Skip to content
2000
image of Green Synthesis of Silver Nanoparticles Using Plant Extracts: Recent Advances in Mechanisms, Parameters, and Characterization Methods

Abstract

The green synthesis of silver nanoparticles (AgNPs) using aqueous plant extracts has emerged as a sustainable, cost-effective, and biocompatible alternative to conventional chemical methods. This review systematically examines recent advancements (2020–2025) in plant-mediated AgNP synthesis, focusing on synthesis mechanisms, critical process parameters, and comprehensive physicochemical characterization. Phytochemicals such as flavonoids, polyphenols, and alkaloids act as natural reducing and stabilizing agents, facilitating the bioreduction of Ag+ ions under eco-friendly redox conditions. Key synthesis parameters, including pH, temperature, extract concentration, and silver nitrate concentration, significantly influence nanoparticle size, morphology, crystallinity, and colloidal stability. A suite of characterization techniques, including UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and Zeta Potential analysis, is used to assess particle structure, surface chemistry, and dispersion quality. The review highlights the critical role of synthesis conditions in tailoring nanoparticle attributes and discusses methodological variations across studies. Standardization of protocols and integration of advanced analytical tools are recommended to improve reproducibility and enable scalable green synthesis for biomedical, environmental, and industrial applications.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855414247251012171623
2025-10-29
2026-02-20
Loading full text...

Full text loading...

References

  1. Haleem A. Javaid M. Singh R.P. Rab S. Suman R. Applications of nanotechnology in medical field: A brief review. Global Health Journal 2023 7 2 70 77 10.1016/j.glohj.2023.02.008
    [Google Scholar]
  2. Gomaa M. Potential applications of inorganic silver nanoparticles (AgNPs) in parasitic diseases. Parasitol. United J. 2022 15 1 5 21 10.21608/PUJ.2022.108173.1145
    [Google Scholar]
  3. Fahim M. Shahzaib A. Nishat N. Jahan A. Bhat T.A. Inam A. Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications. JCIS Open 2024 16 100125 10.1016/j.jciso.2024.100125
    [Google Scholar]
  4. Teh H.Y. Lam M.K. Chai Y.H. Lim J.W. Wong V.L. Tan I.S. Lau S.Y. Cheng Y.W. Green synthesis of silver nanoparticles by algae: Advancements, challenges and sustainable prospects. Mater. Today Chem. 2024 42 102389 10.1016/j.mtchem.2024.102389
    [Google Scholar]
  5. Villagrán Z. Anaya-Esparza L.M. Velázquez-Carriles C.A. Silva-Jara J.M. Ruvalcaba-Gómez J.M. Aurora-Vigo E.F. Rodríguez-Lafitte E. Rodríguez-Barajas N. Balderas-León I. Martínez-Esquivias F. Plant-Based Extracts as Reducing, Capping, and Stabilizing Agents for the Green Synthesis of Inorganic Nanoparticles. Resources 2024 13 6 70 10.3390/resources13060070
    [Google Scholar]
  6. Bharathi C. Rajeswari R. Janaki P. Sivamurugan A.P. Senthil G.K. Radhamani S. Sathya Priya R. Sangeetha M. Thenmozhi S. Chiranjeevirajan N. Sharmila R. Ramya B. Balamurugan R. Bio-mediated synthesis of nanoparticles: A new paradigm for environmental sustainability. Plant Sci. Today 2025 12 sp1 10.14719/pst.5192
    [Google Scholar]
  7. Kemala P. Idroes R. Khairan K. Ramli M. Ginting B. Helwani Z. Aulia R. Idroes G.M. Yusuf M. Efendi R. Eco-friendly synthesis of silver nanoparticles: Enhancing optimization reaction, characterization, and antimicrobial properties with Lantana camara from geothermal area. S. Afr. J. Chem. Eng. 2025 51 57 67 10.1016/j.sajce.2024.11.002
    [Google Scholar]
  8. Shahzadi S. Fatima S. ul ain Q. Shafiq Z. Janjua M.R.S.A. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: A multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Advances 2025 15 5 3858 3903 10.1039/D4RA07519F 39917042
    [Google Scholar]
  9. GöktürkBaydar N. Babalik Z. Demirci T. Cessur A. Synthesis methods impact silver nanoparticle properties and phenolic compound production in grapevine cell cultures. Sci. Rep. 2025 15 1 7667 10.1038/s41598‑025‑85545‑7 40044708
