Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Aims/Objectives

Polymeric micelle-based drug delivery systems have emerged as a beacon of hope in the challenging landscape of breast cancer therapy. This review aimed to explore the recent advancements and promising developments in the field, offering an in-depth analysis of their potential and challenges. The significance of this study lies in providing a comprehensive examination of the current advances in polymeric micelles technology, which have the potential to improve the efficiency and specificity of breast cancer therapy while minimizing adverse events.

Methods

Polymeric micelles offer a revolutionary therapy by encapsulating therapeutic agents, allowing for controlled drug release and the precise targeting of malignant cells, while lowering systemic toxicity. Recent advances have focused on enhancing targeting strategies, including active and passive targeting, to increase the specificity of polymeric micelle-based therapies. A systematic review of literature was carried out using databases, like PubMed, Scopus, and Web of Science, which included papers published between 2010 and 2023. The selection criteria of the literature focused on the drug-loading capabilities and targeting strategies of the polymeric micelles, which could be advantageous for breast cancer treatment.

Results

Clinical drug approaches leverage the versatility of micelles to co-deliver multiple agents, addressing the multifaceted nature of breast tumors and combating drug resistance. Additionally, polymeric micelles are finding applications in breast cancer diagnostics and imaging, enabling early detection and precise monitoring. The journey of polymeric micelle-based breast cancer therapy extends to formulation and engineering, preclinical and clinical studies, and confronts regulatory and commercialization challenges. However, the horizon is illuminated by emerging technologies, like personalized medicine, biomarker-driven targeting, and integration with novel therapies, promising a future where breast cancer treatment is tailored to individual patients and marked by improved efficacy and reduced side effects.

Conclusion

In conclusion, this review underscores the transformative potential of polymeric micelle-based delivery systems in breast cancer therapy.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855302263240910060240
2024-09-19
2025-12-23
Loading full text...

Full text loading...

References

  1. ChaudhuriA. RameshK. KumarD.N. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer.J. Drug Deliv. Sci. Technol.20227710388610.1016/j.jddst.2022.103886
    [Google Scholar]
  2. World Health Organization. Breast cancer.2024Available From: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  3. CabralH. MiyataK. OsadaK. KataokaK. Block copolymer micelles in nanomedicine applications.Chem. Rev.2018118146844689210.1021/acs.chemrev.8b00199 29957926
    [Google Scholar]
  4. BaeY. KataokaK. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers.Adv. Drug Deliv. Rev.2009611076878410.1016/j.addr.2009.04.016 19422866
    [Google Scholar]
  5. HwangD. RamseyJ.D. KabanovA.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval.Adv. Drug Deliv. Rev.20201568011810.1016/j.addr.2020.09.009 32980449
    [Google Scholar]
  6. ZhangL. Radovic-MorenoA.F. AlexisF. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates.ChemMedChem2007291268127110.1002/cmdc.200700121 17600796
    [Google Scholar]
  7. FangJ. NakamuraH. MaedaH. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect.Adv. Drug Deliv. Rev.201163313615110.1016/j.addr.2010.04.009 20441782
    [Google Scholar]
  8. LeeE.S. GaoZ. BaeY.H. Recent progress in tumor pH targeting nanotechnology.J. Control. Release2008132316417010.1016/j.jconrel.2008.05.003 18571265
    [Google Scholar]
  9. AlakhovaD.Y. KabanovA.V. Pluronics and MDR reversal: An update.Mol. Pharm.20141182566257810.1021/mp500298q 24950236
    [Google Scholar]
  10. RapoportN. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery.Prog. Polym. Sci.2007328-996299010.1016/j.progpolymsci.2007.05.009
    [Google Scholar]
  11. MiuraY. TakenakaT. TohK. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier.ACS Nano20137108583859210.1021/nn402662d 24028526
    [Google Scholar]
  12. SharmaG. DaveR. SanadyaJ. SharmaP. SharmaK.K. Various types and management of breast cancer: An overview.J. Adv. Pharm. Technol. Res.20101210912610.4103/2231‑4040.72251 22247839
    [Google Scholar]
