Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Background

Type 2 Diabetes (T2D) is a chronic metabolic disease characterized by hyperglycemia and carries a high risk of numerous complications. The rising prevalence of this lifelong condition affects millions globally, demanding novel therapeutic strategies. Existing medications targeting insulin and other pathways often pose limitations like suboptimal glycemic control, side effects, and high costs. Novel therapeutic targets are crucial for developing better treatments and potentially reducing side effects associated with previous drugs.

Objectives

This paper aims to comprehensively review and analyze potential targets for the treatment of diabetes mellitus.

Methods

We conducted a comprehensive search of MEDLINE, Scopus, Science Direct, PubMed, and Google Scholar databases. Search terms included “diabetes mellitus”, “novel targets”, “drug discovery”, “gene expression” and “molecular pathways”. We identified over 175 published articles exploring novel therapeutic targets for DM.

Results

The review presented a detailed analysis of promising anti-diabetic targets. These targets encompass various pathways and mechanisms, including insulin signaling, Glucose signaling, inflammation and oxidative stress, gut microbiome, and epigenetic modifications. Several promising candidates emerged, such as Glucokinase activators, GPCRs modifiers, Fructose-1,6-bisphosphatase antagonists, Protein tyrosine phosphatase 1B antagonist, 11β-Hydroxysteroid, andDehydrogenase antagonists. Potential therapeutic agents targeting these emerging targets will be discussed, along with their mechanisms of action and preclinical/clinical evidence.

Conclusion

By identifying and comprehensively analyzing new therapeutic targets, this review intends to provide insights for the development of more effective and efficient diabetes management strategies. The information presented can guide future research initiatives and drug development efforts toward novel and promising anti-diabetic therapies.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855313087240719072514
2024-07-25
2025-12-03
Loading full text...

Full text loading...

References

  1. BeleteT.M. A recent achievement in the discovery and development of novel targets for the treatment of type-2 diabetes mellitus.J. Exp. Pharmacol.20201211510.2147/JEP.S22611332021494
    [Google Scholar]
  2. ReedJ. BainS. KanamarlapudiV. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Diabetes, Metabolic Syndrome.Obes. Med.202135673602
    [Google Scholar]
  3. ShawJ.E. SicreeR.A. ZimmetP.Z. Global estimates of the prevalence of diabetes for 2010 and 2030.Diabetes Res. Clin. Pract.201087141410.1016/j.diabres.2009.10.00719896746
    [Google Scholar]
  4. DemirS. NawrothP.P. HerzigS. Ekim ÜstünelB. Emerging targets in type 2 diabetes and diabetic complications.Adv. Sci. (Weinh.)2021818210027510.1002/advs.20210027534319011
    [Google Scholar]
  5. KhursheedR. SinghS.K. WadhwaS. KapoorB. GulatiM. KumarR. RamanunnyA.K. AwasthiA. DuaK. Treatment strategies against diabetes: Success so far and challenges ahead.Eur. J. Pharmacol.201986217262510.1016/j.ejphar.2019.17262531449807
    [Google Scholar]
  6. GourgariE. WilhelmE.E. HassanzadehH. ArodaV.R. ShoulsonI. A comprehensive review of the FDA-approved labels of diabetes drugs: Indications, safety, and emerging cardiovascular safety data.J. Diabetes Complications201731121719172710.1016/j.jdiacomp.2017.08.00528939018
    [Google Scholar]
  7. LotfyM. AdeghateJ. KalaszH. SinghJ. AdeghateE. Chronic complications of diabetes mellitus: A mini review.Curr. Diabetes Rev.201613131010.2174/157339981266615101610162226472574
    [Google Scholar]
  8. AliM.K. NarayanK.M. TandonN. Diabetes & coronary heart disease: Current perspectives.Indian J. Med. Res.2010132558459721150011
    [Google Scholar]
  9. LealJ. GrayA.M. ClarkeP.M. Development of life-expectancy tables for people with type 2 diabetes.Eur. Heart J.200930783483910.1093/eurheartj/ehn56719109355
    [Google Scholar]
