Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Objective

In patients with PCOS, oxidative stress is caused by an imbalance between antioxidants and reactive oxygen species, which increases the risk of cardiovascular disease. Existing therapies, which mostly include synthetic medications, often result in serious adverse effects. Alternatively, a secure and efficient method of treating PCOS appears to be the mix of phytoconstituents and lifestyle changes.

Methods

This review examines the global impact of PCOS, a prevalent hormonal disorder combining genetic, environmental, behavioral, and endocrine factors, and the potential side effects of synthetic medications used for its treatment. The authors conducted a narrative review using major databases like PubMed, ScienceDirect, and Google Scholar from October 1st to November 25th, 2023. They analyzed data from review articles, research articles, and meta-analyses published until August 2023 on pathogenesis, diagnosis, management, synthetic and herbal treatment, and nanotechnology effective in PCOS treatment, including those related to the theme.

Results

PCOS affects women globally, and synthetic agents like insulin sensitizers, contraceptive pills, and anti-androgens may have numerous long-term health effects. A natural substitute for contemporary pharmaceuticals, herbal therapies are prized for their health benefits. Scientific studies support the safety and effectiveness of herbal bio-actives, which utilize diverse phytochemicals to reduce PCOS symptoms.

Conclusion

To overcome the side effects of the synthetic agents, more influence is given to the natural way of curbing the syndrome for a healthier life. Thus, this review combines the potential advantages of utilizing various herbal plants for PCOS treatment by amalgamating findings from numerous literature studies.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855313334240827071434
2024-09-02
2026-02-04
Loading full text...

Full text loading...

References

  1. SinghS. PalN. ShubhamS. SarmaD.K. VermaV. MarottaF. KumarM. Polycystic ovary syndrome: etiology, current management, and future therapeutics.J. Clin. Med.20231241454
    [Google Scholar]
  2. Di LorenzoM. CacciapuotiN. LonardoM.S. NastiG. GautieroC. BelfioreA. GuidaB. ChiurazziM. Pathophysiology and Nutritional Approaches in Polycystic Ovary Syndrome (PCOS): A Comprehensive Review.Curr. Nutr. Rep.202318
    [Google Scholar]
  3. FahsD. SalloumD. NasrallahM. GhazeeriG. Polycystic Ovary Syndrome: Pathophysiology and Controversies in Diagnosis.Diagnostics (Basel)20231391559
    [Google Scholar]
  4. NaderiM.J. MahmoudiA. KesharwaniP. JamialahmadiT. SahebkarA. Recent advances of nanotechnology in the treatment and diagnosis of polycystic ovary syndrome.J. Drug Deliv. Sci. Technol.2022104014
    [Google Scholar]
  5. ChaudhuriA. Polycystic ovary syndrome: Causes, symptoms, pathophysiology, and remedies.Obes. Med.2023100480
    [Google Scholar]
  6. FranksS. HardyK. What causes anovulation in polycystic ovary syndrome?Curr. Opin. Endocr. Metab. Res.2020125965
    [Google Scholar]
  7. ChaharK. SharmaY. KumarM. KumariL. MishraL. PatelP. KurmiB.D. A recapitulation of the polycystic ovarian disorder in adult women and the risk of disease associated with the polycystic ovarian disorder.Health Sci. Rev. (Oxf.)2023100110
    [Google Scholar]
  8. GlendiningK.A. CampbellR.E. Recent advances in emerging PCOS therapies.Curr. Opin. Pharmacol.202368102345
    [Google Scholar]
  9. CheY. YuJ. LiY.S. ZhuY.C. TaoT. Polycystic ovary syndrome: challenges and possible solutions.J. Clin. Med.20231241500
    [Google Scholar]
  10. ZawadskiJ.K. DunaifA. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach.BostonBlackwell Scientific Publications1992377384
    [Google Scholar]
  11. FrD.D. TarlatzisR. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome.Fertil. Steril.20048111925
    [Google Scholar]
  12. GaradR. TeedeH.J. MoranL. An evidence-based guideline for Polycystic Ovary Syndrome. Australian Nursing Journal: ANJ.The.20111943033
    [Google Scholar]
  13. SteinI.F. LeventhalM.L. Amenorrhea is associated with bilateral polycystic ovaries.Am. J. Obstet. Gynecol.1935292181191
    [Google Scholar]
