Skip to content
2000
image of Enoxaparin Sodium: An Updated Review

Abstract

Introduction

Therapeutic anticoagulation is essential for the prevention and treatment of both venous and arterial thromboembolic events. This study aims to present clinically relevant evidence on the use of enoxaparin (also known as Lovenox or Clexane) in various conditions, including stroke and atrial fibrillation.

Methods

This focused literature review was conducted using keywords relevant to the research topic in PubMed, Scopus, and Web of Science. The reference lists of eligible articles published up to April 29th, 2025, were also screened to identify additional studies of relevance to the aims of the investigation. Comprehensive, methodologically appropriate, well-informed, and high-quality articles were selected for inclusion (n = 102).

Results

Enoxaparin is an anticoagulant that inhibits clot formation by enhancing antithrombin-mediated inactivation of factor Xa (and, to a lesser extent, factor IIa), but its use is associated with an increased risk of bleeding. Factor XI plays a minimal role in physiological hemostasis but contributes substantially to thrombus propagation, making it an appealing therapeutic target for reducing bleeding risk while maintaining antithrombotic efficacy. To achieve the desired therapeutic effect, individualized dosing strategies may be required, particularly in women, who may have different pharmacokinetic responses compared with men. The standard treatment dose of enoxaparin is 1 mg/kg administered every 12 hours for the prevention and treatment of thromboembolic events in various clinical conditions. Dose adjustments may be necessary in patients with impaired kidney function, whereas individuals with obesity often require standard or higher, not lower, weight-based doses to achieve therapeutic anti-Xa levels.

Discussion

Early initiation of direct oral anticoagulants (DOACs) after ischemic stroke has been shown to reduce the risk of recurrent thromboembolic events and vascular death within the first 30 days in appropriately selected patients. Enoxaparin should be used cautiously with nonsteroidal anti-inflammatory drugs (NSAIDs), such as naproxen, ibuprofen, or aspirin, because these agents impair platelet function and increase the risk of bleeding. In addition, antiplatelet medications, including prasugrel, ticagrelor, and clopidogrel, as well as certain herbal supplements, such as ginkgo biloba, fish oil, garlic, ginseng, and ginger, may further inhibit platelet function and heighten bleeding risk.

Conclusion

To evaluate efficiency and hemorrhage risk, anti-Xa agents may serve as a therapeutic option in populations treated with enoxaparin for thromboembolic disorders. Hemorrhagic bullous dermatosis, hepatotoxicity, loss of control or numbness, hypoaldosteronism, osteoporosis, and thrombocytopenia are some are some reported side effects of enoxaparin. A considerably lower dose of enoxaparin should be prescribed in women due to sex differences when compared to men.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855413930251126045556
2026-01-13
2026-02-02
Loading full text...

Full text loading...

References

  1. Enoxaparin sodium. 2025 Available from: https://en.wikipedia.org/wiki/Enoxaparin_sodium
  2. Hirsh J. Guyatt G. Lewis S.Z. Gould M. Samama M.M. Weitz J.I. Reflecting on eight editions of the American College of Chest Physicians antithrombotic guidelines. Chest 2008 133 6 1293 1295 [Suppl. 10.1378/chest.08‑0689 18574282