  13. HashmiA.A. AijazS. KhanS.M. Prognostic parameters of luminal A and luminal B intrinsic breast cancer subtypes of Pakistani patients.World J. Surg. Oncol.20181611610.1186/s12957‑017‑1299‑9 29291744
    [Google Scholar]
  14. Al-thoubaityF.K. Molecular classification of breast cancer: A retrospective cohort study.Ann. Med. Surg. (Lond.)202049444810.1016/j.amsu.2019.11.021 31890196
    [Google Scholar]
  15. RakhaE.A. GreenA.R. Molecular classification of breast cancer: What the pathologist needs to know.Pathology201749211111910.1016/j.pathol.2016.10.012 28040199
    [Google Scholar]
  16. AndreF. PusztaiL. Molecular classification of breast cancer: Implications for selection of adjuvant chemotherapy.Nat. Clin. Pract. Oncol.200631162163210.1038/ncponc0636 17080180
    [Google Scholar]
  17. SchubartJ.R. EmerichM. FarnanM. Stanley SmithJ. KauffmanG.L. KassR.B. Screening for psychological distress in surgical breast cancer patients.Ann. Surg. Oncol.201421103348335310.1245/s10434‑014‑3919‑8 25034820
    [Google Scholar]
  18. Al-HilliZ. WilkersonA. Breast Surgery.Surg. Clin. North Am.2021101584586310.1016/j.suc.2021.06.014 34537147
    [Google Scholar]
  19. AleixoG.F.P. ShacharS.S. DealA.M. The association of body composition parameters and adverse events in women receiving chemotherapy for early breast cancer.Breast Cancer Res. Treat.2020182363164210.1007/s10549‑020‑05731‑1 32519169
    [Google Scholar]
  20. JagsiR. MomohA.O. QiJ. Impact of radiotherapy on complications and patient-reported outcomes after breast reconstruction.J. Natl. Cancer Inst.2018110215716510.1093/jnci/djx148 28954300
    [Google Scholar]
  21. JairamV. ParkH.S. Strengths and limitations of large databases in lung cancer radiation oncology research.Transl. Lung Cancer Res.20198Suppl. 2S172S18310.21037/tlcr.2019.05.06
    [Google Scholar]
  22. BradleyR. BraybrookeJ. GrayR. Trastuzumab for early-stage, HER2-positive breast cancer: A meta-analysis of 13 864 women in seven randomised trials.Lancet Oncol.20212281139115010.1016/S1470‑2045(21)00288‑6 34339645
    [Google Scholar]
  23. BursteinH.J. SomerfieldM.R. BartonD.L. Endocrine treatment and targeted therapy for hormone receptor–positive, human epidermal growth factor receptor 2–negative metastatic breast cancer: ASCO guideline update.J. Clin. Oncol.202139353959397710.1200/JCO.21.01392 34324367
    [Google Scholar]
  24. KhalilovR.K. BakishzadeA. NasibovaA.J. Future prospects of biomaterials in nanomedicine.Advances Biol Earth Sci2024951010.62476/abes.9s5
    [Google Scholar]
  25. SaeediM. Morteza-SemnaniK. AkbariJ. Development of kojic acid loaded collagen-chitosan nanoparticle as skin lightener product: In vitro and in vivo assessment.J. Biomater. Sci. Polym. Ed.2024351638410.1080/09205063.2023.2268316 37804323
    [Google Scholar]
  26. AhmadiF. SaeediM. AkbariJ. Nanohybrid based on (Mn, Zn) ferrite nanoparticles functionalized with chitosan and sodium alginate for loading of curcumin against human breast cancer cells.AAPS PharmSciTech202324822210.1208/s12249‑023‑02683‑9 37935931
    [Google Scholar]
  27. LiuT. RomanovaS. WangS. Alendronate-modified polymeric micelles for the treatment of breast cancer bone metastasis.Mol. Pharm.20191672872288310.1021/acs.molpharmaceut.8b01343 31150251
    [Google Scholar]
  28. BobdeY. PatelT. PaulM. BiswasS. GhoshB. PEGylated N-(2 hydroxypropyl) methacrylamide polymeric micelles as nanocarriers for the delivery of doxorubicin in breast cancer.Colloids Surf. B Biointerfaces202120411183310.1016/j.colsurfb.2021.111833 34010799
    [Google Scholar]
  29. GregoriouY. GregoriouG. YilmazV. Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells.Nanotheranostics20215111312410.7150/ntno.51955 33391978
    [Google Scholar]
  30. JunnuthulaV. KolimiP. NyavanandiD. SampathiS. VoraL.K. DyawanapellyS. Polymeric micelles for breast cancer therapy: Recent updates, clinical translation and regulatory considerations.Pharmaceutics2022149186010.3390/pharmaceutics14091860 36145608
    [Google Scholar]
  31. VertM. DoiY. HellwichK.H. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012).Pure Appl. Chem.201284237741010.1351/PAC‑REC‑10‑12‑04
    [Google Scholar]
  32. ZhangY. HuangY. LiS. LuanY. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery.AAPS PharmSciTech201415486287110.1208/s12249‑014‑0113‑z 24700296
    [Google Scholar]
  33. AroraV. BhandariD.D. PuriR. KhatriN. DurejaH. Synthesis, Self-Assembly, and Functional Chemistry of Amphiphilic Block Copolymers.Polymeric Micelles: Principles.Perspectives and Practices2023
    [Google Scholar]