  14. AzzizR. DumesicD.A. GoodarziM.O. Polycystic ovary syndrome: an ancient disorder?Fertil. Steril.201195515441548
    [Google Scholar]
  15. PolsonD.W. WadsworthJ. AdamsJ. FranksS. Polycystic ovaries—a common finding in normal women.Lancet19883318590870872
    [Google Scholar]
  16. BozdagG. MumusogluS. ZenginD. KarabulutE. YildizB.O. The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis.Hum. Reprod.2016311228412855
    [Google Scholar]
  17. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS).Hum. Reprod.20041914147
    [Google Scholar]
  18. SirmansS.M. PateK.A. Epidemiology, diagnosis, and management of polycystic ovary syndrome.Clin. Epidemiol.201313
    [Google Scholar]
  19. CioanaM. DengJ. NadarajahA. HouM. QiuY. ChenS.S. RivasA. BanfieldL. AlfaraidiH. AlotaibiA. ThabaneL. Prevalence of polycystic ovary syndrome in patients with pediatric type 2 diabetes: A systematic review and meta-analysis.JAMA Netw. Open202252e2147454
    [Google Scholar]
  20. NazM.S. TehraniF.R. MajdH.A. AhmadiF. OzgoliG. FakariF.R. GhasemiV. The prevalence of polycystic ovary syndrome in adolescents: A systematic review and meta-analysis.Int. J. Reprod. Biomed. (Yazd)2019178533
    [Google Scholar]
  21. CarminaE. LoboR.A. Comparing lean and obese PCOS in different PCOS phenotypes: Evidence that the body weight is more important than the Rotterdam phenotype in influencing the metabolic status.Diagnostics (Basel)202212102313
    [Google Scholar]
  22. AzzizR. CarminaE. DewaillyD. Diamanti-KandarakisE. Escobar-MorrealeH.F. FutterweitW. JanssenO.E. LegroR.S. NormanR.J. TaylorA.E. WitchelS.F. Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline.J. Clin. Endocrinol. Metab.2006911142374245
    [Google Scholar]
  23. AzzizR. CarminaE. DewaillyD. Diamanti-KandarakisE. Escobar-MorrealeH.F. FutterweitW. JanssenO.E. LegroR.S. NormanR.J. TaylorA.E. WitchelS.F. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report.Fertil. Steril.2009912456488
    [Google Scholar]
  24. LauritsenM.P. BentzenJ.G. PinborgA. LoftA. FormanJ.L. ThuesenL.L. CohenA. HougaardD.M. Nyboe AndersenA. The prevalence of polycystic ovary syndrome in a normal population according to the Rotterdam criteria versus revised criteria including anti-Müllerian hormone.Hum. Reprod.2014294791801
    [Google Scholar]
  25. LiR. ZhangQ. YangD. LiS. LuS. WuX. WeiZ. SongX. WangX. FuS. LinJ. Prevalence of polycystic ovary syndrome in women in China: a large community-based study.Hum. Reprod.201328925622569
    [Google Scholar]
  26. KaewninJ. VallibhakaraO. Arj-Ong VallibhakaraS. WattanakraiP. ButsripoomB. SomsookE. HongsanguansriS. SophonsritsukA. Prevalence of polycystic ovary syndrome in Thai University adolescents.Gynecol. Endocrinol.2018346476480
    [Google Scholar]
  27. MehrabianF. EessaeiF. The laparoscopic ovarian electrocautery versus gonadotropin therapy in infertile women with clomiphene citrate-resistant polycystic ovary syndrome; a randomized controlled trial.J. Pak. Med. Assoc.2012623Suppl. 2S42S44
    [Google Scholar]
  28. GanieM.A. VasudevanV. WaniI.A. BabaM.S. ArifT. RashidA. Epidemiology, pathogenesis, genetics & management of polycystic ovary syndrome in India.Indian J. Med. Res.20191504333
    [Google Scholar]
  29. BalajiS. AmadiC. PrasadS. Bala KasavJ. UpadhyayV. SinghA.K. SurapaneniK.M. JoshiA. Urban rural comparisons of polycystic ovary syndrome burden among adolescent girls in a hospital setting in India.BioMed Res. Int.20152015
    [Google Scholar]
  30. JoshiB. MukherjeeS. PatilA. PurandareA. ChauhanS. VaidyaR. A cross-sectional study of polycystic ovarian syndrome among adolescent and young girls in Mumbai, India.Indian J. Endocrinol. Metab.2014183317
    [Google Scholar]
  31. GillH. TiwariP. DabadghaoP. Prevalence of polycystic ovary syndrome in young women from North India: A Community-based study.Indian J. Endocrinol. Metab.201216Suppl. 2S389
    [Google Scholar]
  32. NidhiR. PadmalathaV. NagarathnaR. AmritanshuR. Prevalence of polycystic ovarian syndrome in Indian adolescents.J. Pediatr. Adolesc. Gynecol.2011244223227
    [Google Scholar]
  33. GreenwoodE.A. HuddlestonH.G. Insulin resistance in polycystic ovary syndrome: Concept versus cutoff.Fertil. Steril.20191125827828
    [Google Scholar]