    [Google Scholar]
  3. Drouet L. Low molecular weight heparin biosimilars: how much similarity for how much clinical benefit? Target. Oncol. 2012 7 S1 35 42 10.1007/s11523‑011‑0194‑5 22274818
    [Google Scholar]
  4. Oliveira S.S.M. Oliveira F.S. Gaitani C.M. Marchetti J.M. Microparticles as a strategy for low-molecular-weight heparin delivery. J. Pharm. Sci. 2011 100 5 1783 1792 10.1002/jps.22412 21374614
    [Google Scholar]
  5. Yang X. Zou H. Dong Y. Liu B. Wang Y. Wang M. Validation study on the assay method for anti-factor IIa potency of enoxaparin sodium. PeerJ 2024 12 e18732 10.7717/peerj.18732 39713150
    [Google Scholar]
  6. Whitelock J.M. Iozzo R.V. Heparan sulfate: A complex polymer charged with biological activity. Chem. Rev. 2005 105 7 2745 2764 10.1021/cr010213m 16011323
    [Google Scholar]
  7. Jupalli A. Iqbal A.M. Enoxaparin. Treasure Island StatPearls Publishing 2023
    [Google Scholar]
  8. Fareed J. Hoppensteadt D. Walenga J. Pharmacodynamic and pharmacokinetic properties of enoxaparin: implications for clinical practice. Clin. Pharmacokinet. 2003 42 12 1043 1057 10.2165/00003088‑200342120‑00003 12959635
    [Google Scholar]
  9. Zhang L Wang SY Zhang YT Ren Q Characterization of the mechanisms governing heparin-bovine serum albumin complex interactions and associated anticoagulant activity. Carbohydr Polym 2025 348 Pt A 122797 10.1016/j.carbpol.2024.122797
    [Google Scholar]
  10. Fuochi V. Furnari S. Floresta G. Antiviral efficacy of heparan sulfate and enoxaparin sodium against SARS‐CoV‐2. Arch. Pharm. (Weinheim) 2025 358 1 e2400545 10.1002/ardp.202400545 39520338
    [Google Scholar]
  11. Howell C. Simman R. Accidental intra-arterial injection of enoxaparin sodium leading to abdominal wall expanding subcutaneous hematoma and abdominal wound: case report-vascular. Front. Surg. 2025 12 1477926 10.3389/fsurg.2025.1477926 39911563
    [Google Scholar]
  12. Nutescu E.A. Burnett A. Fanikos J. Spinler S. Wittkowsky A. Pharmacology of anticoagulants used in the treatment of venous thromboembolism. J. Thromb. Thrombolysis 2016 41 1 15 31 10.1007/s11239‑015‑1314‑3 26780737
    [Google Scholar]
  13. Kleiner M.T. Ahmed A.A. Huser A. Mooar P. Torg J. Enoxaparin and warfarin for venous thromboembolism prophylaxis in total hip arthroplasty: To bridge or not to bridge? Am. J. Orthop. 2015 44 7 E231 E234 [PMID: 26161769
    [Google Scholar]
  14. Tolou-Ghamari Z. Updated Covid-19 pharmactherapy in different diseases such as cancer. Coronaviruses 2025 6 2 e060524229708 10.2174/0126667975259296240409061101
    [Google Scholar]
  15. Tolou-Ghamari Z. A review of the association between infections, seizures, and drugs. Cent. Nerv. Syst. Agents Med. Chem. 2025 25 1 49 55 10.2174/0118715249288932240416071636 38676494
    [Google Scholar]
  16. Tolou Ghamari Z. Palizban A.A. Tacrolimus pharmacotherapy: Infectious complications and toxicity in organ transplant recipients: An updated review. Curr. Drug Res. Rev. 2023 Epub ahead of print 10.2174/0125899775259326231212073240 38151846
    [Google Scholar]
  17. Tolou-Ghamari Z. Tacrolimus, cytochrome P450, interactions with food variables in organ transplant recipients; A current and comprehensive review. Curr. Drug Metab. 2025 25 8 547 553 10.2174/0113892002328742241210102522 39757635
    [Google Scholar]
