Skip to content
2000
image of The Exploration of Hydromorphone Analogues as Potential Antimalarial Agents

Abstract

Introduction

Malaria, a life-threatening disease caused by Plasmodium parasites, still poses a severe threat to public health safety in Africa, South America, and Asia. It is transmitted via Anopheles mosquito bites and has been reported to be a major cause of toddler mortalities in these regions. Due to its mutation-mediated drug resistance and continued spread of the disease, there still exists a need to investigate and discover more effective antimalarial drugs. Hydromorphone is a semi-synthetic opioid agonist and a hydrogenated ketone of morphine with pain-relieving qualities and serves as a second-line drug to morphine in the treatment of both chronic and acute pain.

Methods

High-throughput virtual screen of hydromorphone analogues was done using Autodock Vina. The results of protein-ligand complexes were visualised using Discovery Studio Visualizer, and ligands with the best binding scores were used to perform MD simulations using GROMACS software.

Results

The promising candidate derivatives included analogues of both hydromorphone and morphine with hydroxy and ether constituents in the benzene ring. The best performing docking scores were carried forward to molecular dynamics using the GROMACS software. The ligands showed stability during these simulations and thus serve as promising inhibitors of DXR.

Discussion

During molecular docking, all ligands docked in chain A did not bind in the active site. This may be due to the small binding pocket in chain A. For chain B, eight ligands (four with NADPH and without NADPH) with the best docking score were further taken for molecular dynamics simulations, and their RMSDs were calculated after molecular dynamics, which all showed stability in the binding pocket.

Conclusion

The Hydromorphone derivatives explored in this study showed promising results when interacting with chain B of PfDXR (4gae) protein.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855346199250709204122
2025-07-28
2025-12-14
Loading full text...

Full text loading...