  34. YesiladaliM. YaziciM.G. AttarE. KelestimurF. Differentiating polycystic ovary syndrome from adrenal disorders.Diagnostics (Basel)20221292045
    [Google Scholar]
  35. SadeghiH.M. AdeliI. CalinaD. DoceaA.O. MousaviT. DanialiM. NikfarS. TsatsakisA. AbdollahiM. Polycystic ovary syndrome: a comprehensive review of pathogenesis, management, and drug repurposing.Int. J. Mol. Sci.2022232583
    [Google Scholar]
  36. KimJ.J. HwangK.R. OhS.H. ChaeS.J. YoonS.H. ChoiY.M. Prevalence of insulin resistance in Korean women with polycystic ovary syndrome according to various homeostasis model assessment for insulin resistance cutoff values.Fertil. Steril.20191125959966.e110.1016/j.fertnstert.2019.06.035
    [Google Scholar]
  37. ZengX. XieY.J. LiuY.T. LongS.L. MoZ.C. Polycystic ovarian syndrome: correlation between hyperandrogenism, insulin resistance and obesity.Clin. Chim. Acta2020502214221
    [Google Scholar]
  38. DeswalR. NandaS. DangA.S. Association of Luteinizing hormone and LH receptor gene polymorphism with susceptibility of Polycystic ovary syndrome.Syst Biol Reprod Med2019655400408
    [Google Scholar]
  39. XuY. QiaoJ. Association of insulin resistance and elevated androgen levels with polycystic ovarian syndrome (PCOS): a review of literature.J. Healthc. Eng.20222022
    [Google Scholar]
  40. SaltielA.R. KahnC.R. Insulin signalling and the regulation of glucose and lipid metabolism.Nature20014146865799806
    [Google Scholar]
  41. LeeJ. PilchP.F. The insulin receptor: structure, function, and signaling.Am. J. Physiol. Cell Physiol.19942662C319C334
    [Google Scholar]
  42. ChoiK. KimY.B. Molecular mechanism of insulin resistance in obesity and type 2 diabetes.Korean J. Intern. Med.2010252119
    [Google Scholar]
  43. XuJ. DunJ. YangJ. ZhangJ. LinQ. HuangM. JiF. HuangL. YouX. LinY. Letrozole rat model mimics human polycystic ovarian syndrome and changes in insulin signal pathways.Med. Sci. Monit.202026e923073e1
    [Google Scholar]
  44. ShaabanZ. KhoradmehrA. Amiri-YektaA. NowzariF. Jafarzadeh ShiraziM.R. TamadonA. Pathophysiologic mechanisms of insulin secretion and signaling-related genes in etiology of polycystic ovary syndrome.Genet. Res.20212021
    [Google Scholar]
  45. ZhaoH. ZhangJ. ChengX. NieX. HeB. Insulin resistance in polycystic ovary syndrome across various tissues: An updated review of pathogenesis, evaluation, and treatment.J. Ovarian Res.20231619
    [Google Scholar]
  46. HeF.F. LiY.M. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review.J. Ovarian Res.202013113
    [Google Scholar]
  47. ZhangC. HuJ. WangW. SunY. SunK. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS.FASEB J.202034795639574
    [Google Scholar]
  48. SteptoN.K. CassarS. JohamA.E. HutchisonS.K. HarrisonC.L. GoldsteinR.F. TeedeH.J. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic–hyperinsulaemic clamp.Hum. Reprod.2013283777784
    [Google Scholar]
  49. YildizB.O. KnochenhauerE.S. AzzizR. Impact of obesity on the risk for polycystic ovary syndrome.J. Clin. Endocrinol. Metab.2008931162168
    [Google Scholar]
  50. RudnickaE. SuchtaK. GrymowiczM. Calik-KsepkaA. SmolarczykK. DuszewskaA.M. SmolarczykR. MeczekalskiB. Chronic low grade inflammation in pathogenesis of PCOS.Int. J. Mol. Sci.20212273789
    [Google Scholar]
  51. MakkiK FroguelP WolowczukI Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines.2013
    [Google Scholar]
  52. TilgH. MoschenA.R. Inflammatory mechanisms in the regulation of insulin resistance.Mol. Med.200814222231
    [Google Scholar]
  53. LiW. LiuC. YangQ. ZhouY. LiuM. ShanH. Oxidative stress and antioxidant imbalance in ovulation disorder in patients with polycystic ovary syndrome.Front. Nutr.202291018674
    [Google Scholar]
  54. SulaimanM.A. Al-FarsiY.M. Al-KhaduriM.M. SalehJ. WalyM.I. Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women.Int. J. Womens Health2018763771
    [Google Scholar]
  55. LaiQ. XiangW. LiQ. ZhangH. LiY. ZhuG. XiongC. JinL. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome.Frontiers of medicine.201812518524
    [Google Scholar]
  56. LuJ. WangZ. CaoJ. ChenY. DongY. A novel and compact review on the role of oxidative stress in female reproduction.Reprod. Biol. Endocrinol.20181618
    [Google Scholar]
