Skip to content
2000
image of Exploring the Role of Microgreens in Alleviating Symptoms of Polycystic Ovarian Syndrome (PCOS)

Abstract

Microgreens are emerging as highly nutritious, functional foods, gaining significant popularity among younger generations due to their high concentration of bioactive compounds. Varieties such as lettuce, spinach, radish, cabbage, and mustard are particularly noted for their nutraceutical properties. These miniature greens are known to contain antioxidants, vitamins, minerals, and phytochemicals that may contribute to the management of various health conditions, including Polycystic Ovarian Syndrome (PCOS). PCOS is a multifaceted endocrine disorder commonly affecting women of reproductive age and is characterized by hormonal imbalances, irregular menstrual cycles, elevated androgen levels, and the formation of multiple cysts in the ovaries. This condition often results in impaired ovulation, reduced fertility, and increased risk of metabolic complications. Although the cause of PCOS is not fully understood, hormonal dysregulation is believed to play a central role. Incorporating microgreens into the diet may help regulate hormonal levels, support reproductive health, and manage metabolic disturbances associated with PCOS. Early dietary and lifestyle interventions are crucial for minimizing the impact of this disorder. This review highlights the potential of microgreens as natural, plant-based dietary components in the holistic management of PCOS symptoms.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855407300251028111600
2026-01-19
2026-02-02
Loading full text...

Full text loading...

References

  1. Lee J.S. Pill W.G. Cobb B.B. Olszewski M. Seed treatments to advance greenhouse establishment of beet and chard microgreens. J. Hortic. Sci. Biotechnol. 2004 79 4 565 570 10.1080/14620316.2004.11511806
    [Google Scholar]
  2. Puccinelli M. Malorgio F. Rosellini I. Pezzarossa B. Production of selenium‐biofortified microgreens from selenium‐enriched seeds of basil. J. Sci. Food Agric. 2019 99 12 5601 5605 10.1002/jsfa.9826 31149731
    [Google Scholar]
  3. Zhang Y. Xiao Z. Ager E. Kong L. Tan L. Nutritional quality and health benefits of microgreens, a crop of modern agriculture. J Future Foods 2021 1 1 58 66 10.1016/j.jfutfo.2021.07.001
    [Google Scholar]
  4. Caracciolo F. El-Nakhel C. Raimondo M. Sensory attributes and consumer acceptability of 12 microgreens species. Agronomy 2020 10 7 1043 10.3390/agronomy10071043
    [Google Scholar]
  5. Janovská D. Štočková L. Stehno Z. Evaluation of buckwheat sprouts as microgreens. Acta Agric. Slov. 2010 95 2 157 162 10.14720/aas.2010.95.2.14779
    [Google Scholar]
  6. Tefagh G. Payab M. Qorbani M. Effect of vitamin E supplementation on cardiometabolic risk factors, inflammatory and oxidative markers and hormonal functions in PCOS (polycystic ovary syndrome): A systematic review and meta‐analysis. Sci. Rep. 2022 12 1 5770 10.1038/s41598‑022‑09082‑3 35388031
    [Google Scholar]
  7. Olaniyan O.T. Femi A. Iliya G. Vitamin C suppresses ovarian pathophysiology in experimental polycystic ovarian syndrome. Pathophysiology 2019 26 3-4 331 341 10.1016/j.pathophys.2019.08.003 31564389
    [Google Scholar]
  8. Tarkesh F. Namavar Jahromi B. Hejazi N. Tabatabaee H. Beneficial health effects of Menaquinone‐7 on body composition, glycemic indices, lipid profile, and endocrine markers in polycystic ovary syndrome patients. Food Sci. Nutr. 2020 8 10 5612 5621 10.1002/fsn3.1837 33133563
    [Google Scholar]
  9. Waterland N.L. Moon Y. Tou J.C. Kim M.J. Pena-Yewtukhiw E.M. Park S. Mineral content differs among microgreen, baby leaf, and adult stages in three cultivars of kale. HortScience 2017 52 4 566 571 10.21273/HORTSCI11499‑16
    [Google Scholar]
  10. Sir-Petermann T. Maliqueo M. Angel B. Lara H.E. Pérez-Bravo F. Recabarren S.E. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: Possible implications in prenatal androgenization. Hum. Reprod. 2002 17 10 2573 2579 10.1093/humrep/17.10.2573 12351531
    [Google Scholar]