  10. LiJ.Q. WelchowskiT. SchmidM. LetowJ. WolpersC. Pascual-CampsI. HolzF.G. FingerR.P. Prevalence, incidence and future projection of diabetic eye disease in Europe: A systematic review and meta-analysis.Eur. J. Epidemiol.2020351112310.1007/s10654‑019‑00560‑z31515657
    [Google Scholar]
  11. VashistP. SenjamS. GuptaV. MannaS. GuptaN. ShamannaB.R. BhardwajA. KumarA. GuptaP. Prevalence of diabetic retinopahty in India: Results from the National Survey 2015-19.Indian J. Ophthalmol.202169113087309410.4103/ijo.IJO_1310_2134708747
    [Google Scholar]
  12. SimóR. CiudinA. Simó-ServatO. HernándezC. Cognitive impairment and dementia: A new emerging complication of type 2 diabetes—The diabetologist’s perspective.Acta Diabetol.201754541742410.1007/s00592‑017‑0970‑528210868
    [Google Scholar]
  13. XuY. RubinB.R. OrmeC.M. KarpikovA. YuC. BoganJ.S. ToomreD.K. Dual-mode of insulin action controls GLUT4 vesicle exocytosis.J. Cell Biol.2011193464365310.1083/jcb.20100813521555461
    [Google Scholar]
  14. AynalemSB ZelekeAJ Prevalence of diabetes mellitus and its risk factors among individuals aged 15 years and above in Mizan-Aman Town, Southwest Ethiopia, 2016: A cross sectional study.Int J Endocrinol.201820189317987
    [Google Scholar]
  15. Jaldin-FincatiJ.R. PavarottiM. Frendo-CumboS. BilanP.J. KlipA. Update on GLUT4 vesicle traffic: A cornerstone of insulin action.Trends Endocrinol. Metab.201728859761110.1016/j.tem.2017.05.00228602209
    [Google Scholar]
  16. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms2117627532872570
    [Google Scholar]
  17. SharabiK. TavaresC.D.J. RinesA.K. PuigserverP. Molecular pathophysiology of hepatic glucose production.Mol. Aspects Med.201546213310.1016/j.mam.2015.09.00326549348
    [Google Scholar]
  18. TanK. TesarC. WiltonR. JedrzejczakR.P. JoachimiakA. Interaction of antidiabetic α-glucosidase inhibitors and gut bacteria α-glucosidase.Protein Sci.20182781498150810.1002/pro.344429761590
    [Google Scholar]
  19. Antuna-PuenteB. DisseE. Rabasa-LhoretR. LavilleM. CapeauJ. BastardJ.P. How can we measure insulin sensitivity/resistance?Diabetes Metab.201137317918810.1016/j.diabet.2011.01.00221435930
    [Google Scholar]
  20. YangY. KimJ.W. ParkH.S. LeeE.Y. YoonK.H. Pancreatic stellate cells in the islets as a novel target to preserve the pancreatic β-cell mass and function.J. Diabetes Investig.202011226828010.1111/jdi.1320231872946
    [Google Scholar]
  21. ButlerA.E. JansonJ. Bonner-WeirS. RitzelR. RizzaR.A. ButlerP.C. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes.Diabetes200352110211010.2337/diabetes.52.1.10212502499
    [Google Scholar]
  22. YoonK.H. KoS.H. ChoJ.H. LeeJ.M. AhnY.B. SongK.H. YooS.J. KangM.I. ChaB.Y. LeeK.W. SonH.Y. KangS.K. KimH.S. LeeI.K. Bonner-WeirS. Selective β-cell loss and α-cell expansion in patients with type 2 diabetes mellitus in Korea.J. Clin. Endocrinol. Metab.20038852300230810.1210/jc.2002‑02073512727989
    [Google Scholar]
  23. BruntonS.A. The changing shape of type 2 diabetes.Medscape J. Med.200810614318679554
    [Google Scholar]
  24. Aiysha ThompsonK. KanamarlapudiV. Type 2 diabetes mellitus and glucagon like peptide-1 receptor signalling.Clin. Exp. Pharmacol.20133410.4172/2161‑1459.1000138
    [Google Scholar]
  25. GastaldelliA. Abdominal fat: Does it predict the development of type 2 diabetes?Am. J. Clin. Nutr.20088751118111910.1093/ajcn/87.5.111818469227
    [Google Scholar]
  26. CerfM.E. Beta cell dysfunction and insulin resistance.Front. Endocrinol.201343710.3389/fendo.2013.0003723542897
    [Google Scholar]
  27. Gurgul-ConveyE. MehmetiI. LortzS. LenzenS. Cytokine toxicity in insulin-producing cells is mediated by nitro-oxidative stress-induced hydroxyl radical formation in mitochondria.J. Mol. Med.201189878579810.1007/s00109‑011‑0747‑121487676
    [Google Scholar]
  28. MakkiK FroguelP WolowczukI Adipose Tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines.ISRN Inflamm.2013201313923910.1155/2013/139239
    [Google Scholar]