  57. Nawrocka-RutkowskaJ. SzydłowskaI. JakubowskaK. OlszewskaM. ChlubekD. RyłA. SzczukoM. StarczewskiA. Assessment of the parameters of oxidative stress depending on the metabolic and anthropometric status indicators in women with PCOS.Life2022122225
    [Google Scholar]
  58. DulebaA.J. DokrasA. Is PCOS an inflammatory process?Fertil. Steril.2012971712
    [Google Scholar]
  59. PrasadS GuptaSC PandeyMK TyagiAK DebL Oxidative stress and cancer: advances and challenges.2016
    [Google Scholar]
  60. MurriM. Luque-RamírezM. InsenserM. Ojeda-OjedaM. Escobar-MorrealeH.F. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis.Hum. Reprod. Update2013193268288
    [Google Scholar]
  61. MizgierM. Jarząbek-BieleckaG. WendlandN. Jodłowska-SiewertE. NowickiM. BrożekA. KędziaW. FormanowiczD. Opydo-SzymaczekJ. Relation between inflammation, oxidative stress, and macronutrient intakes in normal and excessive body weight adolescent girls with clinical features of polycystic ovary syndrome.Nutrients2021133896
    [Google Scholar]
  62. Di SegniC. SilvestriniA. FatoR. BergaminiC. GuidiF. RaimondoS. MeucciE. RomualdiD. ApaR. LanzoneA. ManciniA. Plasmatic and intracellular markers of oxidative stress in normal weight and obese patients with polycystic ovary syndrome.Exp. Clin. Endocrinol. Diabetes201712508506513
    [Google Scholar]
  63. ManciniA. BrunoC. VerganiE. d’AbateC. GiacchiE. SilvestriniA. Oxidative stress and low-grade inflammation in polycystic ovary syndrome: controversies and new insights.Int. J. Mol. Sci.20212241667
    [Google Scholar]
  64. ChakravortyT.A. Understanding polycystic ovary syndrome (PCOS): symptoms, diagnosis, treatment and future directions.Physician.20238218
    [Google Scholar]
  65. Diamanti-KandarakisE. EconomouF. PalimeriS. ChristakouC. Metformin in polycystic ovary syndrome.Ann. N. Y. Acad. Sci.201012051192198
    [Google Scholar]
  66. RyssdalM. VankyE. StokkelandL.M. JarmundA.H. SteinkjerB. LøvvikT.S. MadssenT.S. IversenA.C. GiskeødegårdG.F. Immunomodulatory effects of metformin treatment in pregnant women with PCOS.J. Clin. Endocrinol. Metab.2023dgad145
    [Google Scholar]
  67. LashenH. Role of metformin in the management of polycystic ovary syndrome.Ther. Adv. Endocrinol. Metab.201013117128
    [Google Scholar]
  68. JohnsonN.P. Metformin use in women with polycystic ovary syndrome.Ann. Transl. Med.20142656
    [Google Scholar]
  69. DumitrescuR. MehedintuC. BriceagI. PurcăreaV.L. HuditaD. Metformin-clinical pharmacology in PCOs.J. Med. Life201582187
    [Google Scholar]
  70. MathurR. AlexanderC.J. YanoJ. TrivaxB. AzzizR. Use of metformin in polycystic ovary syndrome.Am. J. Obstet. Gynecol.20081996596609
    [Google Scholar]
  71. DuQ. YangS. WangY.J. WuB. ZhaoY.Y. FanB. Effects of thiazolidinediones on polycystic ovary syndrome: a meta-analysis of randomized placebo-controlled trials.Adv. Ther.201229763774
    [Google Scholar]
  72. EggletonJS JialalI HYPERLINK"" Thiazolidinediones. In: StatPearls.
    [Google Scholar]
  73. GlintborgD. AndersenM. Thiazolinedione treatment in PCOS–an update.Gynecol. Endocrinol.20102611791803
    [Google Scholar]
  74. MadnaniN. KhanK. ChauhanP. ParmarG. Polycystic ovarian syndrome.Indian J. Dermatol. Venereol. Leprol.201379310
    [Google Scholar]
  75. Piątkowska-ChmielI HerbetM Gawrońska-GrzywaczM DudkaJ Regulation of neuroinflammatory signaling by PPARγ agonist in mouse model of diabetes.2022
    [Google Scholar]
  76. FerjanS. JanezA. JensterleM. DPP4 inhibitor sitagliptin as a potential treatment option in metformin-intolerant obese women with polycystic ovary syndrome: a pilot randomized study.Endocr. Pract.20182416977
    [Google Scholar]
  77. ModarresS.Z. DaneshjouD. MehranjaniM.S. ShariatzadehS.M. Comparative evaluation of metformin & sitaformin in classic PCOS patients undergoing intracytoplasmic sperm injection: A randomized controlled pilot study.Indian J. Med. Res.2023157166
    [Google Scholar]
  78. JensterleM. GoricarK. JanezA. Add on DPP-4 inhibitor alogliptin alone or in combination with pioglitazone improved β-cell function and insulin sensitivity in metformin treated PCOS.Endocr. Res.2017424261268
    [Google Scholar]
  79. KabelA.M. Al-ShehriA.H. Al-TalhiR.A. Abd ElmaaboudM.A. The promising effect of linagliptin and/or indole-3-carbinol on experimentally-induced polycystic ovarian syndrome.Chem. Biol. Interact.2017273190199