  11. Chen J. Guo Q. Pei Y. Effect of a short-term vitamin E supplementation on oxidative stress in infertile PCOS women under ovulation induction: A retrospective cohort study. BMC Womens Health 2020 20 1 69 10.1186/s12905‑020‑00930‑w 32252736
    [Google Scholar]
  12. Marasco L. Marmet C. Shell E. Polycystic ovary syndrome: A connection to insufficient milk supply? J. Hum. Lact. 2000 16 2 143 148 10.1177/089033440001600211 11153345
    [Google Scholar]
  13. Wild R A Rizzo M Clifton S Carmina E Lipid levels in polycystic ovary syndrome: Systematic review and meta-analysis. Fertil Steril 2011 95 3 1073 1079.e1-11 10.1016/j.fertnstert.2010.12.027
    [Google Scholar]
  14. Miao C.Y. Fang X.J. Chen Y. Zhang Q. Effect of vitaminD supplementation on polycystic ovary syndrome: A meta analysis. Exp. Ther. Med. 2020 19 4 2641 2649 10.3892/etm.2020.8525 32256745
    [Google Scholar]
  15. Bhaswant M. Shanmugam D.K. Miyazawa T. Abe C. Miyazawa T. Microgreens—A comprehensive review of bioactive molecules and health benefits. Molecules 2023 28 2 867 10.3390/molecules28020867 36677933
    [Google Scholar]
  16. Tarkesh F. Namavar Jahromi B. Hejazi N. Hoseini G. Effect of vitamin K2 administration on depression status in patients with polycystic ovary syndrome: A randomized clinical trial. BMC Womens Health 2022 22 1 315 10.1186/s12905‑022‑01825‑8 35883082
    [Google Scholar]
  17. Xiao Z. Codling E.E. Luo Y. Nou X. Lester G.E. Wang Q. Microgreens of brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016 49 87 93 10.1016/j.jfca.2016.04.006
    [Google Scholar]
  18. Moran L.J. Noakes M. Clifton P.M. Tomlinson L. Norman R.J. Norman R.J. Dietary composition in restoring reproductive and metabolic physiology in overweight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2003 88 2 812 819 10.1210/jc.2002‑020815 12574218
    [Google Scholar]
  19. Xiao Z. Lester G.E. Park E. Saftner R.A. Luo Y. Wang Q. Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Biol. Technol. 2015 110 140 148 10.1016/j.postharvbio.2015.07.021
    [Google Scholar]
  20. Chambial S. Dwivedi S. Shukla K.K. John P.J. Sharma P. Vitamin C in disease prevention and cure: An overview. Indian J. Clin. Biochem. 2013 28 4 314 328 10.1007/s12291‑013‑0375‑3 24426232
    [Google Scholar]
  21. Várbíró S. Takács I. Tűű L. Effects of vitamin D on fertility, pregnancy and polycystic ovary syndrome—a review. Nutrients 2022 14 8 1649 10.3390/nu14081649 35458211
    [Google Scholar]
  22. Wu M-H. Lin M-W. The role of vitamin D in polycystic ovary syndrome. Indian J. Med. Res. 2015 142 3 238 240 10.4103/0971‑5916.166527 26458338
    [Google Scholar]
  23. Ayub A. Chopra S. Sarswat S. Sharma E. Greens in miniature: A comprehensive guide to cultivation. Nutrition and Innovation. NIPA 2024 10.59317/9789361342776
    [Google Scholar]
  24. Mills E.G. Abbara A. Dhillo W.S. Comninos A.N. Effects of distinct polycystic ovary syndrome phenotypes on bone health. Front. Endocrinol. 2023 14 1163771 10.3389/fendo.2023.1163771 37251667
    [Google Scholar]
  25. Seth T. Mishra G.P. Chattopadhyay A. Microgreens: Functional food for nutrition and dietary diversification. Plants 2025 14 4 526 10.3390/plants14040526 40006785
    [Google Scholar]
  26. Polash M.A.S. Sakil M.A. Hossain M.A. Hossain M. Post-harvest biodegradation of bioactive substances and antioxidant activity in microgreens. J. Bangladesh Agric. Univ. 2018 16 2 250 253 10.3329/jbau.v16i2.37975
    [Google Scholar]
  27. Le T.N. Luong H.Q. Li H.P. Chiu C.H. Hsieh P.C. Broccoli (Brassica oleracea L. var. italica) sprouts as the potential food source for bioactive properties: A comprehensive study on in vitro disease models. Foods 2019 8 11 532 10.3390/foods8110532 31671614
    [Google Scholar]
  28. Kopsell D.A. Sams C.E. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J. Am. Soc. Hortic. Sci. 2013 138 1 31 37 10.21273/JASHS.138.1.31
    [Google Scholar]
  29. Choe U. Yu L.L. Wang T.T.Y. The science behind microgreens as an exciting new food for the 21st century. J. Agric. Food Chem. 2018 66 44 11519 11530 10.1021/acs.jafc.8b03096 30343573
    [Google Scholar]