    [Google Scholar]
  10. Abbas R. Luo J. Qi X. Naz A. Khan I.A. Liu H. Yu S. Wei J. Silver nanoparticles: Synthesis, structure, properties and applications. Nanomaterials 2024 14 17 1425 10.3390/nano14171425 39269087
    [Google Scholar]
  11. Markunas B. Yim T. Snyder J. pH-Mediated solution-phase proton transfer drives enhanced electrochemical hydrogenation of phenol in alkaline electrolyte. ACS Catal. 2024 14 22 16936 16946 10.1021/acscatal.4c04874 39569158
    [Google Scholar]
  12. He J. Ma Y. Niu X. Pei J. Yan R. Xu F. Ma J. Ma X. Jia S. Ma W. Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine. Toxicology 2024 502 153734 10.1016/j.tox.2024.153734 38290605
    [Google Scholar]
  13. Takáč P. Michalková R. Čižmáriková M. Bedlovičová Z. Balážová Ľ. Takáčová G. The role of silver nanoparticles in the diagnosis and treatment of cancer: Are there any perspectives for the future? Life 2023 13 2 466 10.3390/life13020466 36836823
    [Google Scholar]
  14. Agarwal A. Ramachandran S. Kumar S. Swaminathan S. Ramalingam R. A comparative study on centella asiatica-mediated green synthesis of silver and copper oxide nanoparticles: Implications for wound healing. 2025 Available from: https://onlinelibrary.wiley.com/doi/10.1002/ppsc.202400215
  15. Guene M. Diagne A.A. Fall M. Dieng M.M. Poillerat G. Synthesis and characterization of NI 0.4 co 2.6 o 4 spinel mixed oxides powder: Study of its surface properties by voltammetry, X-RAY, FTIR, UV-VIS-NIR spectroscopy and scanning electron microscopy. 2005 Available from: http://www.ajol.info/index.php/bcse/article/view/21126
  16. Sadhbhavana B. Tanishq Y.V. Deep I. Raj K.D. Samala C.K. Comparative Study of the Synthesis of Silver, Copper, and Iron oxide Nanoparticles via Chemical and Green Methods Using Corn Bract for Enhanced Antibacterial Activity. South Asian J. Exp. Biol. 2024 14 3 137 145 10.38150/sajeb.14(3).p137‑145
    [Google Scholar]
  17. Ibrahim N.A.A. Saeed H.A. Saeed S.M. Mohamed O. Ibrahim S.A.E. Mohamed S.B. Green synthesis of silver nanoparticles using sudanese candida parapsilosis: A sustainable approach to combat antimicrobial resistance. bioRxiv 2025 10.1101/2025.01.21.634070v1
    [Google Scholar]
  18. Gomaa O.M. Jassim A.Y. Chanda A. Bioremoval of PVP-coated silver nanoparticles using Aspergillus niger: The role of exopolysaccharides. Environ. Sci. Pollut. Res. Int. 2022 29 21 31501 31510 10.1007/s11356‑021‑18018‑9 35001269
    [Google Scholar]
  19. Ghosh A. Majumdar D. Biswas H. Chowdhury A. Podder S. Nano-biopesticide formulation comprising of silver nanoparticles anchored to Ocimum sanctum: A sustainable approach to pest control in jute farming. Sci. Rep. 2025 15 1 3414 10.1038/s41598‑025‑87727‑9 39870801
    [Google Scholar]
  20. Naveed M. Mahmood S. Aziz T. Azeem A. Rajpoot Z. Rehman S. Al-Asmari F. Alahmari A.S. Saleh O. Sameeh M.Y. Alhomrani M. Alamri A.S. Alshareef S.A. Green-synthesis of silver nanoparticles AgNPs from Podocarpus macrophyllus for targeting GBM and LGG brain cancers via NOTCH2 gene interactions. Sci. Rep. 2024 14 1 25489 10.1038/s41598‑024‑75820‑4 39461989
    [Google Scholar]
  21. Sedaghat S. Khalaj M. Rapid green biosynthesis of Silvermontmorillonite nanocomposite using water extract of Satureja hortensis L and evaluation of the antibacterial properties. arxiv 2017
    [Google Scholar]
  22. Pradeep M. Kruszka D. Kachlicki P. Mondal D. Franklin G. Uncovering the Phytochemical Basis and the Mechanism of Plant Extract-Mediated Eco-Friendly Synthesis of Silver Nanoparticles Using Ultra-Performance Liquid Chromatography Coupled with a Photodiode Array and High-Resolution Mass Spectrometry. 2022 10 1 562 571 10.1021/acssuschemeng.1c06960
    [Google Scholar]
  23. Sharma V.K. Yngard R.A. Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009 145 1-2 83 96 10.1016/j.cis.2008.09.002 18945421
    [Google Scholar]
  24. Ahmed S. Ahmad M. Swami B.L. Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016 7 1 17 28 10.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  25. Kumar D.A. Palanichamy V. Roopan S.M. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014 127 168 171 10.1016/j.saa.2014.02.058 24632169