    [Google Scholar]
  80. NylanderM. FrøssingS. ClausenH.V. KistorpC. FaberJ. SkoubyS.O. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: a randomized clinical trial.Reprod. Biomed. Online2017351121127
    [Google Scholar]
  81. PapaetisG.S. FilippouP.K. ConstantinidouK.G. StylianouC.S. Liraglutide: new perspectives for the treatment of polycystic ovary syndrome.Clin. Drug Investig.2020408695713
    [Google Scholar]
  82. BednarzK. KowalczykK. CwynarM. CzaplaD. CzarkowskiW. KmitaD. NowakA. MadejP. The role of glp-1 receptor agonists in insulin resistance with concomitant obesity treatment in polycystic ovary syndrome.Int. J. Mol. Sci.20222384334
    [Google Scholar]
  83. KnudsenL.B. LauJ. The discovery and development of liraglutide and semaglutide.Front. Endocrinol.201910155
    [Google Scholar]
  84. Marinkovic-RadosevicJ. BerkovicM.C. KrueziE. Bilic-CurcicI. MrzljakA. Exploring new treatment options for polycystic ovary syndrome: review of a novel antidiabetic agent SGLT2 inhibitor.World J. Diabetes2021127932
    [Google Scholar]
  85. Cassidy-VuL. JoeE. KirkJ.K. Role of statin drugs for polycystic ovary syndrome.J. Family Reprod. Health2016104165
    [Google Scholar]
  86. Elkind-HirschK.E. ChappellN. SeidemannE. StormentJ. BellangerD. Exenatide, dapagliflozin, or Phentermine/Topiramate differentially affect metabolic profiles in polycystic ovary syndrome.J. Clin. Endocrinol. Metab.20211061030193033
    [Google Scholar]
  87. ZhangJ. XingC. ChengX. HeB. Canagliflozin combined with metformin versus metformin monotherapy for endocrine and metabolic profiles in overweight and obese women with polycystic ovary syndrome: A single-center, open-labeled prospective randomized controlled trial.Front. Endocrinol.202213
    [Google Scholar]
  88. De LeoV. LanzettaD. D’AntonaD. La MarcaA. MorganteG. Hormonal effects of flutamide in young women with polycystic ovary syndrome.J. Clin. Endocrinol. Metab.199883199102
    [Google Scholar]
  89. RyanG.E. MalikS. MellonP.L. Antiandrogen treatment ameliorates reproductive and metabolic phenotypes in the letrozole-induced mouse model of PCOS.Endocrinology2018159417341747
    [Google Scholar]
  90. MoghettiP. CastelloR. MagnaniC.M. TosiF. NegriC. ArmaniniD. BellottiG. MuggeoM. Clinical and hormonal effects of the 5 alpha-reductase inhibitor finasteride in idiopathic hirsutism.J. Clin. Endocrinol. Metab.199479411151121
    [Google Scholar]
  91. TraishA.M. Post-finasteride syndrome: a surmountable challenge for clinicians.Fertil. Steril.202011312150
    [Google Scholar]
  92. ZulianE. SartoratoP. BenediniS. BaroG. ArmaniniD. ManteroF. ScaroniC. Spironolactone in the treatment of polycystic ovary syndrome: effects on clinical features, insulin sensitivity and lipid profile.J. Endocrinol. Invest.2005284953
    [Google Scholar]
  93. SabbadinC. AndrisaniA. ZermianiM. DonàG. BordinL. RagazziE. BoscaroM. AmbrosiniG. ArmaniniD. Spironolactone and intermenstrual bleeding in polycystic ovary syndrome with normal BMI.J. Endocrinol. Invest.20163910151021
    [Google Scholar]
  94. BadawyA. ElnasharA. Treatment options for polycystic ovary syndrome.Int. J. Womens Health20112535
    [Google Scholar]
  95. KamathM.S. GeorgeK. Letrozole or clomiphene citrate as first line for anovulatory infertility: a debate.Reprod. Biol. Endocrinol.2011914
    [Google Scholar]
  96. PajaiS. PotdarJ. GopalU. BanaitT. GopalK.U. A Review on the Use of Letrozole in Female and Male Infertility. Cureus. 2022 Nov 9;14(11).Lakshmi JN, Babu AN, Kiran SM, Nori LP, Hassan N, Ashames A, Bhandare RR, Shaik AB. Herbs as a source for the treatment of polycystic ovarian syndrome: A systematic review.BioTech (Basel)20231214
    [Google Scholar]
  97. BalkrishnaA. RanaM. MishraS. SrivastavaD. BhardwajR. SinghS. RajputS.K. AryaV. Incredible Combination of Lifestyle Modification and Herbal Remedies for Polycystic Ovarian Syndrome Management.Evid. Based Complement. Alternat. Med.2023eCollection 2023
    [Google Scholar]
  98. BalasubramanianA. PachiappanS. MohanS. AdhikesavanH. KaruppasamyI. RamalingamK. Therapeutic exploration of polyherbal formulation against letrozole induced PCOS rats: A mechanistic approach. Heliyon 2023; 9(5).