  30. Weber C.F. Broccoli microgreens: A mineral-rich crop that can diversify food systems. Front. Nutr. 2017 4 7 10.3389/fnut.2017.00007 28386543
    [Google Scholar]
  31. Nema N.K. Maity N. Sarkar B. Mukherjee P.K. Cucumis sativus fruit-potential antioxidant, anti-hyaluronidase, and anti-elastase agent. Arch. Dermatol. Res. 2011 303 4 247 252 10.1007/s00403‑010‑1103‑y 21153830
    [Google Scholar]
  32. Norman A.W. From vitamin D to hormone D: Fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 2008 88 2 491S 499S 10.1093/ajcn/88.2.491S 18689389
    [Google Scholar]
  33. Raskin I. Ribnicky D.M. Komarnytsky S. Plants and human health in the twenty-first century. Trends Biotechnol. 2002 20 12 522 531 10.1016/S0167‑7799(02)02080‑2 12443874
    [Google Scholar]
  34. Higdon J. Delage B. Williams D. Dashwood R. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol. Res. 2007 55 3 224 236 10.1016/j.phrs.2007.01.009 17317210
    [Google Scholar]
  35. Rastogi A. Shukla S. Amaranth: A new millennium crop of nutraceutical values. Crit. Rev. Food Sci. Nutr. 2013 53 2 109 125 10.1080/10408398.2010.517876 23072528
    [Google Scholar]
  36. Kim W.K. Kim J.H. Jeong D.H. Radish (Raphanus sativus L. leaf) ethanol extract inhibits protein and mRNA expression of ErbB 2 and ErbB 3 in MDA-MB-231 human breast cancer cells. Nutr. Res. Pract. 2011 5 4 288 293 10.4162/nrp.2011.5.4.288 21994522
    [Google Scholar]
  37. Roy F. Boye J.I. Simpson B.K. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res. Int. 2010 43 2 432 442 10.1016/j.foodres.2009.09.002
    [Google Scholar]
  38. Baenas N. Silván J.M. Medina S. de Pascual-Teresa S. García-Viguera C. Moreno D.A. Metabolism and antiproliferative effects of sulforaphane and broccoli sprouts in human intestinal (Caco-2) and hepatic (HepG2) cells. Phytochem. Rev. 2015 14 6 1035 1044 10.1007/s11101‑015‑9422‑4
    [Google Scholar]
  39. Abellán Á. Domínguez-Perles R. Moreno D.A. García-Viguera C. Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients 2019 11 2 429 10.3390/nu11020429 30791362
    [Google Scholar]
  40. Stamets K. Taylor D.S. Kunselman A. Demers L.M. Pelkman C.L. Legro R.S. A randomized trial of the effects of two types of short-term hypocaloric diets on weight loss in women with polycystic ovary syndrome. Fertil. Steril. 2004 81 3 630 637 10.1016/j.fertnstert.2003.08.023 15037413
    [Google Scholar]
  41. Carmina E. Lobo R.A. Polycystic ovary syndrome (PCOS): Arguably the most common endocrinopathy is associated with significant morbidity in women. J. Clin. Endocrinol. Metab. 1999 84 6 1897 1899 10.1210/jcem.84.6.5803 10372683
    [Google Scholar]
  42. Bulsara J. Patel P. Soni A. Acharya S. A review: Brief insight into Polycystic Ovarian syndrome. Endocr Metab Sci 2021 3 100085 10.1016/j.endmts.2021.100085
    [Google Scholar]
  43. Rodriguez Paris V. Bertoldo M.J. The mechanism of androgen actions in pcos etiology. Med. Sci. 2019 7 9 89 10.3390/medsci7090089 31466345
    [Google Scholar]
  44. Hajam Y.A. Rather H.A. Neelam, Kumar R, Basheer M, Reshi MS. A review on critical appraisal and pathogenesis of polycystic ovarian syndrome. Endocr Metab Sci 2024 14 100162 10.1016/j.endmts.2024.100162
    [Google Scholar]
  45. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004 19 1 41 47 10.1093/humrep/deh098 14688154
    [Google Scholar]
  46. Khmil M. Khmil S. Marushchak M. Halnykina S. Khmil A. Reproductive hormone metabolism in women with infertility due to polycystic ovary syndrome depending on the constitutional body types. Pol. Merkuriusz Lek. 2020 48 285 152 32564037
    [Google Scholar]
  47. Saadia Z. Follicle stimulating hormone (LH: FSH) ratio in polycystic ovary syndrome (PCOS) - Obese vs. non- obese women. Med. Arh. 2020 74 4 289 293 10.5455/medarh.2020.74.289‑293 33041447
    [Google Scholar]
  48. Turhan N.Ö. Seçkin N.C. Aybar F. Inegöl I. Assessment of glucose tolerance and pregnancy outcome of polycystic ovary patients. Int. J. Gynaecol. Obstet. 2003 81 2 163 168 10.1016/S0020‑7292(03)00003‑1 12706273
    [Google Scholar]
