhmedF. HusainF. Bio-inspired facile synthesis of graphene-based nanocomposites: Elucidation of antimicrobial and biofilm inhibitory potential against foodborne pathogenic bacteria.Coatings20201012117110.3390/coatings10121171
    [Google Scholar]
  80. AlaviM. KarimiN. Antiplanktonic; antibiofilm; antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2 ; TiO 2 -Ag; Ag-Cu and Cu-Ag nanocomposites against multi-drug-resistant bacteria.Artif Cells Nanomed. Biotechnol.201846S3S399S41310.1080/21691401.2018.1496923
    [Google Scholar]
  81. NewaseS. BankarA.V. Synthesis of bio-inspired Ag-Au nanocomposite and its anti-biofilm efficacy.Bull. Mater. Sci.201740115716210.1007/s12034‑017‑1363‑7
    [Google Scholar]
  82. BaigU. GondalM.A. AnsariM.A. DastageerM.A. SajidM. FalathW.S. Rapid synthesis and characterization of advanced ceramic-polymeric nanocomposites for efficient photocatalytic decontamination of hazardous organic pollutant under visible light and inhibition of microbial biofilm.Ceram. Int.20214744737474810.1016/j.ceramint.2020.10.043
    [Google Scholar]
/content/journals/cis/10.2174/012210299X265522231006041656
Loading
/content/journals/cis/10.2174/012210299X265522231006041656
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Biofilm; EPS; Iron concentration; Nanoparticle; Plant extract; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test