    [Google Scholar]
  26. Ansari M. Ahmed S. Abbasi A. Khan M.T. Subhan M. Bukhari N.A. Hatamleh A.A. Abdelsalam N.R. Plant mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant. Sci. Rep. 2023 13 1 18048 10.1038/s41598‑023‑45038‑x 37872286
    [Google Scholar]
  27. Dhaka A. Chand Mali S. Sharma S. Trivedi R. A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry 2023 6 101108 10.1016/j.rechem.2023.101108
    [Google Scholar]
  28. Zanbili F. Poursattar Marjani A. Innovative green and bio-based approaches for photosensitive nanoparticle synthesis: A review on methodologies, characterization, and applications. Micro and Nano Systems Letters 2025 13 1 3 10.1186/s40486‑025‑00223‑7
    [Google Scholar]
  29. Rasool S. Tayyeb A. Raza M.A. Ashfaq H. Perveen S. Kanwal Z. Riaz S. Naseem S. Abbas N. Ahmad N. Alomar S.Y. Citrullus colocynthis-Mediated green synthesis of silver nanoparticles and their antiproliferative action against breast cancer cells and bactericidal roles against human pathogens. Nanomaterials 2022 12 21 3781 10.3390/nano12213781 36364557
    [Google Scholar]
  30. Bibi S. Abu-Dieyeh M.H. Al-Ghouti M.A. Biosynthesis of silver nanoparticles from macroalgae Hormophysa triquetra and investigation of its antibacterial activity and mechanism against pathogenic bacteria. Sci. Rep. 2025 15 1 2476 10.1038/s41598‑024‑84760‑y 39833251
    [Google Scholar]
  31. Botinelly Nogueira R. Manzato L. Silveira Gurgel R. Melchionna Albuquerque P. Magalhães Teixeira Mendes F. Hotza D. Optimized green synthesis of silver nanoparticles from guarana seed skin extract with antibacterial potential. Green Processing and Synthesis 2025 14 1 20230210 10.1515/gps‑2023‑0210
    [Google Scholar]
  32. Greensynthesis, characterization, antioxidant and antibacterial activity of silver nanoparticles synthesized with nigella sativa seed extract. 2024 Available from: https://www.iipseries.org/viewpaper.php?pid=2531&pt=greensynthesis-characterization-antioxidant-and-antibacterial-activity-of-silver-nanoparticles-synthesized-with-nigella-sativa-seed-extract
  33. Sharma P. Sharma B. Screening of the medicinal plant-based metabolites responsible for silver nanoparticle phytofabrication. Nanofabrication 2024 9 1 19 10.37819/nanofab.9.1902
    [Google Scholar]
  34. Shanmugam K. Subramanian P. Extracellular and intracellular synthesis of silver nanoparticles. Asian J. Pharm. Clin. Res. 2016 133 10.22159/ajpcr.2016.v9s2.13302
    [Google Scholar]
  35. Samadi N. Golkaran D. Eslamifar A. Jamalifar H. Fazeli M.R. Mohseni F.A. Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J. Biomed. Nanotechnol. 2009 5 3 247 253 10.1166/jbn.2009.1029 20055006
    [Google Scholar]
  36. Alfryyan N. Kordy M.G.M. Abdel-Gabbar M. Soliman H.A. Shaban M. Characterization of the biosynthesized intracellular and extracellular plasmonic silver nanoparticles using Bacillus cereus and their catalytic reduction of methylene blue. Sci. Rep. 2022 12 1 12495 10.1038/s41598‑022‑16029‑1 35864132
    [Google Scholar]
  37. You L.X. Zhong H.L. Chen S.R. Sun Y.N. Wu G.K. Zhao M.X. Hu S.S. Alwathnani H. Herzberg M. Qin S.F. Rensing C. Biosynthesis of silver nanoparticles using Burkholderia contaminans ZCC and mechanistic analysis at the proteome level. Ecotoxicol. Environ. Saf. 2024 278 116425 10.1016/j.ecoenv.2024.116425 38723385
    [Google Scholar]
  38. Saim A.K. Kumah F.N. Oppong M.N. Extracellular and intracellular synthesis of gold and silver nanoparticles by living plants: A review. Nanotechnology for Environmental Engineering 2021 6 1 1 10.1007/s41204‑020‑00095‑9
    [Google Scholar]
  39. Sanguiñedo P. Fratila R.M. Estevez M.B. Fuente J.M. Grazú V. Alborés S. Extracellular biosynthesis of silver nanoparticles using fungi and their antibacterial activity. Nano Biomed. Eng. 2018 10 2 10.5101/nbe.v10i2.p165‑173
    [Google Scholar]
  40. Öztürk B.Y. Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: Their Antibacterial and antifungal effects. Caryologia 2019 72 1 29 43