  34. FengH. LuX. WangW. KangN.G. MaysJ. Block copolymers: Synthesis, self-assembly, and applications.Polymers (Basel)201791049410.3390/polym9100494 30965798
    [Google Scholar]
  35. KuperkarK. PatelD. AtanaseL.I. BahadurP. Amphiphilic block copolymers: Their structures, and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles.Polymers202214214702
    [Google Scholar]
  36. AhmadZ. ShahA. SiddiqM. KraatzH.B. Polymeric micelles as drug delivery vehicles.RSC Advances2014433170281703810.1039/C3RA47370H
    [Google Scholar]
  37. GhezziM. PescinaS. PadulaC. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  38. KwonG.S. Polymeric drug delivery systems based on micelle-forming block copolymers.Adv. Drug Deliv. Rev.2003554467486 12706046
    [Google Scholar]
  39. BaeY. FukushimaS. HaradaA. KataokaK. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change.Angew. Chem. Int. Ed.200342384640464310.1002/anie.200250653 14533151
    [Google Scholar]
  40. SzymusiakM. KalkowskiJ. LuoH. Core–shell structure and aggregation number of micelles composed of amphiphilic block copolymers and amphiphilic heterografted polymer brushes determined by small-angle X-ray scattering.ACS Macro Lett.2017691005101210.1021/acsmacrolett.7b00490 29308298
    [Google Scholar]
  41. QiH.L. ZhouH.W. DuanC. LiW.H. DingM.M. Self-assembled conformations of a core-shell comb-like chain with adjustable architectural parameters.Chin. J. Polym. Sci.20234191439144610.1007/s10118‑023‑2982‑7
    [Google Scholar]
  42. TorchilinV.P. Micelle-forming block copolymers as nanocarriers for drug delivery.Chem. Rev.2001101516511662
    [Google Scholar]
  43. LukyanovA.N. TorchilinV.P. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.Adv. Drug Deliv. Rev.20045691273128910.1016/j.addr.2003.12.004 15109769
    [Google Scholar]
  44. NishiyamaN. YokoyamaM. AoyagiT. OkanoT. SakuraiY. KataokaK. Preparation and characterization of self-assembled polymer−metal complex micelle from cis-dichlorodiammineplatinum(II) and poly(ethylene glycol)−poly(α,β-aspartic acid) block copolymer in an aqueous medium.Langmuir199915237738310.1021/la980572l
    [Google Scholar]
  45. ZhaoY. ZhouY. WangD. pH-responsive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) for tumor-targeting and controlled delivery of doxorubicin and P-glycoprotein inhibitor.Acta Biomater.20151718219210.1016/j.actbio.2015.01.010 25612838
    [Google Scholar]
  46. Cheon LeeS. KimC. Chan KwonI. ChungH. Young JeongS. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(ε-caprolactone) copolymer as a carrier for paclitaxel.J. Control. Release200389343744610.1016/S0168‑3659(03)00162‑7 12737846
    [Google Scholar]
  47. SaeediM. Morteza-SemnaniK. Siahposht-KhachakiA. Passive targeted drug delivery of venlafaxine hcl to the brain by modified chitosan nanoparticles: Characterization, cellular safety assessment, and in vivo evaluation.J. Pharm. Innov.20231831441145310.1007/s12247‑023‑09733‑6
    [Google Scholar]
  48. YokoyamaM. Polymeric micelles as drug carriers: Their lights and shadows.J. Drug Target.201422757658310.3109/1061186X.2014.934688 25012065
    [Google Scholar]
  49. BaeY.H. ParkK. Targeted drug delivery to tumors: Myths, reality and possibility.J. Control. Release2011153319820510.1016/j.jconrel.2011.06.001 21663778
    [Google Scholar]
  50. GaucherG. SatturwarP. JonesM.C. FurtosA. LerouxJ.C. Polymeric micelles for oral drug delivery.Eur. J. Pharm. Biopharm.201076214715810.1016/j.ejpb.2010.06.007 20600891
    [Google Scholar]
  51. WangE. LuJ. BatesF.S. LodgeT.P. Effect of corona block length on the structure and chain exchange kinetics of block copolymer micelles.Macromolecules201851103563357110.1021/acs.macromol.7b02732
    [Google Scholar]
  52. LodgeT.P. SeitzingerC.L. SeegerS.C. YangS. GuptaS. DorfmanK.D. Dynamics and equilibration mechanisms in block copolymer particles.ACS Polym. Au20222639741610.1021/acspolymersau.2c00033
    [Google Scholar]
  53. CoudertN. DebrieC. HarrissonS. RiegerJ. NicolaiT. ColombaniO. Hydrogels of amphiphilic triblock copolymers with independently tunable pH and temperature-controlled exchange dynamics.Macromolecules202356239584959410.1021/acs.macromol.3c01448
    [Google Scholar]
  54. GrefR. MinamitakeY. PeracchiaM.T. TrubetskoyV. TorchilinV. LangerR. Biodegradable long-circulating polymeric nanospheres.Science199426351531600160310.1126/science.8128245 8128245
    [Google Scholar]
  55. HamaguchiT. MatsumuraY. SuzukiM. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel.Br. J. Cancer20059271240124610.1038/sj.bjc.6602479 15785749
    [Google Scholar]