  29. Vatankhah YazdiK. KalantarS.M. HoushmandM. RahmanianM. ManaviatM.R. JahaniM.R. KamalidehghanB. Almasi-HashianiA. SLC30A8, CDKAL1, TCF7L2, KCNQ1 and IGF2BP2 are associated with type 2 diabetes mellitus in Iranian patients. Diabetes, Metabolic Syndrome.Obes. Med.20202020897906
    [Google Scholar]
  30. LeeC.J. SearsC.L. MaruthurN. Gut microbiome and its role in obesity and insulin resistance.Ann. N. Y. Acad. Sci.202014611375210.1111/nyas.1410731087391
    [Google Scholar]
  31. LundqvistM.H. PereiraM.J. AlmbyK. HettyS. ErikssonJ.W. Regulation of the cortisol axis, glucagon, and growth hormone by glucose is altered in prediabetes and type 2 diabetes.J. Clin. Endocrinol.Metab.20232023dgad549
    [Google Scholar]
  32. ToulisK.A. NirantharakumarK. PourzitakiC. BarnettA.H. TahraniA.A. Glucokinase activators for type 2 diabetes: Challenges and future developments.Drugs202080546747510.1007/s40265‑020‑01278‑z32162273
    [Google Scholar]
  33. BolenS. FeldmanL. VassyJ. WilsonL. YehH.C. MarinopoulosS. WileyC. SelvinE. WilsonR. BassE.B. BrancatiF.L. Systematic review: Comparative effectiveness and safety of oral medications for type 2 diabetes mellitus.Ann. Intern. Med.2007147638639910.7326/0003‑4819‑147‑6‑200709180‑0017817638715
    [Google Scholar]
  34. WangG.S. HoyteC. Review of biguanide (metformin) toxicity.J. Intensive Care Med.20193411-1286387610.1177/088506661879338530126348
    [Google Scholar]
  35. FonsecaV.A. Defining and characterizing the progression of type 2 diabetes.Diab Care200932Suppl 2Suppl. 2S151S15610.2337/dc09‑S30119875543
    [Google Scholar]
  36. GarberA.J. AbrahamsonM.J. BarzilayJ.I. BlondeL. BloomgardenZ.T. BushM.A. Dagogo-JackS. DeFronzoR.A. EinhornD. FonsecaV.A. GarberJ.R. GarveyW.T. GrunbergerG. HandelsmanY. HenryR.R. HirschI.B. JellingerP.S. McGillJ.B. MechanickJ.I. RosenblitP.D. UmpierrezG.E. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm–2016 executive summary.Endocr. Pract.20162218411310.4158/EP151126.CS26731084
    [Google Scholar]
  37. ScheenA.J. Pharmacological management of type 2 diabetes: What’s new in 2017?Expert Rev. Clin. Pharmacol.201710121383139410.1080/17512433.2017.137665228879786
    [Google Scholar]
  38. AdamsG.G. MealA. MorganP.S. AlzahraniQ.E. ZobelH. LithgoR. KokM.S. BesongD.T.M. JiwaniS.I. BallanceS. HardingS.E. ChayenN. GillisR.B. Characterisation of insulin analogues therapeutically available to patients.PLoS One2018133e019501010.1371/journal.pone.019501029596514
    [Google Scholar]
  39. InzucchiS.E. BergenstalR.M. BuseJ.B. DiamantM. FerranniniE. NauckM. PetersA.L. TsapasA. WenderR. MatthewsD.R. Management of hyperglycaemia in type 2 diabetes: A patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).Diabetologia20125561577159610.1007/s00125‑012‑2534‑022526604
    [Google Scholar]
  40. ScheenA.J. Sulphonylureas in the management of type 2 diabetes: To be or not to be?Diab Epidemiol Manag2021110000210.1016/j.deman.2021.100002
    [Google Scholar]
  41. LebovitzH.E. Thiazolidinediones: The forgotten diabetes medications.Curr. Diab. Rep.2019191215110.1007/s11892‑019‑1270‑y31776781
    [Google Scholar]
  42. HanssenN.M.J. Jandeleit-DahmK.A.M. Dipeptidyl peptidase-4 inhibitors and cardiovascular and renal disease in type 2 diabetes: What have we learned from the CARMELINA trial?Diab. Vasc. Dis. Res.201916430330910.1177/147916411984233931018682
    [Google Scholar]
  43. DeFronzoR.A. TriplittC.L. Abdul-GhaniM. CersosimoE. Novel agents for the treatment of type 2 diabetes.Diabetes Spectr.201427210011210.2337/diaspect.27.2.10026246766
    [Google Scholar]
  44. FitipaldiH. McCarthyM.I. FlorezJ.C. FranksP.W. A global overview of precision medicine in type 2 diabetes.Diabetes201867101911192210.2337/dbi17‑004530237159
    [Google Scholar]
  45. GloynA.L. DruckerD.J. Precision medicine in the management of type 2 diabetes.Lancet Diabetes Endocrinol.201861189190010.1016/S2213‑8587(18)30052‑429699867
    [Google Scholar]
  46. SeyhanA.A. CariniC. Are innovation and new technologies in precision medicine paving a new era in patients centric care?J. Transl. Med.201917111410.1186/s12967‑019‑1864‑930953518