    [Google Scholar]
  41. Nanda A. Zarina A. Nayak B.K. Extra / intracellular biosynthesis of silver nanoparticles from potential bacterial species. International Conference on Nanoscience, Engineering and Technology (ICONSET 2011). Chennai IEEE 2011 446 449 10.1109/ICONSET.2011.6168000
    [Google Scholar]
  42. Borase H.P. Salunke B.K. Salunkhe R.B. Patil C.D. Hallsworth J.E. Kim B.S. Patil S.V. Plant extract: A promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl. Biochem. Biotechnol. 2014 173 1 1 29 10.1007/s12010‑014‑0831‑4 24622849
    [Google Scholar]
  43. Monica Ahmad N. Husaini Mohamed A. Hasan N.A. Zainal- Abidin N. Zaini Nawahwi M. Mohamad Azzeme A. Effect of optimisation variable and the role of plant extract in the synthesis of nanoparticles using plant-mediated synthesis approaches. Inorg. Chem. Commun. 2024 161 111839 10.1016/j.inoche.2023.111839
    [Google Scholar]
  44. Nguyen N.T.T. Nguyen L.M. Nguyen T.T.T. Nguyen T.T. Nguyen D.T.C. Tran T.V. Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: A review. Environ. Chem. Lett. 2022 20 4 2531 2571 10.1007/s10311‑022‑01425‑w 35369682
    [Google Scholar]
  45. Majeed Toiba Bhat Naseer Ahmad Health benefits of plant extracts. Plant Extracts: Applications in the Food Industry 2022 269 294 9780128224755 10.1016/B978‑0‑12‑822475‑5.00013‑2
    [Google Scholar]
  46. Simon S. Sibuyi N.R.S. Fadaka A.O. Meyer S. Josephs J. Onani M.O. Meyer M. Madiehe A.M. Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines 2022 10 11 2792 10.3390/biomedicines10112792 36359308
    [Google Scholar]
  47. Bagas Ananda M. Bachrurozy T. Adilah Azmi S. Wibowo A. The influence of precursor and seminyak (champeria sp.) leaf extract concentrations in microwave-assisted silver nanoparticle fabrication. IOP Conf. Ser. Earth Environ. Sci. 2024 1354 1 012030 10.1088/1755‑1315/1354/1/012030
    [Google Scholar]
  48. Chafidz A Rusdi S Nurrahman I Haryanto Kalista Wibowo AD Kusmayadi A Synthesis of silver (Ag) nano/micro-particles via green process using Andrographis paniculata leaf extract as a bio-reducing agent. CST 2024 9 1 199 206 10.21924/cst.9.1.2024.1450
    [Google Scholar]
  49. Hasnain M.S. Javed M.N. Alam M.S. Rishishwar P. Rishishwar S. Ali S. Nayak A.K. Beg S. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Mater. Sci. Eng. C 2019 99 1105 1114 10.1016/j.msec.2019.02.061 30889643
    [Google Scholar]
  50. Nayak S. Ghugare P. Vaidhun B. Green-synthesis of silver nanoparticles by hygrophila auriculata extract: Innovative technique and comprehensive evaluation. Indian J. Pharm. Educ. Res. 2021 55 2s s510 s517 10.5530/ijper.55.2s.122
    [Google Scholar]
  51. Siakavella I.K. Lamari F. Papoulis D. Orkoula M. Gkolfi P. Lykouras M. Avgoustakis K. Hatziantoniou S. Effect of plant extracts on the characteristics of silver nanoparticles for topical application. Pharmaceutics 2020 12 12 1244 10.3390/pharmaceutics12121244 33371293
    [Google Scholar]
  52. Balaz M. Balazova L. Kovacova M. Daneu N. Salayova A. Bedlovicova Z. The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles. Adv. Nano Res. 2019 7 2 125 134
    [Google Scholar]
  53. Sobczak-Kupiec A. Malina D. Wzorek Z. Zimowska M. Influence of silver nitrate concentration on the properties of silver nanoparticles. 2011 6 8 656 660 10.1049/mnl.2011.0152
    [Google Scholar]
  54. Osorio-Echavarría J. Osorio-Echavarría J. Ossa-Orozco C.P. Gómez-Vanegas N.A. Synthesis of silver nanoparticles using white-rot fungus Anamorphous Bjerkandera sp. R1: Influence of silver nitrate concentration and fungus growth time. Sci. Rep. 2021 11 1 3842 10.1038/s41598‑021‑82514‑8 33589657
    [Google Scholar]
  55. Asif M. Yasmin R. Asif R. Ambreen A. Mustafa M. Umbreen S. Green Synthesis of Silver Nanoparticles (AgNPs), Structural Characterization, and their Antibacterial Potential. Dose Response 2022 20 2 15593258221088709 10.1177/15593258221088709 35592270
    [Google Scholar]
  56. Vanlalveni C. Rajkumari K. Biswas A. Adhikari P.P. Lalfakzuala R. Rokhum S.L. Green synthesis of silver nanoparticles using nostoc linckia and its antimicrobial activity: A novel biological approach. Bionanoscience 2018 8 2 624 631 10.1007/s12668‑018‑0520‑9