  56. CabralH. KataokaK. Progress of drug-loaded polymeric micelles into clinical studies.J. Control. Release201419046547610.1016/j.jconrel.2014.06.042 24993430
    [Google Scholar]
  57. NasongklaN. BeyE. RenJ. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems.Nano Lett.20066112427243010.1021/nl061412u 17090068
    [Google Scholar]
  58. KimS. ShiY. KimJ.Y. ParkK. ChengJ.X. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle–cell interaction.Expert Opin. Drug Deliv.201071496210.1517/17425240903380446 20017660
    [Google Scholar]
  59. LeeJ. ChoE.C. ChoK. Incorporation and release behavior of hydrophobic drug in functionalized poly(d,l-lactide)-block–poly(ethylene oxide) micelles.J. Control. Release2004942-332333510.1016/j.jconrel.2003.10.012 14744484
    [Google Scholar]
  60. TrubetskoyV.S. TorchilinV.P. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents.Adv. Drug Deliv. Rev.1995162-331132010.1016/0169‑409X(95)00032‑3
    [Google Scholar]
  61. GaoZ. LukyanovA.N. SinghalA. TorchilinV.P. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs.Nano Lett.20022997998210.1021/nl025604a
    [Google Scholar]
  62. KwonG.S. OkanoT. Polymeric micelles as new drug carriers.Adv. Drug Deliv. Rev.199621210711610.1016/S0169‑409X(96)00401‑2
    [Google Scholar]
  63. GaucherG. MarchessaultR.H. LerouxJ.C. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes.J. Control. Release2010143121210.1016/j.jconrel.2009.11.012 19925835
    [Google Scholar]
  64. ParkJ.H. KwonS. NamJ.O. Self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid for RGD peptide delivery.J. Control. Release200495357958810.1016/j.jconrel.2003.12.020 15023468
    [Google Scholar]
  65. PrasadP. ShuhendlerA. CaiP. RauthA.M. WuX.Y. Doxorubicin and mitomycin C-loaded nanoparticles inhibit growth of pancreatic tumor xenografts and enhance survival of treated mice.Mol. Pharm.20096413281339
    [Google Scholar]
  66. LiuJ. XiaoY. AllenC. Polymer–drug compatibility: A guide to the development of delivery systems for the anticancer agent, ellipticine.J. Pharm. Sci.200493113214310.1002/jps.10533 14648643
    [Google Scholar]
  67. ZhangX. XuX. WangX. Hepatoma-targeting and reactive oxygen species-responsive chitosan-based polymeric micelles for delivery of celastrol.Carbohydr. Polym.202330312043910.1016/j.carbpol.2022.120439 36657834
    [Google Scholar]
  68. BatrakovaE.V. KabanovA.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers.J. Control. Release200813029810610.1016/j.jconrel.2008.04.013 18534704
    [Google Scholar]
  69. XuW. LingP. ZhangT. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs.J. Drug Deliv.2013201311510.1155/2013/340315 23936656
    [Google Scholar]
  70. CroyS.R. KwonG.S. The effects of Pluronic block copolymers on the aggregation state of nystatin.J. Control. Release200495216117110.1016/j.jconrel.2003.11.003 14980765
    [Google Scholar]
  71. Martín GiménezV.M. MorettonM.A. ChiappettaD.A. SalgueiroM.J. FornésM.W. ManuchaW. Polymeric nanomicelles loaded with anandamide and their renal effects as a therapeutic alternative for hypertension treatment by passive targeting.Pharmaceutics202315117610.3390/pharmaceutics15010176
    [Google Scholar]
  72. BiancacciI. De LorenziF. TheekB. Monitoring EPR effect dynamics during nanotaxane treatment with theranostic polymeric micelles.Adv. Sci. (Weinh.)2022910210374510.1002/advs.202103745 35072358
    [Google Scholar]
  73. MiyataK. ChristieR.J. KataokaK. Polymeric micelles for nano-scale drug delivery.React. Funct. Polym.201171322723410.1016/j.reactfunctpolym.2010.10.009
    [Google Scholar]
  74. KedarU. PhutaneP. ShidhayeS. KadamV. Advances in polymeric micelles for drug delivery and tumor targeting.Nanomedicine20106671472910.1016/j.nano.2010.05.005 20542144
    [Google Scholar]
  75. DansonS. FerryD. AlakhovV. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer.Br. J. Cancer200490112085209110.1038/sj.bjc.6601856 15150584
    [Google Scholar]
  76. NasongklaN. TuchindaP. MunyooB. EawsakulK. Preparation and Characterization of MUC-30-Loaded Polymeric Micelles against MCF-7 Cell Lines Using Molecular Docking Methods and In Vitro Study.Evid. Based Complement. Alternat. Med.2021202111910.1155/2021/5597681 34135981
    [Google Scholar]
  77. BarveA. JainA. LiuH. ZhaoZ. ChengK. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy.Acta Biomater.202011350151110.1016/j.actbio.2020.06.019 32562805
    [Google Scholar]
  78. NakanishiT. FukushimaS. OkamotoK. Development of the polymer micelle carrier system for doxorubicin.J. Control. Release2001741-329530210.1016/S0168‑3659(01)00341‑8 11489509