    [Google Scholar]
  47. WangC.Y. NeilD.L. HomeP. 2020 vision – An overview of prospects for diabetes management and prevention in the next decade.Diabetes Res. Clin. Pract.201814310111210.1016/j.diabres.2018.06.00729944968
    [Google Scholar]
  48. LingvayI. SumithranP. CohenR.V. le RouxC.W. Obesity management as a primary treatment goal for type 2 diabetes: Time to reframe the conversation.Lancet20223991032239440510.1016/S0140‑6736(21)01919‑X34600604
    [Google Scholar]
  49. NakamuraA. OmoriK. TerauchiY. Glucokinase activation or inactivation: Which will lead to the treatment of type 2 diabetes?Diabetes Obes. Metab.202123102199220610.1111/dom.1445934105236
    [Google Scholar]
  50. CheruvallathZ.S. GwaltneyS.L.II SabatM. TangM. FengJ. WangH. MiuraJ. GuntupalliP. JenningsA. HosfieldD. LeeB. WuY. Design, synthesis and SAR of novel glucokinase activators.Bioorg. Med. Chem. Lett.20132372166217110.1016/j.bmcl.2013.01.09323434031
    [Google Scholar]
  51. AshcroftF.M. LloydM. HaythorneE.A. Glucokinase activity in diabetes: Too much of a good thing?Trends Endocrinol. Metab.202334211913010.1016/j.tem.2022.12.00736586779
    [Google Scholar]
  52. NakamuraA. TerauchiY. Present status of clinical deployment of glucokinase activators.J. Diabetes Investig.20156212413210.1111/jdi.1229425802718
    [Google Scholar]
  53. PosticC. ShiotaM. NiswenderK.D. JettonT.L. ChenY. MoatesJ.M. SheltonK.D. LindnerJ. CherringtonA.D. MagnusonM.A. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using Cre recombinase.J. Biol. Chem.1999274130531510.1074/jbc.274.1.3059867845
    [Google Scholar]
  54. OsbakK.K. ColcloughK. Saint-MartinC. BeerN.L. Bellanné-ChantelotC. EllardS. GloynA.L. Update on mutations in glucokinase ( GCK ), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia.Hum. Mutat.200930111512152610.1002/humu.2111019790256
    [Google Scholar]
  55. ChakeraA.J. SteeleA.M. GloynA.L. ShepherdM.H. ShieldsB. EllardS. HattersleyA.T. Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation.Diabetes Care20153871383139210.2337/dc14‑276926106223
    [Google Scholar]
  56. GrimsbyJ. SarabuR. CorbettW.L. HaynesN.E. BizzarroF.T. CoffeyJ.W. GuertinK.R. HilliardD.W. KesterR.F. MahaneyP.E. MarcusL. QiL. SpenceC.L. TengiJ. MagnusonM.A. ChuC.A. DvorozniakM.T. MatschinskyF.M. GrippoJ.F. Allosteric activators of glucokinase: Potential role in diabetes therapy.Science2003301563137037310.1126/science.108407312869762
    [Google Scholar]
  57. SharmaP. SinghS. SharmaN. SinglaD. GuarveK. GrewalA.S. Targeting human Glucokinase for the treatment of type 2 diabetes: An overview of allosteric Glucokinase activators.J. Diabetes Metab. Disord.20222111129113710.1007/s40200‑022‑01019‑x35673438
    [Google Scholar]
  58. TsumuraY. TsushimaY. TamuraA. HasebeM. KanouM. KatoH. KobayashiT. TMG-123, a novel glucokinase activator, exerts durable effects on hyperglycemia without increasing triglyceride in diabetic animal models.PLoS One2017122e017225210.1371/journal.pone.017225228207836
    [Google Scholar]
  59. GrewalA.S. LatherV. Small molecule allosteric activators of human glucokinase for the treatment of type 2 diabetes: Current status and challenges.Curr. Drug Discov. Technol.2022194e16042220368710.2174/157016381966622041621290635430967
    [Google Scholar]
  60. AminN.B. AggarwalN. PallD. ParaghG. DenneyW.S. LeV. RiggsM. CalleR.A. Two dose-ranging studies with PF -04937319, a systemic partial activator of glucokinase, as add-on therapy to metformin in adults with type 2 diabetes.Diabetes Obes. Metab.201517875175910.1111/dom.1247425885172
    [Google Scholar]
  61. WhitticarN.B. NunemakerC.S. Reducing glucokinase activity to enhance insulin secretion: A counterintuitive theory to preserve cellular function and glucose homeostasis.Front. Endocrinol.20201137810.3389/fendo.2020.0037832582035
    [Google Scholar]
  62. BarellaL.F. JainS. KimuraT. PydiS.P. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes.FEBS J.202128882622264410.1111/febs.1580033682344
    [Google Scholar]