  49. Qin J.Z. Pang L.H. Li M.J. Fan X.J. Huang R.D. Chen H.Y. Obstetric complications in women with polycystic ovary syndrome: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2013 11 1 56 10.1186/1477‑7827‑11‑56 23800002
    [Google Scholar]
  50. Glueck C.J. Wang P. Kobayashi S. Phillips H. Sieve-Smith L. Metformin therapy throughout pregnancy reduces the development of gestational diabetes in women with polycystic ovary syndrome. Fertil. Steril. 2002 77 3 520 525 10.1016/S0015‑0282(01)03202‑2 11872206
    [Google Scholar]
  51. Henmi H. Endo T. Kitajima Y. Manase K. Hata H. Kudo R. Effects of ascorbic acid supplementation on serum progesterone levels in patients with a luteal phase defect. Fertil. Steril. 2003 80 2 459 461 10.1016/S0015‑0282(03)00657‑5 12909517
    [Google Scholar]
  52. Hirshfeld-Cytron J. Barnes R.B. Ehrmann D.A. Caruso A. Mortensen M.M. Rosenfield R.L. Characterization of functionally typical and atypical types of polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2009 94 5 1587 1594 10.1210/jc.2008‑2248 19240152
    [Google Scholar]
  53. Kondoh Y. Uemura T. Ishikawa M. Yokoi N. Hirahara F. Classification of polycystic ovary syndrome into three types according to response to human corticotropin-releasing hormone. Fertil. Steril. 1999 72 1 15 20 10.1016/S0015‑0282(99)00195‑8 10428142
    [Google Scholar]
  54. Kowitcharoen L. Phornvillay S. Lekkham P. Pongprasert N. Srilaong V. Bioactive composition and nutritional profile of microgreens cultivated in thailand. Appl. Sci. 2021 11 17 7981 10.3390/app11177981
    [Google Scholar]
  55. Zhao J. Sui X. Shi Q. Su D. Lin Z. Effects of antioxidant intervention in patients with polycystic ovarian syndrome: A systematic review and meta-analysis. Medicine 2022 101 32 30006 10.1097/MD.0000000000030006 35960093
    [Google Scholar]
  56. Tian-Min Y. Suxia L. Shufang D. Dandan C. Long-Dan L. Shu Biu Y.W. Combined transcriptomic and metabolomic analysis of women with polycystic ovary syndrome. Dis. Markers 2022 2022 1 14 10.1155/2022/4000424 36072900
    [Google Scholar]
  57. Saxena A. Sherkane M. Bhoite R. Sadananda M.P. Satyavrat V. Kareenhalli V. Efficacy of optimal nutraceutical combination in treating PCOS characteristics: An in-silico assessment. BMC Endocr. Disord. 2024 24 1 44 10.1186/s12902‑024‑01571‑y 38549084
    [Google Scholar]
  58. Chen T. Jia F. Yu Y. Potential role of quercetin in polycystic ovary syndrome and its complications: A review. Molecules 2022 27 14 4476 10.3390/molecules27144476 35889348
    [Google Scholar]
  59. Baldelli S. Lombardo M. D’Amato A. Karav S. Tripodi G. Aiello G. Glucosinolates in human health: Metabolic pathways, bioavailability, and potential in chronic disease prevention. Foods 2025 14 6 912 10.3390/foods14060912 40231924
    [Google Scholar]
  60. Tallei T.E. Kapantow N.H. Niode N.J. The therapeutic potential of red radish microgreens in modulating inflammation and cancer pathways. CYTA J. Food 2025 23 1 2467410 10.1080/19476337.2025.2467410
    [Google Scholar]
  61. Weiss T.R. Bulmer S.M. Young women’s experiences living with polycystic ovary syndrome. J. Obstet. Gynecol. Neonatal Nurs. 2011 40 6 709 718 10.1111/j.1552‑6909.2011.01299.x 22092488
    [Google Scholar]
  62. Luo E.D. Jiang H.M. Chen W. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front. Pharmacol. 2023 13 1065243 10.3389/fphar.2022.1065243 36699064
    [Google Scholar]
  63. Chavez G.N. Jaworsky K. Basu A. The effects of plant-derived phytochemical compounds and phytochemical-rich diets on females with polycystic ovarian syndrome: A scoping review of clinical trials. Int. J. Environ. Res. Public Health 2023 20 15 6534 10.3390/ijerph20156534 37569074
    [Google Scholar]
  64. Wahid S. Ramli M.D.C. Fazleen N.E. Naim R.M. Mokhtar M.H. Exploring the therapeutic potential of natural products in polycystic ovarian syndrome (pcos): A mini-review of lipid profile, blood glucose, and ovarian histological improvements. Life 2024 14 1 150 10.3390/life14010150 38276279
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855407300251028111600
Loading
/content/journals/cdth/10.2174/0115748855407300251028111600
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test