    [Google Scholar]
  57. Yusof N. David S.R. Mumin N.H. Ahmad L. Rajabalaya R. Formulation and development of Commiphora myrrha based polyherbal nanoemulsion mouthwash and assessment of its anti-oxidant and cytotoxicity activity. J. Appl. Pharm. Res. 2024 12 5 87 101 10.69857/joapr.v12i5.679
    [Google Scholar]
  58. Haji BS Barzinjy AA Citrullus colocynthis fruit extract mediated green synthesis of silver nanoparticles: The impact of ph, temperature, and silver nitrate concentration. e-J. Surf. Sci. Nanotechnol. 2023 21 1 61 71
    [Google Scholar]
  59. Kim S.M. Choi H.J. Lim J.A. Woo M.A. Chang H.J. Lee N. Lim M.C. Biosynthesis of silver nanoparticles from Duchesnea indica extracts using different solvents and their antibacterial activity. Microorganisms 2023 11 6 1539 10.3390/microorganisms11061539 37375043
    [Google Scholar]
  60. Marciniak L. Nowak M. Trojanowska A. Tylkowski B. Jastrzab R. The effect of ph on the size of silver nanoparticles obtained in the reduction reaction with citric and malic acids. Materials 2020 13 23 5444 10.3390/ma13235444 33260479
    [Google Scholar]
  61. Doğan S.Y. Kaya S. Solak E.K. Green synthesis of silver nanoparticles and comprehensive characterization for biomedical applications. Research Square 2024 10.21203/RS.3.RS‑3901013/V1
    [Google Scholar]
  62. Mortazavi-Derazkola S. Hosseinzadeh M. Yousefinia A. Naghizadeh A. Green synthesis and investigation of antibacterial activity of silver nanoparticles using eryngium bungei boiss plant extract. J. Polym. Environ. 2021 29 9 2978 2985 10.1007/s10924‑021‑02087‑5
    [Google Scholar]
  63. Toppo A.L. Dhagat S. Eswari Jujjavarapu S. Comparative study of response surface methodology and artificial neural network for optimization of process parameters for synthesis of gold nanoparticles by Desmostachya bipinnata extract. Prep. Biochem. Biotechnol. 2023 53 2 195 206 10.1080/10826068.2022.2062773 35442160
    [Google Scholar]
  64. Aghajani Kalaki Z SafaeiJavan R Faraji H Procedure optimisation for green synthesis of silver nanoparticles by Taguchi method. Nano Lett. 2018 13 4 558 561
    [Google Scholar]
  65. Peukert Wolfgang Segets Doris Pflug Lukas Leugering Günter Unified Design Strategies for Particulate Products. Advances in Chemical Engineering 2015 46 1 81 9780128012475 0065-2377 10.1016/bs.ache.2015.10.004
    [Google Scholar]
  66. Long D. Finke R.G. Bangerth W. Methodology for the Computational Optimization of Nanoparticle Synthesis and Particle Size Distribution, Using Ir(0) n Nanoparticles as an Example System. ACS Appl. Nano Mater. 2024 7 12 14090 14101 10.1021/acsanm.4c01373
    [Google Scholar]
  67. Tao H. Wu T. Aldeghi M. Wu T.C. Aspuru-Guzik A. Kumacheva E. Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 2021 6 8 701 716 10.1038/s41578‑021‑00337‑5
    [Google Scholar]
  68. Lv H. Chen X. Intelligent control of nanoparticle synthesis through machine learning. Nanoscale 2022 14 18 6688 6708 10.1039/D2NR00124A 35450983
    [Google Scholar]
  69. Niveditha M. Shelar V.R. B.m B. Green Synthesis: An alternative sustainable route for nanotechology. J. Adv. Biol. Biotechnol. 2024 27 7 1054 1069 10.9734/jabb/2024/v27i71065
    [Google Scholar]
  70. Valdez J. Gómez I. One-Step green synthesis of metallic nanoparticles using sodium alginate. J. Nanomater. 2016 2016 1 7 10.1155/2016/9790345
    [Google Scholar]
  71. Bhangale H.G. Bachhav S.G. Nerkar D.M. Sarode K.M. Patil D.R. Study on optical properties of green synthesized silver nanoparticles for surface plasmon resonance. J. Nanoscience Technol. 2019 5 2 658 661 10.30799/jnst.230.19050203
    [Google Scholar]
  72. Shokeen P. Jain A. Kapoor A. Gupta V. Effect of substrate on surface plasmon resonance of PLD grown silver nanoparticles. Recent Trends in Materials and Devices. Jain V.K. Rattan S. Verma A. Cham Springer International Publishing 2017 261 265 10.1007/978‑3‑319‑29096‑6_36
    [Google Scholar]