  63. AtanesP PersaudSJ GPCR targets in type 2 diabetes.GPCRs: Structure, Function, and Drug DiscoveryCambridge, MassachusettsAcademic Press202010.1016/B978‑0‑12‑816228‑6.00018‑0
    [Google Scholar]
  64. RivesM.L. RadyB. SwansonN. ZhaoS. QiJ. ArnoultE. BakajI. ManciniA. BretonB. LeeS.P. PlayerM.R. PocaiA. GPR40-mediated Gα12 activation by allosteric full agonists highly efficacious at potentiating glucose-stimulated insulin secretion in human islets.Mol. Pharmacol.201893658159110.1124/mol.117.11136929572336
    [Google Scholar]
  65. ItohY. KawamataY. HaradaM. KobayashiM. FujiiR. FukusumiS. OgiK. HosoyaM. TanakaY. UejimaH. TanakaH. MaruyamaM. SatohR. OkuboS. KizawaH. KomatsuH. MatsumuraF. NoguchiY. ShinoharaT. HinumaS. FujisawaY. FujinoM. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40.Nature2003422692817317610.1038/nature0147812629551
    [Google Scholar]
  66. LiZ. XuX. HuangW. QianH. Free fatty acid receptor 1 (FFAR1) as an emerging therapeutic target for type 2 diabetes mellitus: Recent progress and prevailing challenges.Med. Res. Rev.201838238142510.1002/med.2144128328012
    [Google Scholar]
  67. NagasumiK. EsakiR. IwachidowK. YasuharaY. OgiK. TanakaH. NakataM. YanoT. ShimakawaK. TaketomiS. TakeuchiK. OdakaH. KaishoY. Overexpression of GPR40 in pancreatic β-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice.Diabetes20095851067107610.2337/db08‑123319401434
    [Google Scholar]
  68. XuQ. WangL. LuoJ. ShiD. The hot and potential targets of type 2 diabetes mellitus treatment in recent decade.Curr. Drug Targets2018191556928270085
    [Google Scholar]
  69. ChenH DeMongD FinkePE PlummerCW [5,6]—fused bicyclic antidiabetic compounds.US Patent 10100042B22018
  70. ShafeevM. FitzgeraldD.J. SchelshornD.W. PervakI.I. Oxazole and oxadiazole derivatives useful as agonists of free fatty acid receptor 1.WO Patent 20202119562022
  71. LiH. FangY. GuoS. YangZ. GPR119 agonists for the treatment of type 2 diabetes: An updated patent review (2014-present).Expert Opin. Ther. Pat.202131979580810.1080/13543776.2021.192115233896337
    [Google Scholar]
  72. GaoJ. TianL. WengG. BhagrooN.V. SorensonR.L. O’BrienT.D. LuoJ. GuoZ. Stimulating beta cell replication and improving islet graft function by GPR119 agonists.Transpl. Int.201124111124113410.1111/j.1432‑2277.2011.01332.x21902730
    [Google Scholar]
  73. ManaithiyaA. AlamO. SharmaV. Javed NaimM. MittalS. KhanI.A. GPR119 agonists: Novel therapeutic agents for type 2 diabetes mellitus.Bioorg. Chem.202111310499810.1016/j.bioorg.2021.10499834048996
    [Google Scholar]
  74. RitterK. BuningC. HallandN. PöverleinC. SchwinkL. G protein-coupled receptor 119 (GPR119) agonists for the treatment of diabetes: Recent progress and prevailing challenges.J. Med. Chem.20165983579359210.1021/acs.jmedchem.5b0119826512410
    [Google Scholar]
  75. EickelmannP. LuippoldG. MarkM. ThomasL. Combination of a GPR119 agonist and the DPP-IV inhibitor linagliptin for use in the treatment of diabetes and related conditions.US Patent 2013109703A12013
  76. HimmelsbachF. EckhardtM. HeineN. LangkopfE. NosseB. Fused dihydropyrans as gpr119 modulators for the treatment of diabetes, obesity and related diseases.CA Patent 2825124A12015
  77. RöderPV WuB LiuY HanW Pancreatic regulation of glucose homeostasis.Exp Mol Med2016483e21910.1038/emm.2016.6
    [Google Scholar]
  78. XuY XieX Glucagon receptor mediates calcium signaling by coupling to G alpha q/11 and G alpha i/o in HEK293 cells.J Recept Signal Transduct Res2009296e31825
    [Google Scholar]
  79. KellyR.P. GarhyanP. RaddadE. FuH. LimC.N. PrinceM.J. PinaireJ.A. LohM.T. DeegM.A. Short-term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type 2 diabetes.Diabetes Obes. Metab.201517441442210.1111/dom.1244625656305
    [Google Scholar]
  80. GuzmanC.B. ZhangX.M. LiuR. RegevA. ShankarS. GarhyanP. PillaiS.G. KazdaC. ChalasaniN. HardyT.A. Treatment with LY 2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes.Diabetes Obes. Metab.201719111521152810.1111/dom.1295828371155
    [Google Scholar]