  18. Ghamari Z.T. Investigation of Nosocomial urinary tract infections post transplantation, main pathogens, and sensitivity tests. Curr. Drug Ther. 2024 19 7 846 850 10.2174/0115748855271275231115064229
    [Google Scholar]
  19. Tolou-Ghamari Z. Nosocomial urinary tract infections in a Tertiary Hospital; Preliminary study of antibiotics susceptibility testing and pathogen types. Antiinfect. Agents 2024 22 2 e251023222696 10.2174/0122113525258170231016081424
    [Google Scholar]
  20. Tolou-Ghamari Z. Investigation of nosocomial urianary tract infections post transplanatation, main pathogens, and sensitivity tests. Curr. Drug Ther. 2023 19 846 850 10.2174/0115748855271275231115064229
    [Google Scholar]
  21. Tolou-Ghamari Z. Preliminary study of antibiotics susceptibility testing and pathogens associated with nosocomial infections in a tertiary hospital. Antiinfect. Agents 2024 22 2 e271023222865 10.2174/0122113525259607231020063637
    [Google Scholar]
  22. Tolou-Ghamari Z. Prevalence and demographic characteristics of cancers. Clin. Cancer Investig. J. 2020 9 13 18 10.4103/ccij.ccij_13_20
    [Google Scholar]
  23. Tolou-Ghamari Z. Coronavirus and disease such as cancer. CCIJ 2021 10 3 97 101
    [Google Scholar]
  24. Tolou-Ghamari Z. Palizban A.A. Laboratory monitoring of cyclosporine pre-dose concentration (C 0) after kidney transplantation in isfahan. IJMS 2003 28 2 81 85
    [Google Scholar]
  25. Tolou-Ghamari Z. Palizban A.A. Michael Tredger J. Clinical monitoring of tacrolimus after liver transplantation using pentamer formation assay and microparticle enzyme immunoassay. Drugs R D. 2004 5 1 17 22 10.2165/00126839‑200405010‑00003 14725486
    [Google Scholar]
  26. Tolou-Ghamari Z. Tacrolimus and cyclosporin pharmacotherapy, detection methods, cytochrome p450 enzymes after heart transplantation. Cardiovasc. Hematol. Agents Med. Chem. 2023 Epub ahead of print 10.2174/1871525721666230726150021 37496131
    [Google Scholar]
  27. Ho T.D. Keshishian C.A. Bains S.S. Thromboprophylaxis in patients admitted to inpatient rehabilitation and skilled nursing facilities post total joint arthroplasty. Arch. Orthop. Trauma Surg. 2025 145 1 214 10.1007/s00402‑025‑05834‑8 40153059
    [Google Scholar]
  28. Appay M. Kharadi S. Nanayakkara S. Ryu J.S. Pasalic L. Alffenaar J.W. Therapeutic enoxaparin dosing in obesity. Ann. Pharmacother. 2025 59 3 262 276 10.1177/10600280241256351 39109860
    [Google Scholar]
  29. Dechelette E. Pouzol P. Jurkovitz C. The use of enoxaparine for anticoagulation in extracorporeal circulation in hemodialysis at high risk for hemorrhage. J. Mal. Vasc. 1987 12 105 107 [PMID: 2834479
    [Google Scholar]
  30. Xie K. Yang H. Wang S. Comparing the efficacy and safety of thromboprophylaxis with enoxaparin versus normal saline after liver transplantation: Randomized clinical trial. Br. J. Surg. 2025 112 2 znae325 10.1093/bjs/znae325 39991838
    [Google Scholar]
  31. Zinner G. Martineau J. Lam G.T. Kalbermatten D.F. Oranges C.M. Efficacy and safety of low molecular weight heparin and mechanical Thromboprophylaxis in immediate implant-based breast reconstruction: A retrospective comparative analysis. In Vivo 2025 39 1 318 324 10.21873/invivo.13830 39740877
    [Google Scholar]
  32. Franco-Moreno A. Muñoz-Rivas N. Torres-Macho J. Bustamante-Fermosel A. Ancos-Aracil C.L. Madroñal-Cerezo E. Systematic review of clinical trials on antithrombotic therapy with factor XI inhibitors. Rev. Clin. Esp. (Barc.) 2024 224 3 167 177 10.1016/j.rceng.2024.01.006 38309621