  99. KwonC.Y. ChoI.H. ParkK.S. Therapeutic Effects and Mechanisms of Herbal Medicines for Treating Polycystic Ovary Syndrome: A Review.Front. Pharmacol.2020111192
    [Google Scholar]
  100. LakshmiJ.N. BabuA.N. KiranS.S.M. NoriL.P. HassanN. AshamesA. BhandareR.R. ShaikA.B. Herbs as a Source for the Treatment of Polycystic Ovarian Syndrome: A Systematic Review.BioTech (Basel)20231214
    [Google Scholar]
  101. PrajapatiD.P. PatelM. DharamsiA. Beneficial effect of polyherbal formulation in letrozole induced Polycystic ovarian syndrome (PCOS).J. Tradit. Complement. Med.2022126575583
    [Google Scholar]
  102. ShivanandappaT.B. ChinnadhuraiM. KandasamyG. VasudevanR. SamG. KarunakarannairA. Ziziphus mauritiana Leaves Normalize Hormonal Profile and Total Cholesterol in Polycystic Ovarian Syndrome Rats.Plants202312142599
    [Google Scholar]
  103. ShamsiM. GanjiA. MosayebiG. AmirhoseinyE.S. ShohaniS. GhazaviA. Chamomile and Urtica dioica extracts improve immunological and histological alterations associated with polycystic ovarian syndrome in DHEA-induced mice.BMC Complement. Med. Ther.2023231102
    [Google Scholar]
  104. SharafiehG. SalmanifarzanehF. GharbiN. SarvestaniF.M. RahmanzadF. RazlighiM.R. BakhtariA. NazariN. Histological and molecular evaluation of Mentha arvensis extract on a polycystic ovary syndrome rat model.JBRA Assist. Reprod.2023272247
    [Google Scholar]
  105. AmirhoseinyE.S. GanjiA. MosayebiG. ShamsiM. GhazaviA. Improves immunological and histological alterations associated with Polycystic ovarian syndrome in DHEA-induced mice by Licorice extract.Comp. Clin. Pathol.2023325827835
    [Google Scholar]
  106. RaniR. ChitmeH.R. KukretiN. PantP. Abdel-WahabB.A. KhateebM.M. HabeebM.S. BakirM.B. Regulation of Insulin Resistance, Lipid Profile and Glucose Metabolism Associated with Polycystic Ovary Syndrome by Tinospora cordifolia.Nutrients202315102238
    [Google Scholar]
  107. AlaeeS. MiraniM. DerakhshanZ. KoohpeymaF. BakhtariA. Thymoquinone improves folliculogenesis, sexual hormones, gene expression of apoptotic markers and antioxidant enzymes in polycystic ovary syndrome rat model.Vet. Med. Sci.202391290300
    [Google Scholar]
  108. ul haq Shah MZ, Shrivastava VK, Mir MA. Ginger extract ameliorates endocrine-metabolic disturbances in letrozole-induced PCOS mice model by altering androgen-adiponectin status.Obes. Med.202339100485
    [Google Scholar]
  109. KhaledN. El-BahyA.A. RadwanR. HandoussaH. AbdelMaksoudS. Ocimum kilimandscharicum L. restores ovarian functions in letrozole-induced Polycystic Ovary Syndrome (PCOS) in rats: Comparison with metformin.Life Sci.2019232116640
    [Google Scholar]
  110. MoshfeghF. BalanejadS.Z. ShahrokhabadyK. AttaranzadehA. Crocus sativus (saffron) petals extract and its active ingredient, anthocyanin improves ovarian dysfunction, regulation of inflammatory genes and antioxidant factors in testosterone-induced PCOS mice.J. Ethnopharmacol.2022282114594
    [Google Scholar]
  111. MehrabanM. JelodarG. RahmanifarF. A combination of spearmint and flaxseed extract improved endocrine and histomorphology of ovary in experimental PCOS.J. Ovarian Res.20201318
    [Google Scholar]
  112. AliS.E. El BadawyS.A. ElmosalamyS.H. EmamS.R. AzouzA.A. GalalM.K. Abd-ElsalamR.M. IssaM.Y. HassanB.B. Novel promising reproductive and metabolic effects of Cicer arietinum L. extract on letrozole induced polycystic ovary syndrome in rat model.J. Ethnopharmacol.2021278114318.
    [Google Scholar]
  113. MvondoM.A. Mzemdem TsoplfackF.I. AwounfackC.F. NjamenD. The leaf aqueous extract of Myrianthus arboreus P. Beauv.(Cecropiaceae) improved letrozole-induced polycystic ovarian syndrome associated conditions and infertility in female Wistar rats.BMC Complement. Med. Ther.20202013
    [Google Scholar]
  114. AdelakunS.A. UkwenyaV.O. PeterA.B. SiyanbadeA.J. AkinwumijuC.O. Therapeutic effects of aqueous extract of bioactive active component of Ageratum conyzoides on the ovarian-uterine and hypophysis-gonadal axis in rat with polycystic ovary syndrome: Histomorphometric evaluation and biochemical assessment.Metab. Open202215100201
    [Google Scholar]
  115. PatelShraddha V. MaruHarsh ChavdaVishal K. ShahJigar N. PatelSnehal S. Ethanolic extract of Azadirachta indica ameliorates ovarian defects through phosphoinositide-3 kinase inhibition in a rat model of polycystic ovary syndrome.2021
    [Google Scholar]
  116. NejatiA ShahriMP FarahvashT Astragalus hamosus Acts as an Insulin Sensitizer in the Treatment of Polycystic Ovary Syndrome Rat Models by Affecting IRS1 Expression.2022
    [Google Scholar]
  117. AlizadehF. RamezaniM. PiravarZ. Effects of Stachys sylvatica hydroalcoholic extract on the ovary and hypophysis-gonadal axis in a rat with polycystic ovary syndrome.Middle East Fertil. Soc. J.202025117
    [Google Scholar]
  118. ShrivastavaV.K. Turmeric extract alleviates endocrine-metabolic disturbances in letrozole-induced PCOS by increasing adiponectin circulation: A comparison with Metformin.Metab. Open202213100160
    [Google Scholar]
  119. GhowsiM. YousofvandN. MoradiS. Effects of Salvia officinalis L.(common sage) leaves tea on insulin resistance, lipid profile, and oxidative stress in rats with polycystic ovary: An experimental study.Avicenna J. Phytomed.2020103263
    [Google Scholar]
  120. Seidlová-WuttkeD. HesseO. JarryH. ChristoffelV. SpenglerB. BeckerT. WuttkeW. Evidence for selective estrogen receptor modulator activity in a black cohosh (Cimicifuga racemosa) extract: comparison with estradiol-17beta.Eur. J. Endocrinol.20031494351362
    [Google Scholar]
  121. BandaranayakeWM Quality control, screening, toxicity, and regulation of herbal drugs.2006
    [Google Scholar]
  122. RaynorD.K. DickinsonR. KnappP. LongA.F. NicolsonD.J. Buyer beware? Does the information provided with herbal products available over the counter enable safe use?BMC Med.201199410.1186/1741‑7015‑9‑94
    [Google Scholar]
  123. National policy on traditional medicine and regulation of herbal medicines: Report of a WHO global survey.World Health Organization2005
    [Google Scholar]