  81. VisentinR. SchiavonM. GöbelB. RizM. CobelliC. KlabundeT. Dalla ManC. Dual glucagon-like peptide-1 receptor/glucagon receptor agonist SAR425899 improves beta-cell function in type 2 diabetes.Diabetes Obes. Metab.202022464064710.1111/dom.1393931808298
    [Google Scholar]
  82. SensfussU. KruseT. LauJ.F. Stable, protracted GLP-1/glucagon receptor co-agonists for medical use.US Patent 9474790B22017
  83. BlackwellW. SrivastavaV.P. PaulikM.A. YoungA. HunterR.N.III DockS.T. Glucagon-receptor selective polypeptides and methods of use thereof.WO Patent 2017200943A12022
  84. ZhangX. MacielagM.J. GPR120 agonists for the treatment of diabetes: A patent review (2014 present).Expert Opin. Ther. Pat.2020301072974210.1080/13543776.2020.181185232799609
    [Google Scholar]
  85. CornallL.M. MathaiM.L. HryciwD.H. McAinchA.J. GPR120 agonism as a countermeasure against metabolic diseases.Drug Discov. Today201419567067910.1016/j.drudis.2013.11.02124315954
    [Google Scholar]
  86. ZhangD. LeungP.S. Potential roles of GPR120 and its agonists in the management of diabetes.Drug Des. Devel. Ther.201481013102725114508
    [Google Scholar]
  87. KebedeM.A. AlquierT. LatourM.G. PoitoutV. Lipid receptors and islet function: Therapeutic implications?Diabetes Obes. Metab.200911s4Suppl. 4102010.1111/j.1463‑1326.2009.01114.x19817784
    [Google Scholar]
  88. WangX. JiG. HanX. HaoH. LiuW. XueQ. GuoQ. WangS. LeiK. LiuY. Thiazolidinedione derivatives as novel GPR120 agonists for the treatment of type 2 diabetes.RSC Advances202212105732574210.1039/D1RA08925K35424534
    [Google Scholar]
  89. JiG. GuoQ. XueQ. KongR. WangS. LeiK. LiuR. WangX. Novel GPR120 agonists with improved pharmacokinetic profiles for the treatment of type 2 diabetes.Molecules20212622690710.3390/molecules2622690734833999
    [Google Scholar]
  90. KumarS. SharmaR. DeoreV.B. YewalkarN.N. Substituted phenyl alkanoic acid compounds as GPR120 agonists and uses thereof.US Patent 10273230B22019
  91. SuiZ. CaiC. ZhangX. GPR120 agonists for the treatment of type II diabetes.US Patent 20140275179A12020
  92. HarisB. SaraswathiS. HussainK. Somatostatin analogues for the treatment of hyperinsulinaemic hypoglycaemia.Ther. Adv. Endocrinol. Metab.20201110.1177/204201882096506833329885
    [Google Scholar]
  93. AmistenS. AtanesP. HawkesR. Ruz-MaldonadoI. LiuB. ParandehF. ZhaoM. HuangG.C. SalehiA. PersaudS.J. A comparative analysis of human and mouse islet G-protein coupled receptor expression.Sci. Rep.2017714660010.1038/srep4660028422162
    [Google Scholar]
  94. KarimianN. QinT. LiangT. OsundijiM. HuangY. TeichT. RiddellM.C. CattralM.S. CoyD.H. VranicM. GaisanoH.Y. Somatostatin receptor type 2 antagonism improves glucagon counterregulation in biobreeding diabetic rats.Diabetes20136282968297710.2337/db13‑016423630299
    [Google Scholar]
  95. TamuraY.O. SugamaJ. AbeS. ShimizuY. HiroseH. WatanabeM. Selective somatostatin receptor 5 inhibition improves hepatic insulin sensitivity.Pharmacol. Res. Perspect.2023111e0104310.1002/prp2.104336585794
    [Google Scholar]
  96. Blachnio-ZabielskaA. BaranowskiM. ZabielskiP. GorskiJ. Effect of high fat diet enriched with unsaturated and diet rich in saturated fatty acids on sphingolipid metabolism in rat skeletal muscle.J. Cell. Physiol.2010225378679110.1002/jcp.2228320568228
    [Google Scholar]
  97. MandalN. GrambergsR. MondalK. BasuS.K. TahiaF. Dagogo-JackS. Role of ceramides in the pathogenesis of diabetes mellitus and its complications.J. Diabetes Complications202135210773410.1016/j.jdiacomp.2020.10773433268241
    [Google Scholar]
  98. DuganiS.B. ChristensonL.R. AakreJ.A. BuiH.H. VellaA. MielkeM.M. Association of plasma ceramides with prevalent and incident type 2 diabetes mellitus in middle and older aged adults.Diabetes Res. Clin. Pract.202117910899110.1016/j.diabres.2021.10899134333058
    [Google Scholar]
  99. ChavezJ.A. SummersS.A. A ceramide-centric view of insulin resistance.Cell Metab.201215558559410.1016/j.cmet.2012.04.00222560211
    [Google Scholar]