    [Google Scholar]
  33. Miller K.M. Brenner M.J. Betrixaban for extended Venous Thromboembolism Prophylaxis in high-risk hospitalized patients: Putting the APEX results into practice. Drugs 2019 79 3 291 302 10.1007/s40265‑019‑1059‑y 30719631
    [Google Scholar]
  34. Olinic D.M. Tataru D.A. Homorodean C. Spinu M. Olinic M. Antithrombotic treatment in peripheral artery disease. Vasa 2018 47 2 99 108 10.1024/0301‑1526/a000676 29160765
    [Google Scholar]
  35. Sherman D.G. Albers G.W. Bladin C. The efficacy and safety of enoxaparin versus unfractionated heparin for the prevention of venous thromboembolism after acute ischaemic stroke (PREVAIL Study): An open-label randomised comparison. Lancet 2007 369 9570 1347 1355 10.1016/S0140‑6736(07)60633‑3 17448820
    [Google Scholar]
  36. AlHajri L. Jabbari S. AlEmad H. AlMahri K. AlMahri M. AlKitbi N. The efficacy and safety of Edoxaban for VTE prophylaxis post-orthopedic surgery: A systematic review. J. Cardiovasc. Pharmacol. Ther. 2017 22 3 230 238 10.1177/1074248416675732 27811198
    [Google Scholar]
  37. Tahir F. Riaz H. Riaz T. The new oral anti-coagulants and the phase 3 clinical trials - a systematic review of the literature. Thromb. J. 2013 11 1 18 10.1186/1477‑9560‑11‑18 24007323
    [Google Scholar]
  38. Jiménez D. Yusen R.D. Ramacciotti E. Apixaban: An oral direct factor-xa inhibitor. Adv. Ther. 2012 29 3 187 201 10.1007/s12325‑012‑0003‑2 22354465
    [Google Scholar]
  39. Prom R. Spinler S.A. The role of apixaban for venous and arterial thromboembolic disease. Ann. Pharmacother. 2011 45 10 1262 1283 10.1345/aph.1Q119 21954450
    [Google Scholar]
  40. Lussana F. Cattaneo M. Squizzato A. Post-operative arterial thrombosis with non-vitamin K antagonist oral anticoagulants after total hip or knee arthroplasty. Thromb. Haemost. 2015 114 8 237 244 10.1160/TH15‑01‑0073 25946985
    [Google Scholar]
  41. Donkor E.S. Stroke in the 2 1 s t century: A snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treat. 2018 2018 1 10 10.1155/2018/3238165 30598741
    [Google Scholar]
  42. Sarfo F.S. Ovbiagele B. Gebregziabher M. Stroke Among Young West Africans. Stroke 2018 49 5 1116 1122 10.1161/STROKEAHA.118.020783 29618553
    [Google Scholar]
  43. Capirossi C. Laiso A. Renieri L. Capasso F. Limbucci N. Epidemiology, organization, diagnosis and treatment of acute ischemic stroke. Eur. J. Radiol. Open 2023 11 100527 10.1016/j.ejro.2023.100527 37860148
    [Google Scholar]
  44. Tsao C.W. Aday A.W. Almarzooq Z.I. Heart disease and stroke statistics—2022 update: A report from the American Heart Association. Circulation 2022 145 8 e153 e639 10.1161/CIR.0000000000001052 35078371
    [Google Scholar]
  45. Benjamin E.J. Virani S.S. Callaway C.W. Heart disease and stroke statistics—2018 update: A report from the American Heart Association. Circulation 2018 137 12 e67 e492 10.1161/CIR.0000000000000558 29386200
    [Google Scholar]
  46. Tolou-Ghamari Z Shaygannejad V Khorvash F Preliminary investigation of economics issues in hospitalized patients with stroke. Int J Prev Med 2013 4 S338 S342.(Suppl. 2) 23776748
    [Google Scholar]
  47. Mary V. Wahl F. Uzan A. Stutzmann J.M. Enoxaparin in experimental stroke: neuroprotection and therapeutic window of opportunity. Stroke 2001 32 4 993 999 10.1161/01.STR.32.4.993 11283402
    [Google Scholar]