    [Google Scholar]
  79. SawantR.M. HurleyJ.P. SalmasoS. “SMART” drug delivery systems: Double-targeted pH-responsive pharmaceutical nanocarriers.Bioconjug. Chem.200617494394910.1021/bc060080h 16848401
    [Google Scholar]
  80. ZhangL. QinY. ZhangZ. Dual pH/reduction-responsive hybrid polymeric micelles for targeted chemo-photothermal combination therapy.Acta Biomater.20187537138510.1016/j.actbio.2018.05.026 29777957
    [Google Scholar]
  81. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review.J. Control. Release2000651-227128410.1016/S0168‑3659(99)00248‑5 10699287
    [Google Scholar]
  82. ManasponC. Viravaidya-PasuwatK. PimphaN. Preparation of folate-conjugated pluronic F127/chitosan core-shell nanoparticles encapsulating doxorubicin for breast cancer treatment.J. Nanomater.20122012159387810.1155/2012/593878
    [Google Scholar]
  83. StanchevaR. Paunova-KrastevaT. Topouzova-HristovaT. StoitsovaS. PetrovP. HaladjovaE. Ciprofloxacin-Loaded Mixed Polymeric Micelles as Antibiofilm Agents.Pharmaceutics2023154114710.3390/pharmaceutics15041147 37111633
    [Google Scholar]
  84. HilsC. SchmelzJ. DrechslerM. SchmalzH. Janus micelles by crystallization-driven self-assembly of an amphiphilic, double-crystalline triblock terpolymer.J. Am. Chem. Soc.202114338155821558610.1021/jacs.1c08076 34529422
    [Google Scholar]
  85. CobanD. GridinaO. KargM. GröschelA.H. Morphology control of multicompartment micelles in water through hierarchical self-assembly of amphiphilic terpolymers.Macromolecules20225541354136410.1021/acs.macromol.1c01840
    [Google Scholar]
  86. SahranavardM. ShahriariM. AbnousK. Design and synthesis of targeted star-shaped micelle for guided delivery of camptothecin: In vitro and in vivo evaluation.Mater. Sci. Eng. C202113111252910.1016/j.msec.2021.112529 34857308
    [Google Scholar]
  87. DiaoY.Y. LiH.Y. FuY.H. HanM. HuY.L. JiangH.L. Doxorubicin-loaded PEG-PCL copolymer micelles enhance cytotoxicity and intracellular accumulation of doxorubicin in adriamycin-resistant tumor cells.Int. J. Nanomedicine2011619551962
    [Google Scholar]
  88. WinklerJ.S. BaraiM. TomassoneM.S. Dual drug-loaded biodegradable Janus particles for simultaneous co-delivery of hydrophobic and hydrophilic compounds.Exp. Biol. Med. (Maywood)2019244141162117710.1177/1535370219876554 31617755
    [Google Scholar]
  89. SynatschkeC.V. NomotoT. CabralH. Multicompartment micelles with adjustable poly(ethylene glycol) shell for efficient in vivo photodynamic therapy.ACS Nano2014821161117210.1021/nn4028294 24386876
    [Google Scholar]
  90. LiK. ZangX. MengX. LiY. XieY. ChenX. Targeted delivery of quercetin by biotinylated mixed micelles for non-small cell lung cancer treatment.Drug Deliv.202229197098510.1080/10717544.2022.2055225 35343862
    [Google Scholar]
  91. YangS. RenZ. ChenM. Nucleolin-targeting AS1411-aptamer-modified graft polymeric micelle with dual pH/redox sensitivity designed to enhance tumor therapy through the codelivery of doxorubicin/TLR4 siRNA and suppression of invasion.Mol. Pharm.201815131432510.1021/acs.molpharmaceut.7b01093 29250957
    [Google Scholar]
  92. NaruphontjirakulP. Viravaidya-PasuwatK. Development of anti-HER2-targeted doxorubicin–core-shell chitosan nanoparticles for the treatment of human breast cancer.Int. J. Nanomedicine2019144105412110.2147/IJN.S198552 31239670
    [Google Scholar]
  93. KooA.N. MinK.H. LeeH.J. Tumor accumulation and antitumor efficacy of docetaxel-loaded core-shell-corona micelles with shell-specific redox-responsive cross-links.Biomaterials20123351489149910.1016/j.biomaterials.2011.11.013 22130564
    [Google Scholar]
  94. ZhangL. PuY. LiJ. pH responsive coumarin and imidazole grafted polymeric micelles for cancer therapy.J. Drug Deliv. Sci. Technol.20205810178910.1016/j.jddst.2020.101789
    [Google Scholar]
  95. NamJ.P. LeeK.J. ChoiJ.W. YunC.O. NahJ.W. Targeting delivery of tocopherol and doxorubicin grafted-chitosan polymeric micelles for cancer therapy: In vitro and in vivo evaluation.Colloids Surf. B Biointerfaces201513325426210.1016/j.colsurfb.2015.06.018 26117805
    [Google Scholar]
  96. ChenL.C. ChenY.C. SuC.Y. HongC.S. HoH.O. SheuM.T. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study.Int. J. Nanomedicine20161115571566 27143878
    [Google Scholar]
  97. WangJ. LiuQ. YangL. Curcumin-loaded TPGS/F127/P123 mixed polymeric micelles for cervical cancer therapy: Formulation, characterization, and in vitro and in vivo evaluation.J. Biomed. Nanotechnol.201713121631164610.1166/jbn.2017.2442 29490752
    [Google Scholar]