  124. GenevaS. WHO Guidelines on Safety Monitoring of Herbal Medicines in Pharmacovigilance Systems.
  125. ZhouJ. OuedraogoM. QuF. DuezP. Potential genotoxicity of traditional Chinese medicinal plants and phytochemicals: an overview.Phytother. Res.2013271217451755
    [Google Scholar]
  126. ZhangL. YanJ. LiuX. YeZ. YangX. MeyboomR. Pharmacovigilance practice and risk control of traditional Chinese medicine drugs in China: current status and future perspective.J. Ethnopharmacol.201214051952510.1016/j.jep.2012.01.058
    [Google Scholar]
  127. FarahM.H. EdwardsR. LindquistM. LeonC. ShawD. International monitoring of adverse health effects associated with herbal medicines.Pharmacoepidemiol. Drug Saf.200092105112
    [Google Scholar]
  128. TiwariR. TiwariG. SharmaS. RamachandranV. An Exploration of herbal extracts loaded phyto-phospholipid complexes (Phytosomes) against polycystic ovarian syndrome: Formulation considerations.Pharm. Nanotechnol.20231114455
    [Google Scholar]
  129. AbhariS.M. KhanbabaeiR. RoodbariN.H. ParivarK. YaghmaeiP. Curcumin-loaded super-paramagnetic iron oxide nanoparticle affects on apoptotic factors expression and histological changes in a prepubertal mouse model of polycystic ovary syndrome-induced by dehydroepiandrosterone-A molecular and stereological study.Life Sci.2020249117515
    [Google Scholar]
  130. AbuelezzN.Z. E Shabana M, Rashed L, NB Morcos G. Nanocurcumin modulates miR-223-3p and NF-κB levels in the pancreas of rat model of polycystic ovary syndrome to attenuate autophagy flare, insulin resistance and improve ß cell mass.J. Exp. Pharmacol.2021873888
    [Google Scholar]
  131. BayramiA. ShirdelA. PouranS.R. MahmoudiF. Habibi-YangjehA. SinghR. RamanA.A. Co-regulative effects of chitosan-fennel seed extract system on the hormonal and biochemical factors involved in the polycystic ovarian syndrome.Mater. Sci. Eng. C2020117111351
    [Google Scholar]
  132. MasilamaniS.D. ChokkalingamP. HariR. P M. Hormonal Regulatory Impacts of Tinospora cordifolia Leaf Extract and Its Loaded Phytoniosome on Mifepristone-Induced Polycystic Ovarian Syndrome (PCOS) Rats–In Vivo Studies.J. Herbs Spices Med. Plants2023294470480
    [Google Scholar]
  133. AlwanS.H. Al-SaeedM.H. Silver Nanoparticles Biofabricated from Cinnamomum zeylanicum Reduce IL-6, IL-18, and TNF-ɑ in Female Rats with Polycystic Ovarian Syndrome.Int. J. Fertil. Steril.202317180
    [Google Scholar]
  134. KunitomiC. HaradaM. KusamotoA. AzharyJ.M. NoseE. KoikeH. XuZ. UrataY. TakahashiN. Wada-HiraikeO. HirotaY. KogaK. FujiiT. OsugaY. Induction of aryl hydrocarbon receptor in granulosa cells by endoplasmic reticulum stress contributes to pathology of polycystic ovary syndrome.Mol. Hum. Reprod.2021273gaab00310.1093/molehr/gaab003
    [Google Scholar]
  135. SerraL. EstienneA. BongraniA. RaméC. CariaG. FrogerC. JolivetC. HenriotA. AmalricL. CorbinE. GuérifF. FromentP. DupontJ. The epoxiconazole and tebuconazole fungicides impair granulosa cells functions partly through the aryl hydrocarbon receptor (AHR) signalling with contrasted effects in obese, normo-weight and polycystic ovarian syndrome (PCOS) patients.Toxicol. Rep.202312658110.1016/j.toxrep.2023.12.009
    [Google Scholar]
  136. ShiJ. HuK.L. LiX.X. GeY.M. YuX.J. ZhaoJ. Bisphenol downregulates GLUT4 expression by activating aryl hydrocarbon receptor to exacerbate polycystic ovary syndrome.Cell Commun. Signal.20242212810.1186/s12964‑023‑01410‑y
    [Google Scholar]
  137. Anderson G. HYPERLINK "http://dx.doi.org/10.31083/j.fbl2901024" Polycystic ovary syndrome pathophysiology: Integrating systemic, cns and circadian processes. Front Biosci 2024; 29(1): 24.10.31083/j.fbl2901024
  138. SinghG. HaileselassieY. JiA.R. MaeckerH.T. SinhaS.R. BrimH. HabtezionA. AshktorabH. Protective Effect of Saffron in Mouse Colitis Models Through Immune Modulation.Dig. Dis. Sci.20226772922293510.1007/s10620‑021‑07163‑3