  48. Stutzmann J.M. Mary V. Wahl F. Grosjean-Piot O. Uzan A. Pratt J. Neuroprotective profile of enoxaparin, a low molecular weight heparin, in in vivo models of cerebral ischemia or traumatic brain injury in rats: A review. CNS Drug Rev. 2002 8 1 1 30 10.1111/j.1527‑3458.2002.tb00213.x 12070524
    [Google Scholar]
  49. Hachenberger M. Yeniguen M. Suenner L. Comparison of edoxaban and enoxaparin in a rat model of AlCl3-induced thrombosis of the superior sagittal sinus. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 12 3887 3892 10.1007/s00210‑023‑02546‑x 37261475
    [Google Scholar]
  50. Owolabi M.O. Ugoya S. Platz T. Racial disparity in stroke risk factors: The Berlin-Ibadan experience; a retrospective study. Acta Neurol. Scand. 2009 119 2 81 87 10.1111/j.1600‑0404.2008.01077.x 18638038
    [Google Scholar]
  51. Hajat C. Dundas R. Stewart J.A. Cerebrovascular risk factors and stroke subtypes: differences between ethnic groups. Stroke 2001 32 1 37 42 10.1161/01.STR.32.1.37 11136911
    [Google Scholar]
  52. Diener H.C. Cunha L. Forbes C. Sivenius J. Smets P. Lowenthal A. European stroke prevention study 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J. Neurol. Sci. 1996 143 1-2 1 13 10.1016/S0022‑510X(96)00308‑5 8981292
    [Google Scholar]
  53. Turpie A.G.G. Hull R.D. Schellong S.M. Venous thromboembolism risk in ischemic stroke patients receiving extended-duration enoxaparin prophylaxis: results from the EXCLAIM study. Stroke 2013 44 1 249 251 10.1161/STROKEAHA.112.659797 23117723
    [Google Scholar]
  54. Valeriani E. Potere N. Candeloro M. Extended venous thromboprophylaxis in patients hospitalized for acute ischemic stroke: A systematic review and meta-analysis. Eur. J. Intern. Med. 2022 95 80 86 10.1016/j.ejim.2021.09.016 34649783
    [Google Scholar]
  55. Hillbom M. Erilä T. Sotaniemi K. Tatlisumak T. Sarna S. Kaste M. Enoxaparin vs heparin for prevention of deep-vein thrombosis in acute ischaemic stroke: a randomized, double-blind study. Acta Neurol. Scand. 2002 106 2 84 92 10.1034/j.1600‑0404.2002.01215.x 12100367
    [Google Scholar]
  56. Perry L.A. Berge E. Bowditch J. Antithrombotic treatment after stroke due to intracerebral haemorrhage. Cochrane Database Syst. Rev. 2017 5 5 CD012144 10.1002/14651858.CD012144.pub2
    [Google Scholar]
  57. Muscari A. Bartoli E. Faccioli L. Venous thromboembolism prevention with low molecular weight heparin may reduce hemorrhagic transformation in acute ischemic stroke. Neurol. Sci. 2020 41 9 2485 2494 10.1007/s10072‑020‑04354‑0 32212012
    [Google Scholar]
  58. Linz D. Gawalko M. Betz K. Atrial fibrillation: epidemiology, screening and digital health. Lancet Reg. Health Eur. 2024 37 100786 10.1016/j.lanepe.2023.100786 38362546
    [Google Scholar]
  59. Halahakone U. Senanayake S. McCreanor V. Parsonage W. Kularatna S. Brain D. Cost-Effectiveness of Screening to Identify Patients With Atrial Fibrillation: A Systematic Review. Heart Lung Circ. 2023 32 6 678 695 10.1016/j.hlc.2023.03.014 37100697
    [Google Scholar]
  60. Wang Y. Guo Y. Qin M. 2024 Chinese Expert Consensus Guidelines on the Diagnosis and Treatment of Atrial Fibrillation in the Elderly, Endorsed by Geriatric Society of Chinese Medical Association (Cardiovascular Group) and Chinese Society of Geriatric Health Medicine (Cardiovascular Branch): Executive Summary. Thromb. Haemost. 2024 124 10 897 911 10.1055/a‑2325‑5923 38744425
    [Google Scholar]