  98. ZhaoL. DuJ. DuanY. Curcumin loaded mixed micelles composed of Pluronic P123 and F68: Preparation, optimization and in vitro characterization.Colloids Surf. B Biointerfaces20129710110810.1016/j.colsurfb.2012.04.017 22609589
    [Google Scholar]
  99. JiaoZ. LiuN. ChenZ. Selection suitable solvents to prepare paclitaxel-loaded micelles by solvent evaporation method.Pharm. Dev. Technol.201217216416910.3109/10837450.2010.529146 20977318
    [Google Scholar]
  100. GaoX Gou HuangMJ Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer.Int. J. Nanomedicine2013897198210.2147/IJN.S39532 23493403
    [Google Scholar]
  101. ZengL. ZouL. YuH. Treatment of Malignant brain tumor by tumor‐triggered programmed wormlike micelles with precise targeting and deep penetration.Adv. Funct. Mater.201626234201421210.1002/adfm.201600642
    [Google Scholar]
  102. YangY-N. GeC. HeJ. LuW-G. Novel worm-like micelles for hydrochloride doxorubicin delivery: Preparation, characterization, and in vitro evaluation.Pharmaceut Fronts202244e284e29410.1055/s‑0042‑1758191
    [Google Scholar]
  103. WanX. MinY. BludauH. Drug combination synergy in worm-like polymeric micelles improves treatment outcome for small cell and non-small cell lung cancer.ACS Nano20181232426243910.1021/acsnano.7b07878 29533606
    [Google Scholar]
  104. HoudaihedL. EvansJ.C. AllenC. Codelivery of paclitaxel and everolimus at the optimal synergistic ratio: A promising solution for the treatment of breast cancer.Mol. Pharm.20181593672368110.1021/acs.molpharmaceut.8b00217 29863881
    [Google Scholar]
  105. MehraN. AqilM. SultanaY. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study.Eur. J. Pharm. Sci.202115910573510.1016/j.ejps.2021.105735 33516808
    [Google Scholar]
  106. ChenQ. ZhengJ. YuanX. WangJ. ZhangL. Folic acid grafted and tertiary amino based pH-responsive pentablock polymeric micelles for targeting anticancer drug delivery.Mater. Sci. Eng. C2018821910.1016/j.msec.2017.08.026 29025636
    [Google Scholar]
  107. HuangX. LiL. LiuT. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo.ACS Nano2011575390539910.1021/nn200365a 21634407
    [Google Scholar]
  108. TorchilinV.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.Nat. Rev. Drug Discov.2014131181382710.1038/nrd4333 25287120
    [Google Scholar]
  109. MaedaH. Macromolecular therapeutics in cancer treatment: The EPR effect and beyond.J. Control. Release2012164213814410.1016/j.jconrel.2012.04.038 22595146
    [Google Scholar]
  110. CabralH. MatsumotoY. MizunoK. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size.Nat. Nanotechnol.201161281582310.1038/nnano.2011.166 22020122
    [Google Scholar]
  111. ZhengS. HanJ. JinZ. Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy.Colloids Surf. B Biointerfaces201816442443510.1016/j.colsurfb.2018.02.005 29433060
    [Google Scholar]
  112. KataokaK. HaradaA. NagasakiY. Block copolymer micelles for drug delivery: Design, characterization and biological significance.Adv. Drug Deliv. Rev.200147111313110.1016/S0169‑409X(00)00124‑1 11251249
    [Google Scholar]
  113. ZhangY. ZhangH. WangX. WangJ. ZhangX. ZhangQ. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles.Biomaterials201233267969110.1016/j.biomaterials.2011.09.072 22019123
    [Google Scholar]
  114. YangY. YunK. LiY. Self-assembled multifunctional polymeric micelles for tumor-specific bioimaging and synergistic chemo-phototherapy of cancer.Int. J. Pharm.202160212065110.1016/j.ijpharm.2021.120651 33915181
    [Google Scholar]
  115. XiongX.B. LavasanifarA. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin.ACS Nano2011565202521310.1021/nn2013707 21627074
    [Google Scholar]
  116. KabanovA.V. AlakhovV.Y. Pluronic block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers.Crit. Rev. Ther. Drug Carrier Syst.200219117210.1615/CritRevTherDrugCarrierSyst.v19.i1.10 12046891
    [Google Scholar]
  117. DelceaM. MöhwaldH. SkirtachA.G. Stimuli-responsive LbL capsules and nanoshells for drug delivery.Adv. Drug Deliv. Rev.201163973074710.1016/j.addr.2011.03.010 21463658
    [Google Scholar]
  118. NairH.A. RajawatG.S. NagarsenkerM.S. Stimuli-responsive micelles: A nanoplatform for therapeutic and diagnostic applications.Drug Targeting and Stimuli Sensitive Drug Delivery Systems.Norwich, NYWilliam Andrew Publishing2018
    [Google Scholar]
  119. XuX.L. LuK.J. YaoX.Q. YingX.Y. DuY.Z. Stimuli-responsive drug Delivery Systems as an emerging platform for treatment of rheumatoid arthritis.Curr. Pharm. Des.201925215516510.2174/1381612825666190321104424 30907308
    [Google Scholar]