  73. Ider M. Abderrafi K. Eddahbi A. Ouaskit S. Kassiba A. Silver Metallic nanoparticles with surface plasmon resonance: Synthesis and characterizations. J. Cluster Sci. 2017 28 3 1051 1069 10.1007/s10876‑016‑1080‑1
    [Google Scholar]
  74. Dada A.O. Inyinbor A.A. Idu E.I. Bello O.M. Oluyori A.P. Adelani-Akande T.A. Okunola A.A. Dada O. Effect of operational parameters, characterization and antibacterial studies of green synthesis of silver nanoparticles using Tithonia diversifolia. PeerJ 2018 6 e5865 10.7717/peerj.5865 30397553
    [Google Scholar]
  75. Suri S Ghosal S Upadhyay VV Kansal L Dhyani M Lakshmi AA Comprehensive physical characterization of silver nanoparticles: Multimodal evaluation of material properties. E3S Web of Conferences 2024 588 01009
    [Google Scholar]
  76. Amruta Magar Gangaram Kartale Sayali Bedare Vikas Bhosale Bedare S. Bhosale V. Silver nanoparticles: A modern era of nanotechnology. Asian J. Pharm. Res. Dev. 2024 12 6 118 124 10.22270/ajprd.v12i6.1495
    [Google Scholar]
  77. Rahman M.M. Hattori N. Nakagawa Y. Lin X. Yagai S. Sakai M. Kudo K. Yamamoto K. Preparation and characterization of silver nanoparticles on localized surface plasmon-enhanced optical absorption. Jpn. J. Appl. Phys. 2014 53 11S 11RE01 10.7567/JJAP.53.11RE01
    [Google Scholar]
  78. Kanmani R Senthil Kumar KL Gokulan PD Devika P Esha PM Jayaprithika S Green synthesis of silver nanoparticles from ocimum sanctum leaf extract and its phytochemical screening by fourier transform infrared spectroscopy. IJPRA 2025 10 1 253 256 10.35629/4494‑1001253256
    [Google Scholar]
  79. Milorad Cakić Glišić S. Cvetković D. Cvetinov M. Stanojević L. Danilović B. Cakić K. Green synthesis, characterization and antimicrobial activity of silver nanoparticles Produced fromFumaria officinalis L. Plant Extract. Colloid J. 2018 80 6 803 813 10.1134/S1061933X18070013
    [Google Scholar]
  80. Kabeya J.K. Ngombe N.K. Mutwale P.K. Safari J.B. Matlou G.G. Krause R.W.M. Nkanga C.I. Antimicrobial capping agents on silver nanoparticles made via green method using natural products from banana plant waste. Artif. Cells Nanomed. Biotechnol. 2025 53 1 29 42 10.1080/21691401.2025.2462335 39920563
    [Google Scholar]
  81. Tlou S. Suter E. Alfred M. Rutto H. Omwoyo W. In situ capping of silver nanoparticles with cellulosic matrices from wheat straws in enhancing their antimicrobial activity: Synthesis and characterization. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2023 58 11 903 913 10.1080/10934529.2023.2260295 37735931
    [Google Scholar]
  82. Shumi G. Demissie T.B. Eswaramoorthy R. Bogale R.F. Kenasa G. Desalegn T. Biosynthesis of silver nanoparticles functionalized with histidine and phenylalanine amino acids for potential antioxidant and antibacterial activities. ACS Omega 2023 8 27 24371 24386 10.1021/acsomega.3c01910 37457474
    [Google Scholar]
  83. Ajitha B. Ashok Kumar Reddy Y. Rajesh K.M. Sreedhara Reddy P. Sesbania grandiflora leaf extract assisted green synthesis of silver nanoparticles: Antimicrobial activity. Mater. Today Proc. 2016 3 6 1977 1984 10.1016/j.matpr.2016.04.099
    [Google Scholar]
  84. Brycki B. Szulc A. Babkova M. Synthesis of silver nanoparticles with gemini surfactants as efficient capping and stabilizing agents. Appl. Sci. 2020 11 1 154 10.3390/app11010154
    [Google Scholar]
  85. Choi J.S. Lee J.W. Shin U.C. Lee M.W. Kim D.J. Kim S.W. Inhibitory Activity of Silver Nanoparticles Synthesized Using Lycopersicon Esculentum against Biofilm Formation in Candida Species. Nanomaterials 2019 9 11 1512 10.3390/nano9111512 31652836
    [Google Scholar]
  86. Rodríguez-Félix F. López-Cota A.G. Moreno-Vásquez M.J. Graciano-Verdugo A.Z. Quintero-Reyes I.E. Del-Toro-Sánchez C.L. Tapia-Hernández J.A. Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity. Heliyon 2021 7 4 e06923 10.1016/j.heliyon.2021.e06923 34007921
    [Google Scholar]
  87. Maršík D. Thoresen P.P. Maťátková O. Masák J. Sialini P. Rova U. Tsikourkitoudi V. Christakopoulos P. Matsakas L. Jarošová Kolouchová I. Synthesis and characterization of lignin-silver nanoparticles. Molecules 2024 29 10 2360 10.3390/molecules29102360 38792221