  61. Frederiksen T.C. Dahm C.C. Preis S.R. The bidirectional association between atrial fibrillation and myocardial infarction. Nat. Rev. Cardiol. 2023 20 9 631 644 10.1038/s41569‑023‑00857‑3 37069297
    [Google Scholar]
  62. Wolf P.A. Abbott R.D. Kannel W.B. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 1991 22 8 983 988 10.1161/01.STR.22.8.983 1866765
    [Google Scholar]
  63. Abildgaard A. Madsen S.A. Hvas A.M. Dosage of Anticoagulants in Obesity: Recommendations Based on a Systematic Review. Semin. Thromb. Hemost. 2020 46 8 932 969 10.1055/s‑0040‑1718405 33368113
    [Google Scholar]
  64. Elias A. Morgenstern Y. Braun E. Brenner B. Tzoran I. Direct oral anticoagulants versus enoxaparin in patients with atrial fibrillation and active cancer. Eur. J. Intern. Med. 2021 89 132 134 10.1016/j.ejim.2021.04.002 33985888
    [Google Scholar]
  65. LiverTox LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda 2012
    [Google Scholar]
  66. Milling T.J. Middeldorp S. Xu L. ANNEXA-4 Investigators Final study report of andexanet alfa for major bleeding with factor Xa inhibitors. Circulation 2023 147 13 1026 1038 10.1161/CIRCULATIONAHA.121.057844 36802876
    [Google Scholar]
  67. Dal Zotto B. Barbieri L. Tumminello G. New onset atrial fibrillation in STEMI patients: Main prognostic factors and clinical outcome. Diagnostics 2023 13 4 613 10.3390/diagnostics13040613 36832101
    [Google Scholar]
  68. Schäfer A. Flierl U. Berliner D. Bauersachs J. Anticoagulants for stroke prevention in atrial fibrillation in elderly patients. Cardiovasc. Drugs Ther. 2020 34 4 555 568 10.1007/s10557‑020‑06981‑3 32350792
    [Google Scholar]
  69. Schäfer A. Flierl U. Bauersachs J. Anti-thrombotic strategies in elderly patients receiving platelet inhibitors. Eur. Heart J. Cardiovasc. Pharmacother. 2020 6 1 57 68 10.1093/ehjcvp/pvz032 31384933
    [Google Scholar]
  70. Königsbrügge O. Meisel H. Beyer A. Anticoagulation use and the risk of stroke and major bleeding in patients on hemodialysis: From the VIVALDI, a population‐based prospective cohort study. J. Thromb. Haemost. 2021 19 12 2984 2996 10.1111/jth.15508 34418291
    [Google Scholar]
  71. Cohen J.E. Gomori J.M. Honig A. Leker R.R. Carotid artery stenting in patients with atrial fibrillation: Direct oral anticoagulants, brief double antiplatelets, and testing strategy. J. Clin. Med. 2021 10 22 5242 10.3390/jcm10225242 34830524
    [Google Scholar]
  72. Capodanno D. Alexander J.H. Bahit M.C. Factor XI inhibitors for the prevention and treatment of venous and arterial thromboembolism. Nat. Rev. Cardiol. 2025 22 11 896 912 10.1038/s41569‑025‑01144‑z 40164778
    [Google Scholar]
  73. Escobar C. Palacios B. Villarreal M. Clinical characteristics and incidence of hemorrhagic complications in patients taking factor xa inhibitors in Spain: A long-term observational study. J. Clin. Med. 2024 13 6 1677 10.3390/jcm13061677 38541902
    [Google Scholar]
  74. Tinchon A. Brait J. Klee S. How enoxaparin underdosing and sex contribute to achieving therapeutic anti-Xa levels. Front. Pharmacol. 2024 15 1377232 10.3389/fphar.2024.1377232 39070792
    [Google Scholar]
  75. Peixoto de Miranda É.J.F. Takahashi T. Iwamoto F. Drug–drug interactions of 257 antineoplastic and supportive care agents with 7 anticoagulants: A comprehensive review of interactions and mechanisms. Clin. Appl. Thromb. Hemost. 2020 26 1076029620936325 10.1177/1076029620936325 32862668
    [Google Scholar]