  100. RaichurS. BrunnerB. BielohubyM. HansenG. PfenningerA. WangB. BruningJ.C. LarsenP.J. TennagelsN. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach.Mol. Metab.201921365010.1016/j.molmet.2018.12.00830655217
    [Google Scholar]
  101. SummersS.A. Methods and compositions related to inhibition of ceramide synthesis.WO Patent 2007149865A22010
  102. AdamekA. KasprzakA. Insulin-like growth factor (IGF) system in liver diseases.Int. J. Mol. Sci.2018195130810.3390/ijms1905130829702590
    [Google Scholar]
  103. MiyauchiS. MiyakeT. MiyazakiM. EguchiT. NiiyaT. YamamotoS. SenbaH. FurukawaS. MatsuuraB. HiasaY. Insulin-like growth factor-1 is inversely associated with liver fibrotic markers in patients with type 2 diabetes mellitus.J. Diabetes Investig.20191041083109110.1111/jdi.1300030592792
    [Google Scholar]
  104. HjortebjergR. FlyvbjergA. FrystykJ. Insulin growth factor binding proteins as therapeutic targets in type 2 diabetes.Expert Opin. Ther. Targets201418220922410.1517/14728222.2014.85869824261835
    [Google Scholar]
  105. SilhaJ.V. GuiY. MurphyL.J. Impaired glucose homeostasis in insulin-like growth factor-binding protein-3-transgenic mice.Am. J. Physiol. Endocrinol. Metab.20022835E937E94510.1152/ajpendo.00014.200212376320
    [Google Scholar]
  106. EditorialA. Mecasermin rinfabate: Insulin-like growth factor-I/insulin-like growth factor binding protein-3, mecaserimin rinfibate, rhIGF-I/rhIGFBP-3.Drugs R D.20056212012710.2165/00126839‑200506020‑0000815777106
    [Google Scholar]
  107. RaoM.N. MulliganK. TaiV. WenM.J. DyachenkoA. WeinbergM. LiX. LangT. GrunfeldC. SchwarzJ.M. SchambelanM. Effects of insulin-like growth factor (IGF)-I/IGF-binding protein-3 treatment on glucose metabolism and fat distribution in human immunodeficiency virus-infected patients with abdominal obesity and insulin resistance.J. Clin. Endocrinol. Metab.20109594361436610.1210/jc.2009‑250220610601
    [Google Scholar]
  108. MaximusP.S. Insulin like growth factor 1 is linked to higher cardiovascular risk score in adults with type 2 diabetes mellitus and chronic kidney disease.Diabetes Metab. Syndr.20191342613261810.1016/j.dsx.2019.07.00831405684
    [Google Scholar]
  109. TachasG. DobieK. JainR. BelyeaC. HeffernanM. Modulation of growth hormone receptor expression and insulin-like growth factor expression.US Patent 8299039B22014
  110. ZhouJ. BieJ. WangX. LiuQ. LiR. ChenH. HuJ. CaoH. JiW. LiY. LiuS. ShenZ. XuB. Discovery of N -arylsulfonyl-indole-2-carboxamide derivatives as potent, selective, and orally bioavailable fructose-1,6-bisphosphatase inhibitors—design, synthesis, in vivo glucose lowering effects, and x-ray crystal complex analysis.J. Med. Chem.20206318103071032910.1021/acs.jmedchem.0c0072632820629
    [Google Scholar]
  111. KaurR. DahiyaL. KumarM. Fructose-1,6-bisphosphatase inhibitors: A new valid approach for management of type 2 diabetes mellitus.Eur. J. Med. Chem.201714147350510.1016/j.ejmech.2017.09.02929055870
    [Google Scholar]
  112. XuY. HuangY. SongR. RenY. ChenX. ZhangC. MaoF. LiX. ZhuJ. NiS. WanJ. LiJ. Development of disulfide-derived fructose-1,6-bisphosphatase (FBPase) covalent inhibitors for the treatment of type 2 diabetes.Eur. J. Med. Chem.202020311250010.1016/j.ejmech.2020.11250032711108
    [Google Scholar]
  113. van PoeljeP.D. PotterS.C. ErionM.D. Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes.Diabetes - Perspectives in Drug TherapyBerlin, HeidelbergSpringer Link201127930110.1007/978‑3‑642‑17214‑4_12
    [Google Scholar]
  114. DangQ. Van PoeljeP.D. ErionM.D. The discovery and development of MB07803, a second-generation fructose-1,6-bisphosphatase inhibitor with improved pharmacokinetic properties, as a potential treatment of type 2 diabetes.New Therapeutic Strategies for Type 2 DiabetesLondon, United KingdomThe Royal Society of Chemistry2012
    [Google Scholar]
  115. KantrowitzE.R. HengS. Dibenzofuran derivatives as inhibitors of fructose 1, 6-bisphosphatase and methods of use thereof.US Patent 20120028892A12016