References

  1. Amusengeri A. Astl L. Lobb K. Verkhivker G.M. Tastan Bishop Ö. Establishing computational approaches towards identifying malarial allosteric modulators: A case study of Plasmodium falciparum Hsp70s. Int. J. Mol. Sci. 2019 20 22 5574 10.3390/ijms20225574 31717270
    [Google Scholar]
  2. Griffin J.T. Hollingsworth T.D. Okell L.C. Churcher T.S. White M. Hinsley W. Bousema T. Drakeley C.J. Ferguson N.M. Basáñez M.G. Ghani A.C. Reducing Plasmodium falciparum malaria transmission in Africa: A model-based evaluation of intervention strategies. PLoS Med. 2010 7 8 e1000324 10.1371/journal.pmed.1000324 20711482
    [Google Scholar]
  3. Vinindwa B. Dziwornu G.A. Masamba W. Synthesis and evaluation of chalcone-quinoline based molecular hybrids as potential anti-malarial agents. Molecules 2021 26 13 4093 10.3390/molecules26134093 34279438
    [Google Scholar]
  4. World Malaria Report 2021. 2021 Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
  5. World malaria report 2023. 2023 Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
  6. Sato S. Plasmodium—A brief introduction to the parasites causing human malaria and their basic biology. J Physiol Anthropol 2021 40 1 1 10.1186/s40101‑020‑00251‑9 33413683
    [Google Scholar]
  7. Nyamai D.W. Tastan Bishop Ö. Aminoacyl tRNA synthetases as malarial drug targets: A comparative bioinformatics study. Malar. J. 2019 18 1 34 10.1186/s12936‑019‑2665‑6 30728021
    [Google Scholar]
  8. Roca C. Avalos-Padilla Y. Prieto-Simón B. Iglesias V. Ramírez M. Imperial S. Fernàndez-Busquets X. Selection of an aptamer against the enzyme 1-deoxy-d-xylulose-5-phosphate reductoisomerase from Plasmodium falciparum. Pharmaceutics 2022 14 11 2515 10.3390/pharmaceutics14112515 36432706
    [Google Scholar]
  9. Wiesner J. Ortmann R. Jomaa H. Schlitzer M. New antimalarial drugs. Angew. Chem. Int. Ed. 2003 42 43 5274 5293 10.1002/anie.200200569 14613157
    [Google Scholar]
  10. Reddy B.P.N. Shrestha S. Hart K.J. Liang X. Kemirembe K. Cui L. Lindner S.E. A bioinformatic survey of RNA-binding proteins in Plasmodium. BMC Genomics 2015 16 1 890 10.1186/s12864‑015‑2092‑1 26525978
    [Google Scholar]
  11. Chaudhary K.K. Prasad C.V.S.S. Virtual screening of compounds to 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) from Plasmodium falciparum. Bioinformation 2014 10 6 358 364 10.6026/97320630010358 25097379
    [Google Scholar]
  12. Takada S. Abdullaziz M.A. Höfmann S. Knak T. Ozawa S. Sakamoto Y. Kurz T. Tanaka N. The diverse binding modes explain the nanomolar levels of inhibitory activities against 1-Deoxy-d-Xylulose 5-Phosphate reductoisomerase from Plasmodium falciparum exhibited by reverse hydroxamate analogs of fosmidomycin with varying N-substituents. Molecules 2024 30 1 72 10.3390/molecules30010072 39795129
    [Google Scholar]
  13. Singh N. Chevé G. Avery M.A. McCurdy C.R. Comparative protein modeling of 1-deoxy-D-xylulose-5-phosphate reductoisomerase enzyme from Plasmodium falciparum: A potential target for antimalarial drug discovery. J. Chem. Inf. Model. 2006 46 3 1360 1370 10.1021/ci050523w 16711755
    [Google Scholar]
  14. Wang X. Edwards R.L. Ball H. Johnson C. Haymond A. Girma M. Manikkam M. Brothers R.C. McKay K.T. Arnett S.D. Osbourn D.M. Alvarez S. Boshoff H.I. Meyers M.J. Couch R.D. Odom John A.R. Dowd C.S. MEPicides: α,β-unsaturated fosmidomycin analogues as DXR inhibitors against Malaria. J. Med. Chem. 2018 61 19 8847 8858 10.1021/acs.jmedchem.8b01026 30192536
    [Google Scholar]
  15. Silberstein S.D. Mccrory D.C.S.D. Health Policy New. York 2000 854 864
  16. Duke-Novakovski T. Opioids. Pain Management in Veterinary Practice Wiley 2013 39 67 10.1002/9781118999196.ch4
    [Google Scholar]
  17. Grimm K.A. Lamont L.A. Tranquilli W.J. Greene S.A. Robertson S.A. Opioids. Veterinary Anesthesia and Analgesia: The Fifth Edition of Lumb and Jones Wiley 2015 207 226 10.1002/9781119421375.ch11
    [Google Scholar]
  18. McCarthy L. Wetzel M. Sliker J.K. Eisenstein T.K. Rogers T.J. Opioids, opioid receptors, and the immune response. Drug Alcohol Depend. 2001 62 2 111 123 10.1016/S0376‑8716(00)00181‑2 11245967
    [Google Scholar]
  19. Murray A. Hagen N.A. Hydromorphone. J. Pain Symptom Manage. 2005 29 5 Suppl. 57 66 10.1016/j.jpainsymman.2005.01.007 15907647
    [Google Scholar]
  20. Felden L. Walter C. Harder S. Treede R.D. Kayser H. Drover D. Geisslinger G. Lötsch J. Comparative clinical effects of hydromorphone and morphine: A meta-analysis. Br. J. Anaesth. 2011 107 3 319 328 10.1093/bja/aer232 21841049
    [Google Scholar]
  21. Wright A.W.E. Mather L.E. Smith M.T. Hydromorphone-3-glucuronide. Life Sci. 2001 69 4 409 420 10.1016/S0024‑3205(01)01133‑X 11459432
    [Google Scholar]
  22. Diallo B.N. Swart T. Hoppe H.C. Tastan Bishop Ö. Lobb K. Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay. Sci. Rep. 2021 11 1 1413 10.1038/s41598‑020‑80722‑2 33446838
    [Google Scholar]
  23. Umeda T. Tanaka N. Kusakabe Y. Nakanishi M. Kitade Y. Nakamura K.T. Molecular basis of fosmidomycin’s action on the human malaria parasite Plasmodium falciparum. Sci. Rep. 2011 1 1 9 10.1038/srep00009 22355528
    [Google Scholar]
  24. Allouche A.R. Gabedit—A graphical user interface for computational chemistry softwares. J. Comput. Chem. 2011 32 1 174 182 10.1002/jcc.21600 20607691
    [Google Scholar]
  25. Guedes I. A. de Magalhães C. S. Dardenne L. E. Receptor-ligand molecular docking. Biophys Rev 2014 6 1 75 87 10.1007/s12551‑013‑0130‑2 28509958
    [Google Scholar]
  26. Yuriev E. Agostino M. Ramsland P. A. Challenges and advances in computational docking: 2009 in review. J Mol Recognit 2011 24 2 149 164 10.1002/jmr.1077 21360606
    [Google Scholar]
  27. Spyrakis F. Cavasotto C. N. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Arch Biochem Biophys 2015 583 105 119 10.1016/j.abb.2015.08.002 26271444
    [Google Scholar]
  28. Abraham M.J. van der Spoel D. Lindahl E. Hess B. GROMACS User Manual version 2018. GROMACS development team 2018
    [Google Scholar]
  29. Vanommeslaeghe K. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010 31 4 671 690 10.1002/jcc.21367 19575467
    [Google Scholar]
  30. David C.C. Jacobs D.J. Principal component analysis: A method for determining the essential dynamics of proteins. Methods Mol. Biol. 2014 1084 193 226 10.1007/978‑1‑62703‑658‑0_11 24061923
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855346199250709204122
Loading
/content/journals/cdth/10.2174/0115748855346199250709204122
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Hydromorphone ; DXR ; Virtual screening ; Malaria ; MD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test