  76. Bischof T. Nagele F. Kalkofen M.M. Drug-drug-interactions in patients with atrial fibrillation admitted to the emergency department. Front. Pharmacol. 2024 15 1432713 10.3389/fphar.2024.1432713 39508037
    [Google Scholar]
  77. Limsakun T. Dishy V. Mendell J. Safety and pharmacokinetics of DS‐1040 drug‐drug interactions with aspirin, clopidogrel, and enoxaparin. J. Clin. Pharmacol. 2020 60 6 691 701 10.1002/jcph.1568 32106339
    [Google Scholar]
  78. Jeong E. Nelson S.D. Su Y. Malin B. Li L. Chen Y. Detecting drug-drug interactions between therapies for COVID-19 and concomitant medications through the FDA adverse event reporting system. Front. Pharmacol. 2022 13 938552 10.3389/fphar.2022.938552 35935872
    [Google Scholar]
  79. Maalouly G. Ward C. Smayra V. Fish oil attenuates neurologic severity of antiphospholipid syndrome in a mice experimental model. Nutr. Neurosci. 2017 20 10 563 570 10.1080/1028415X.2016.1206165 27426873
    [Google Scholar]
  80. Trager M.H. Gordon E.R. Humphreys T.R. Samie F.H. Part 1: Management of antithrombotic medications in dermatologic surgery. J. Am. Acad. Dermatol. 2025 92 3 389 404 10.1016/j.jaad.2024.01.096 38735483
    [Google Scholar]
  81. Bone K.M. Potential interaction of Ginkgo biloba leaf with antiplatelet or anticoagulant drugs: What is the evidence? Mol. Nutr. Food Res. 2008 52 7 764 771 10.1002/mnfr.200700098 18214851
    [Google Scholar]
  82. Leentjens J. Peters M. Esselink A.C. Smulders Y. Kramers C. Initial anticoagulation in patients with pulmonary embolism: thrombolysis, unfractionated heparin, LMWH, fondaparinux, or DOACs? Br. J. Clin. Pharmacol. 2017 83 11 2356 2366 10.1111/bcp.13340 28593681
    [Google Scholar]
  83. Jaspers T.C.C. Keyany A. Maat B. Meijer K. van den Bemt P.M.L.A. Khorsand N. Therapeutically dosed low molecular weight heparins in renal impairment: a nationwide survey. Eur. J. Clin. Pharmacol. 2022 78 9 1469 1479 10.1007/s00228‑022‑03344‑9 35715569
    [Google Scholar]
  84. Montalescot G. Collet J.P. Tanguy M.L. Anti-Xa activity relates to survival and efficacy in unselected acute coronary syndrome patients treated with enoxaparin. Circulation 2004 110 4 392 398 10.1161/01.CIR.0000136830.65073.C7 15249498
    [Google Scholar]
  85. Barras M.A. Duffull S.B. Atherton J.J. Green B. Individualized compared with conventional dosing of enoxaparin. Clin. Pharmacol. Ther. 2008 83 6 882 888 10.1038/sj.clpt.6100399 17928819
    [Google Scholar]
  86. Modi R.N. Borst J.M. Kirchberg T.N. One size does not fit all: Sex bias in pharmacologic venous thromboembolism prophylaxis. J. Trauma Acute Care Surg. 2023 94 1 78 85 10.1097/TA.0000000000003738 35787601
    [Google Scholar]
  87. Baker E.L. Loewenthal T. Salerno E. Baker W.L. Probable enoxaparin-induced hepatotoxicity. Am. J. Health Syst. Pharm. 2009 66 7 638 641 10.2146/ajhp080311 19299370
    [Google Scholar]
  88. Fareed J. Jeske W. Hoppensteadt D. Clarizio R. Walenga J.M. Low-molecular-weight heparins: Pharmacologic profile and product differentiation. Am. J. Cardiol. 1998 82 5 3L 10L 10.1016/S0002‑9149(98)00105‑2 9737473
    [Google Scholar]
  89. Oldgren J. Johnston N. Siegbahn A. Xa inhibition and coagulation activity—the influence of prolonged dalteparin treatment and gender in patients with acute coronary syndrome and healthy individuals. Am. Heart J. 2008 155 3 493.e1 493.e8 10.1016/j.ahj.2007.12.006 18294482
    [Google Scholar]