    [Google Scholar]
  88. Waykar R. Kumarapillai S. Silver and iron nanoparticles: Green synthesis and characterization. 2025 Available from: https://osf.io/ua2ts_v1
  89. Răut I. Constantin M. Șuică-Bunghez R. Firincă C. Alexandrescu E. Gîfu I.C. Doni M. Zamfir L.G. Gurban A.M. Jecu L. Extracellular biosynthesis, characterization and antimicrobial activity of silver nanoparticles synthesized by filamentous fungi. J. Fungi 2024 10 11 798 10.3390/jof10110798 39590717
    [Google Scholar]
  90. Grishina Y.S. Borgardt N.I. Volkov R.L. Gromov D.G. Savitskiy A.I. Electron microscopy study of silver nanoparticles obtained by thermal evaporation. Semiconductors 2019 53 15 1986 1991 10.1134/S1063782619150089
    [Google Scholar]
  91. Gontijo L.A.P. Raphael E. Ferrari D.P.S. Ferrari J.L. Lyon J.P. Schiavon M.A. pH effect on the synthesis of different size silver nanoparticles evaluated by DLS and their size-dependent antimicrobial activity. Materia (Rio J.) 2020 25 4 e-12845 10.1590/s1517‑707620200004.1145
    [Google Scholar]
  92. Ramos Ana P. Dynamic light scattering applied to nanoparticle characterization. Micro and Nano Technologies, Nanocharacterization Techniques 2017 99 110 9780323497787 10.1016/B978‑0‑323‑49778‑7.00004‑7
    [Google Scholar]
  93. Parameshwaran R. Kalaiselvam S. Jayavel R. Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure. Mater. Chem. Phys. 2013 140 1 135 147 10.1016/j.matchemphys.2013.03.012
    [Google Scholar]
  94. Kirana OSS Shobah FN Muslih ZS Rozafia AI Utomo WP Hartanto D Green synthesis silver nanoparticles using quercus infectoria gall. E3S Web of Conferences 2024 555 03007
    [Google Scholar]
  95. Ahani M. Khatibzadeh M. Green synthesis of silver nanoparticles using gallic acid as reducing and capping agent: Effect of pH and gallic acid concentration on average particle size and stability. Inorganic and Nano-Metal Chemistry 2022 52 2 234 240 10.1080/24701556.2021.1891428
    [Google Scholar]
  96. Mikhailova E.O. Green silver nanoparticles: An antibacterial mechanism. Antibiotics 2024 14 1 5 10.3390/antibiotics14010005 39858291
    [Google Scholar]
  97. Cheng K. Hung Y. Chen C. Liu C. Young J. Green synthesis of chondroitin sulfate-capped silver nanoparticles: Characterization and surface modification. Carbohydr. Polym. 2014 110 195 202 10.1016/j.carbpol.2014.03.053 24906746
    [Google Scholar]
  98. Lima A.K.O. Souza L.M.S. Reis G.F. Junior A.G.T. Araújo V.H.S. Santos L.C. Silva V.R.P. Chorilli M. Braga H.C. Tada D.B. Ribeiro J.A.A. Rodrigues C.M. Nakazato G. Muehlmann L.A. Garcia M.P. Synthesis of silver nanoparticles using extracts from different parts of the Paullinia cupana Kunth Plant: Characterization and In Vitro Antimicrobial Activity. Pharmaceuticals 2024 17 7 869 10.3390/ph17070869 39065720
    [Google Scholar]
  99. Jain N. Jain P. Rajput D. Patil U.K. Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters 2021 9 1 5 10.1186/s40486‑021‑00131‑6
    [Google Scholar]
  100. A A V S X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis of silver nanoparticles synthesized from erythrina indica flowers. Nanoscience Technology Open Access 2018 5 1
    [Google Scholar]
  101. Ali M.H. Azad M.A.K. Khan K.A. Rahman M.O. Chakma U. Kumer A. Analysis of crystallographic structures and properties of silver nanoparticles synthesized using pkl extract and nanoscale characterization techniques. ACS Omega 2023 8 31 28133 28142 10.1021/acsomega.3c01261 37576647
    [Google Scholar]
  102. Nath D. Singh F. Das R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mater. Chem. Phys. 2020 239 122021 10.1016/j.matchemphys.2019.122021
    [Google Scholar]
  103. Nisha B. Vidyalakshmi Y. Geetha D. Ruhena Parveen J. Vinitha G. Green synthesis, characterization of silver nanoparticles and their study on antibacterial activity and optical limiting behavior. Appl. Phys. B 2019 125 7 123 10.1007/s00340‑019‑7226‑8
    [Google Scholar]
  104. Singh P. Mijakovic I. Strong Antimicrobial Activity of Silver Nanoparticles Obtained by the Green Synthesis in Viridibacillus sp. Extracts. Front. Microbiol. 2022 13 820048 10.3389/fmicb.2022.820048 35250934