    [Google Scholar]
  139. HaghshenasR. AftabiY. DoaeiS. GholamalizadehM. Synergistic effect of endurance training and nettle leaf extract on the IDO1-KYN-AHR pathway homeostasis and inhibiting of liver toxicity in rats with STZ-induced diabetes.Front. Endocrinol. (Lausanne)202314107142410.3389/fendo.2023.1071424
    [Google Scholar]
  140. KumarA. RenY. SundaramK. MuJ. SriwastvaM.K. DrydenG.W. LeiC. ZhangL. YanJ. ZhangX. ParkJ.W. MerchantM.L. TengY. ZhangH.G. miR-375 prevents high-fat diet-induced insulin resistance and obesity by targeting the aryl hydrocarbon receptor and bacterial tryptophanase (tnaA) gene.Theranostics20211194061407710.7150/thno.52558
    [Google Scholar]
  141. Martínez-GarcíaM.Á. Quintero-TobarA. de Lope QuiñonesS. InsenserM. Fernández-DuránE. Escobar-MorrealeH.F. Luque-RamírezM. Obesity and polycystic ovary syndrome influence on intestinal permeability at fasting, and modify the effect of diverse macronutrients on the gut barrier.Food Res. Int.202418611433810.1016/j.foodres.2024.114338
    [Google Scholar]
  142. CuiM. HongY. HuangJ. LiuK. ChenJ. TanY. NieX. Efficiency of Chinese medicine Bushen Huatan formula for treatment of polycystic ovary syndrome in mice via regulating gut microbiota and PPARγ pathway.Zhejiang Da Xue Xue Bao Yi Xue Ban2023521334510.3724/zdxbyxb‑2022‑0456
    [Google Scholar]
  143. AndersonG. MaesM. Gut Dysbiosis Dysregulates Central and Systemic Homeostasis via Suboptimal Mitochondrial Function: Assessment, Treatment and Classification Implications.Curr. Top. Med. Chem.202020752453910.2174/1568026620666200131094445
    [Google Scholar]
  144. SunJ. XieQ. SunM. ZhangW. WangH. LiuN. WangM. Curcumin protects mice with myasthenia gravis by regulating the gut microbiota, short-chain fatty acids, and the Th17/Treg balance.Heliyon2024104e2603010.1016/j.heliyon.2024.e26030
    [Google Scholar]
  145. PengJ. DengH. DuB. WuP. DuanL. ZhuR. NingZ. FengJ. XiaoH. Saffron Petal, an Edible Byproduct of Saffron, Alleviates Dextran Sulfate Sodium-Induced Colitis by Inhibiting Macrophage Activation and Regulating Gut Microbiota.J. Agric. Food Chem.20237128106161062810.1021/acs.jafc.2c07915
    [Google Scholar]
  146. FanS. RaychaudhuriS. PageR. ShahinozzamanM. ObandaD.N. Metagenomic insights into the effects of Urtica dioica vegetable on the gut microbiota of C57BL/6J obese mice, particularly the composition of Clostridia.J. Nutr. Biochem.20219110859410.1016/j.jnutbio.2021.108594
    [Google Scholar]
  147. ShenC.L. SantosJ.M. ElmassryM.M. BhaktaV. DriverZ. JiG. YakhnitsaV. KiritoshiT. LovettJ. HamoodA.N. SangS. NeugebauerV. Ginger Polyphenols Reverse Molecular Signature of Amygdala Neuroimmune Signaling and Modulate Microbiome in Male Rats with Neuropathic Pain: Evidence for Microbiota-Gut-Brain Axis.Antioxidants202413550210.3390/antiox13050502
    [Google Scholar]
  148. JinC.J. EngstlerA.J. SellmannC. ZiegenhardtD. LandmannM. KanuriG. LounisH. SchröderM. VetterW. BergheimI. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: role of melatonin and lipid peroxidation.Br. J. Nutr.2016116101682169310.1017/S0007114516004025
    [Google Scholar]
  149. PatelA. DewaniD. JaiswalA. YadavP. ReddyL.S. Exploring Melatonin’s Multifaceted Role in Polycystic Ovary Syndrome Management: A Comprehensive Review.Cureus20231511e4892910.7759/cureus.48929
    [Google Scholar]
  150. TanD.X. ManchesterL.C. LiuX. Rosales-CorralS.A. Acuna-CastroviejoD. ReiterR.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes.J. Pineal Res.201354212713810.1111/jpi.12026
    [Google Scholar]
  151. AndersonG. Physiological processes underpinning the ubiquitous benefits and interactions of melatonin, butyrate and green tea in neurodegenerative conditions.2024
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855313334240827071434
Loading
/content/journals/cdth/10.2174/0115748855313334240827071434
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test