  90. Hakeam H.A. Al Duhailib Z. Alsemari M. Alwaibah R.M. Al Shannan M.F. Shalhoub M. Anti-factor Xa levels in low-weight surgical patients receiving enoxaparin for venous Thromboembolism Prophylaxis: A prospective cohort study. Clin. Appl. Thromb. Hemost. 2020 26 1076029620931194 10.1177/1076029620931194 32559127
    [Google Scholar]
  91. May C.C. Cua S. Smetana K.S. Powers C.J. Supraprophylactic anti–factor Xa levels are associated with major bleeding in neurosurgery patients receiving prophylactic enoxaparin. World Neurosurg. 2022 157 e357 e363 10.1016/j.wneu.2021.10.087 34655821
    [Google Scholar]
  92. Bigos R. Solomon E. Dorfman J.D. Ha M. Weight- and anti-Xa-Guided enoxaparin dosing protocol for venous thromboembolism prophylaxis in intensive care unit trauma patients. J. Surg. Res. 2021 265 122 130 10.1016/j.jss.2021.02.034 33930618
    [Google Scholar]
  93. Aleidan F.A.S. Aljarba G.A. Aldakhil A.A. A prospective cohort study comparing achieved anti-factor Xa peak levels in pregnant and non-pregnant patients receiving therapeutic-dose low-molecular-weight heparin. Int. J. Hematol. 2020 112 1 1 7 10.1007/s12185‑020‑02873‑2 32266670
    [Google Scholar]
  94. Lalama J.T. Feeney M.E. Vandiver J.W. Beavers K.D. Walter L.N. McClintic J.R. Assessing an enoxaparin dosing protocol in morbidly obese patients. J. Thromb. Thrombolysis 2015 39 4 516 521 10.1007/s11239‑014‑1117‑y 25087072
    [Google Scholar]
  95. Rowan B.O. Kuhl D.A. Lee M.D. Tichansky D.S. Madan A.K. Anti-Xa levels in bariatric surgery patients receiving prophylactic enoxaparin. Obes. Surg. 2008 18 2 162 166 10.1007/s11695‑007‑9381‑y 18165884
    [Google Scholar]
  96. Niedźwiedź M. Żebrowska A. Lesiak A. Narbutt J. Skibińska M. Enoxaparin induced eruptive angiokeratomas. Polish Archiv Int Med 2023 133 5 16463 10.20452/pamw.16463 36916492
    [Google Scholar]
  97. Elantably D. El-Komy M.H.M. El-Nabarawy E.A. Abdelkader H.A. Naggar R.E. Enoxaparin induced eruptive angiokeratoma, an extremely rare side effect. J. Thromb. Thrombolysis 2020 49 4 687 689 10.1007/s11239‑020‑02039‑1 31925666
    [Google Scholar]
  98. Jacobson B. Rambiritch V. Paek D. Safety and efficacy of enoxaparin in pregnancy: A systematic review and meta-analysis. Adv. Ther. 2020 37 1 27 40 10.1007/s12325‑019‑01124‑z 31673991
    [Google Scholar]
  99. Rodríguez-Villa Lario A. Piteiro-Bermejo A.B. Bèa-Ardébol S. Enoxaparin-induced distal haemorrhagic bullous dermatosis. Rev. Clin. Esp. (Barc.) 2021 221 2 125 126 10.1016/j.rceng.2019.11.016 33998488
    [Google Scholar]
  100. Iqbal Z. Cohen M. Enoxaparin: A pharmacologic and clinical review. Expert Opin. Pharmacother. 2011 12 7 1157 1170 10.1517/14656566.2011.570261 21470072
    [Google Scholar]
  101. Zaera De La Fuente C. Arribas Anta J. López-San Román A. Cañete Ruiz Á. López Durán S. Enoxaparin-induced hepatotoxicity. Gastroenterol. Hepatol. 2015 38 7 438 439 10.1016/j.gastrohep.2014.06.010
    [Google Scholar]
  102. Matych M. Ciosek A. Miler K. Primary and recurrent erysipelas—epidemiological patterns in a single-centre retrospective analysis. J. Clin. Med. 2025 14 15 5299 10.3390/jcm14155299 40806921
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855413930251126045556
Loading
/content/journals/cdth/10.2174/0115748855413930251126045556
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: thromboembolism ; hemorrhage ; Enoxaparin ; venous thromboembolism ; thrombosis ; ischemic stroke
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test