    [Google Scholar]
  105. Khare S. Singh R.K. Prakash O. Green synthesis, characterization and biocompatibility evaluation of silver nanoparticles using radish seeds. Results in Chemistry 2022 4 100447 10.1016/j.rechem.2022.100447
    [Google Scholar]
  106. Gunawidjaja R. Myint T. Eilers H. Synthesis of silver/SiO2/Eu:Lu2O3 core–shell nanoparticles and their polymer nanocomposites. Powder Technol. 2011 210 2 157 166 10.1016/j.powtec.2011.03.011
    [Google Scholar]
  107. Rocha A.C.S. Pinheiro M.V.S. Menezes L.R. Silva E.O. Core-shell nanoparticles based on zirconia covered with silver as an advantageous perspective for obtaining antimicrobial nanocomposites with good mechanical properties and less cytotoxicity. J. Mech. Behav. Biomed. Mater. 2021 123 104726 10.1016/j.jmbbm.2021.104726 34454208
    [Google Scholar]
  108. Singh M.K. Singh A. Thermogravimetric analyzer. Characterization of Polymers and Fibres. Singh M.K. Singh A. Woodhead Publishing 2022 223 240 The Textile Institute Book Series 10.1016/B978‑0‑12‑823986‑5.00015‑4
    [Google Scholar]
  109. Ulaeto S.B. Mathew G.M. Pancrecious J.K. Nair J.B. Rajan T.P.D. Maiti K.K. Pai B.C. Biogenic Ag Nanoparticles from Neem Extract: Their Structural Evaluation and Antimicrobial Effects against Pseudomonas nitroreducens and Aspergillus unguis (NII 08123). ACS Biomater. Sci. Eng. 2020 6 1 235 245 10.1021/acsbiomaterials.9b01257 33463216
    [Google Scholar]
  110. Talabani R.F. Hamad S.M. Barzinjy A.A. Demir U. Biosynthesis of Silver Nanoparticles and Their Applications in Harvesting Sunlight for Solar Thermal Generation. Nanomaterials 2021 11 9 2421 10.3390/nano11092421 34578737
    [Google Scholar]
  111. Tian Z.Y. Mbayachi V.B. Dai W.K. Khalil M. Ayejoto D.A. Gas Chromatography/Mass Spectrometry. Advanced Diagnostics in Combustion Science. Tian Z.Y. Singapore Springer Nature 2023 33 69 10.1007/978‑981‑99‑0546‑1_2
    [Google Scholar]
  112. Alharbi N.S. Alsubhi N.S. Felimban A.I. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences 2022 15 3 109 124 10.1016/j.jrras.2022.06.012
    [Google Scholar]
  113. Chaparro D. Goudeli E. Oxidation Rate and Crystallinity Dynamics of Silver Nanoparticles at High Temperatures. J. Phys. Chem. C 2023 127 27 13389 13397 10.1021/acs.jpcc.3c03163
    [Google Scholar]
  114. Shoaib M. Naz A. Osra F.A. Abro S.H. Qazi S.U. Siddiqui F.A. Shah M.R. Mirza A.Z. Green synthesis and characterization of silver-entecavir nanoparticles with stability determination. Arab. J. Chem. 2021 14 3 102974 10.1016/j.arabjc.2020.102974
    [Google Scholar]
  115. Kaur R. Avti P. Kumar V. Kumar R. Effect of various synthesis parameters on the stability of size controlled green synthesis of silver nanoparticles. Nano Express 2021 2 2 020005 10.1088/2632‑959X/abf42a
    [Google Scholar]
  116. Mijar K. Sapkota A. Shrestha P. Nyaupane H. Sharma N. Adhikari A. Green synthesis of silver nanoparticle using parmotrema parmutatum extract and its application in colorimetric sensing and photolytic degradation of organic dye. Curr. Anal. Chem. 2024 20 1 12
    [Google Scholar]
  117. Unal İ. Green synthesis of multi-walled carbon nanotube-reinforced hydroxyapatite doped with silver and silver-core selenium-shell nanoparticles: Synthesis, characterization, and biological activity. Nanomaterials 2025 15 3 179 10.3390/nano15030179 39940155
    [Google Scholar]
  118. Fahmid S. Jabeen R. Maher S. Khan N. Batool F. Urooj R. Green Synthesis of Silver Nanoparticles Using Citrullus Colocynthis and Their Inhibitory Effect on the Pathogenic Fungus Scopulariopsis alboflavescens. 2025 Available from: https://www.eurekaselect.com/238708/article
  119. Panwar M.S. Pal P. Joshi D. Advances in Green Synthesis of Silver Nanoparticles: Sustainable Approaches and Applications. J. Drug Deliv. Ther. 2024 14 11 177 184 10.22270/jddt.v14i11.6854
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855414247251012171623
Loading
/content/journals/cdth/10.2174/0115748855414247251012171623
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test