  120. RazaA. RasheedT. NabeelF. HayatU. BilalM. IqbalH.M.N. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release.Molecules2019246111710.3390/molecules24061117 30901827
    [Google Scholar]
  121. ChengW. GuL. RenW. LiuY. Stimuli-responsive polymers for anti-cancer drug delivery.Mater. Sci. Eng. C20144560060810.1016/j.msec.2014.05.050 25491870
    [Google Scholar]
  122. GaballaH. TheatoP. Glucose-responsive polymeric micelles via boronic acid–diol complexation for insulin delivery at neutral pH.Biomacromolecules201920287188110.1021/acs.biomac.8b01508 30608155
    [Google Scholar]
  123. LimaA.C. ReisR.L. FerreiraH. NevesN.M. Glutathione reductase-sensitive polymeric micelles for controlled drug delivery on arthritic diseases.ACS Biomater. Sci. Eng.2021773229324110.1021/acsbiomaterials.1c00412 34161062
    [Google Scholar]
  124. SalunkeK.S. A review on stimuli-responsive polymers and recent strategies for treating cancer based on stimuli responsive nanocarriers.Int. J. Pharma Bio Sci.202010374101
    [Google Scholar]
  125. AssawapanumatW. UdomphonS. KampaengtipA. YasetS. HanX. NittayacharnP. 99mTc/SPIO-loaded polymeric micelles as MRI and SPECT imaging, cancer-targeted nanoprobe for liver cancer detection.J. Drug Deliv. Sci. Technol.2022788104060
    [Google Scholar]
  126. KimK.N. OhK.S. ShimJ. SchlaepferI.R. KaramS.D. LeeJ.J. Light-responsive polymeric micellar nanoparticles with enhanced formulation stability.Polymers (Basel)202113337710.3390/polym13030377 33530388
    [Google Scholar]
  127. ZhangP. WangH. HongY. Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe.Biosens. Bioelectron.20189931832410.1016/j.bios.2017.08.001 28787677
    [Google Scholar]
  128. WangJ. PelletierM. ZhangH. XiaH. ZhaoY. High-frequency ultrasound-responsive block copolymer micelle.Langmuir20092522132011320510.1021/la9018794 19572509
    [Google Scholar]
  129. GloverA.L. BennettJ.B. PritchettJ.S. Magnetic heating of iron oxide nanoparticles and magnetic micelles for cancer therapy.IEEE Trans. Magn.201349123123510.1109/TMAG.2012.2222359 23750047
    [Google Scholar]
  130. HuangC. TangZ. ZhouY. Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy.Int. J. Pharm.20124291-211312210.1016/j.ijpharm.2012.03.001 22406331
    [Google Scholar]
  131. HuangD. WangJ. SongC. ZhaoY. Ultrasound-responsive matters for biomedical applications.Innovation20234310042110.1016/j.xinn.2023.100421 37192908
    [Google Scholar]
  132. FigueirasA. DominguesC. JarakI. New advances in biomedical application of polymeric micelles.Pharmaceutics2022148170010.3390/pharmaceutics14081700 36015325
    [Google Scholar]
  133. WuP. JiaY. QuF. Ultrasound-Responsive polymeric micelles for Sonoporation-Assisted Site-Specific therapeutic action.ACS Appl. Mater. Interfaces2017931257062571610.1021/acsami.7b05469 28741924
    [Google Scholar]
  134. ShiC. SunY. WuH. Exploring the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading.Int. J. Pharm.2016512128229110.1016/j.ijpharm.2016.08.054 27576669
    [Google Scholar]
  135. TalelliM. BarzM. RijckenC.J.F. KiesslingF. HenninkW.E. LammersT. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation.Nano Today20151019311710.1016/j.nantod.2015.01.005 25893004
    [Google Scholar]
  136. SalahshourP. AbdolmalekiS. MonemizadehS. GholizadehS. KhaksarS. Nanobiomaterials/bioinks based scaffolds in 3D bioprinting for tissue engineering and artificial human organs.Advances Biol Earth Sci20249Special Issue97104
    [Google Scholar]
  137. GatabiZ.R. SaeediM. Morteza-SemnaniK. RahimniaS.M. Yazdian-RobatiR. HashemiS.M.H. Green preparation, characterization, evaluation of anti-melanogenesis effect and in vitro/in vivo safety profile of kojic acid hydrogel as skin lightener formulation.J. Biomater. Sci. Polym. Ed.202233172270229110.1080/09205063.2022.2103624 35856432
    [Google Scholar]
  138. KalinovaR. GrancharovG. DoumanovJ. MladenovaK. PetrovaS. DimitrovI. Green synthesis and the evaluation of a functional amphiphilic block copolymer as a micellar curcumin delivery system.Int. J. Mol. Sci.202324131058810.3390/ijms241310588 37445767
    [Google Scholar]
  139. KesharwaniS.S. KaurS. TummalaH. SangamwarA.T. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors.Colloids Surf. B Biointerfaces201917358159010.1016/j.colsurfb.2018.10.022 30352379
    [Google Scholar]
  140. XiaoY. HongH. JavadiA. Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging.Biomaterials201233113071308210.1016/j.biomaterials.2011.12.030 22281424
    [Google Scholar]
  141. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  142. JinZ. Al AmiliM. GuoS. Tumor microenvironment-responsive drug delivery based on polymeric micelles for precision cancer therapy: Strategies and prospects.Biomedicines202412241710.3390/biomedicines12020417 38398021
    [Google Scholar]
  143. SoniA.G. JoshiR. SoniD. GuptaU. AalhateM. SinghP.K. Regulatory Aspects for Polymeric Micelles.Polymeric Micelles: Principles.Perspectives and Practices202310.1007/978‑981‑99‑0361‑0_13
    [Google Scholar]
  144. LiZ. LiuM. KeL. Flexible polymeric nanosized micelles for ophthalmic drug delivery: Research progress in the last three years.Nanoscale Adv.20213185240525410.1039/D1NA00596K 36132623
    [Google Scholar]
  145. YouH. FuS. QinX. A study of the synergistic effect of folate-decorated polymeric micelles incorporating Hydroxycamptothecin with radiotherapy on xenografted human cervical carcinoma.Colloids Surf. B Biointerfaces201614015016010.1016/j.colsurfb.2015.12.034 26752212
    [Google Scholar]
  146. GaoM. DengJ. LiuF. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy.Biomaterials201922311948610.1016/j.biomaterials.2019.119486 31520887
    [Google Scholar]
  147. DuT. WangY. LuanZ. ZhaoC. YangK. Tumor-associated macrophage membrane-camouflaged pH-responsive polymeric micelles for combined cancer chemotherapy-sensitized immunotherapy.Int. J. Pharm.202262412191110.1016/j.ijpharm.2022.121911 35700870
    [Google Scholar]
  148. Korean Breast Cancer Study Group A Clinical Trial of Paclitaxel Loaded Polymeric Micelle in Patients With Taxane-Pretreated Recurrent Breast Cancer.2009Available From: [https://clinicaltrials.gov/study/NCT00912639?cond=breast%20cancer&term=polymeric%20micelles&intr=polymeric%20micelles&rank=2
  149. LiuHuang Tongji Hospital (Responsible Party). Clinical Efficacy and Safety of Paclitaxel Polymeric Micelles for Injection in the Treatment of Patients With Taxans-resistant Pancreatic Adenocarcinoma, Cholangiocarcinoma, Lung Cancer, Gastric Cancer, Esophageal Carcinoma, or Breast Cancer.2024Available From: [https://clinicaltrials.gov/study/NCT06199895?cond=breast%20cancer&term=polymeric%20micelles&intr=polymeric%20micelles&rank=1
  150. Sorrento Therapeutics, Inc. Bioequivalence study of IG-001 versus nab-paclitaxel in metastatic or locally recurrent breast cancer (TRIBECA).2016Available From: [https://clinicaltrials.gov/study/NCT02064829?cond=breast%20cancer&term=polymeric%20micelles&intr=polymeric%20micelles&rank=4
  151. Shanghai Yizhong Pharmaceutical Co Ltd. Paclitaxel polymeric micelles for injection versus TPC on the treatment of HER2-negative Metastatic Breast Cancer (MBC).2023Available From: [https://clinicaltrials.gov/study/NCT06143553?cond=breast%20cancer&term=polymeric%20micelles&intr=polymeric%20micelles&rank=3
  152. Jiangsu Simcere Pharmaceutical Co Ltd. A study of docetaxel polymeric micelles for injection in patients with advanced solid tumors.2022Available From: [https://clinicaltrials.gov/study/NCT05254665?cond=Cancer&term=polymeric%20micelles&intr=polymeric%20micelles&rank=1
  153. Theradex. Paclitaxel in treating patients with unresectable locally advanced or metastatic pancreatic cancer.2011Available From: https://clinicaltrials.gov/study/NCT00111904?cond=Cancer&term=polymeric%20micelles&intr=polymeric%20micelles&rank=5
  154. Sung Yong Oh Docetaxel-polymeric Micelles(PM) and Oxaliplatin for Esophageal Carcinoma (DOSE).2018Available FromAvailable From: [https://clinicaltrials.gov/study/NCT03585673?cond=Cancer&term=polymeric%20micelles&intr=polymeric%20micelles&rank=6
  155. Asan Medical Center Paclitaxel-loaded polymeric micelle and carboplatin as first-line therapy in treating patients with advanced ovarian cancer.2013Available From: [https://clinicaltrials.gov/study/NCT00886717?cond=Cancer&term=polymeric%20micelles&intr=polymeric%20micelles&rank=7
  156. Asan Medical Center Study of Genexol-PM in Patients With Advanced Urothelial Cancer Previously Treated With Gemcitabine and Platinum2011 Available from: https://clinicaltrials.gov/study/NCT01426126?cond=Cancer&term=polymeric%20micelles&intr=polymeric%20micelles&rank=13
  157. Samyang Biopharmaceuticals Corporation Study to evaluate the efficacy and safety of Docetaxel Polymeric Micelle (PM) in recurrent or metastatic HNSCC2017 Available from: https://clinicaltrials.gov/study/NCT02639858?cond=Cancer&term=polymeric%20micelles&intr=polymeric%20micelles&rank=14
/content/journals/cdth/10.2174/0115748855302263240910060240
Loading
/content/journals/cdth/10.2174/0115748855302263240910060240
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test