  116. HoffmannJ.M. GrünbergJ.R. ChurchC. EliasI. PalsdottirV. JanssonJ.O. BoschF. HammarstedtA. HedjazifarS. SmithU. BMP4 gene therapy in mature mice reduces BAT activation but protects from obesity by browning subcutaneous adipose tissue.Cell Rep.20172051038104910.1016/j.celrep.2017.07.02028768190
    [Google Scholar]
  117. QianS.W. TangY. LiX. LiuY. ZhangY.Y. HuangH.Y. XueR.D. YuH.Y. GuoL. GaoH.D. LiuY. SunX. LiY.M. JiaW.P. TangQ.Q. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis.Proc. Natl. Acad. Sci. USA20131109E798E80710.1073/pnas.121523611023388637
    [Google Scholar]
  118. GustafsonB. HammarstedtA. HedjazifarS. HoffmannJ.M. SvenssonP.A. GrimsbyJ. RondinoneC. SmithU. BMP4 and BMP antagonists regulate human white and beige adipogenesis.Diabetes20156451670168110.2337/db14‑112725605802
    [Google Scholar]
  119. Al-RegaieyK.A. HabibS.S. AlshamasiA.R.Jnr AlnuwaybitA.F. AlwhaibiB.A. AlsulaisN.M. AlothmanA.I. AlomarF.M. IqbalM. Relationship of Plasma Gremlin 1 Levels with Body Adiposity and Glycemic Control in Saudi Female Type 2 Diabetes Patients.Diabetes Metab. Syndr. Obes.2022153429343610.2147/DMSO.S37214636353668
    [Google Scholar]
  120. HedjazifarS. Khatib ShahidiR. HammarstedtA. BonnetL. ChurchC. BoucherJ. BlüherM. SmithU. The novel adipokine Gremlin 1 antagonizes insulin action and is increased in type 2 diabetes and NAFLD/NASH.Diabetes202069333134110.2337/db19‑070131882566
    [Google Scholar]
  121. ChenP.J. CaiS.P. HuangC. MengX.M. LiJ. Protein tyrosine phosphatase 1B (PTP1B): A key regulator and therapeutic target in liver diseases.Toxicology2015337102010.1016/j.tox.2015.08.00626299811
    [Google Scholar]
  122. TeimouriM. HosseiniH. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications.J. Physiol. Biochem.20222022116
    [Google Scholar]
  123. QinZ. PandeyN.R. ZhouX. StewartC.A. HariA. HuangH. StewartA.F.R. BrunelJ.M. ChenH.H. Functional properties of Claramine: A novel PTP1B inhibitor and insulin-mimetic compound.Biochem. Biophys. Res. Commun.20154581212710.1016/j.bbrc.2015.01.04025623533
    [Google Scholar]
  124. QianS. ZhangM. HeY. WangW. LiuS. Recent advances in the development of protein tyrosine phosphatase 1B inhibitors for Type 2 diabetes.Future Med. Chem.20168111239125810.4155/fmc‑2016‑006427357615
    [Google Scholar]
  125. ZhangJ. LiL. LiJ. LiuY. ZhangC.Y. ZhangY. ZenK. Protein tyrosine phosphatase 1B impairs diabetic wound healing through vascular endothelial growth factor receptor 2 dephosphorylation.Arterioscler. Thromb. Vasc. Biol.201535116317410.1161/ATVBAHA.114.30470525395617
    [Google Scholar]
  126. MaedaA. KaiK. IshiiM. IshiiT. AkagawaM. Safranal, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves glucose tolerance in diabetic KK- A y mice.Mol. Nutr. Food Res.20145861177118910.1002/mnfr.20130067524668740
    [Google Scholar]
  127. LiuZ.Q. LiuT. ChenC. LiM.Y. WangZ.Y. ChenR. WeiG. WangX. LuoD.Q. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice.Toxicol. Appl. Pharmacol.20152851617010.1016/j.taap.2015.03.01125796170
    [Google Scholar]
  128. YangZ. WuF. HeY. ZhangQ. ZhangY. ZhouG. YangH. ZhouP. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway.Food Funct.20189139740610.1039/C7FO01489A29215104
    [Google Scholar]
  129. XinZ. LiuG. PeiZ. SzczepankiewiczB.G. SerbyM.D. ZhaoH. Protein-tyrosine phosphatase inhibitors and uses thereof.US Patent 20040167188A12007
  130. MelmerA. KempfP. LaimerM. The role of physical exercise in obesity and diabetes.Praxis (Bern)201810717-1897197610.1024/1661‑8157/a00306530131033
    [Google Scholar]
  131. LiuJ. LiuM. ChenL. Novel pathogenesis: Regulation of apoptosis by Apelin/APJ system.Acta Biochim. Biophys. Sin. (Shanghai)201749647147810.1093/abbs/gmx03528407045
    [Google Scholar]
  132. FischerC. A patent review of apelin receptor (APJR) modulators (2014-2019).Expert Opin. Ther. Pat.202030425126110.1080/13543776.2020.173147332066307
    [Google Scholar]
  133. RingströmC. NitertM.D. BennetH. FexM. ValetP. RehfeldJ.F. Friis-HansenL. WierupN. Apelin is a novel islet peptide.Regul. Pept.20101621-3445110.1016/j.regpep.2010.03.00520346374
    [Google Scholar]
  134. Castan-LaurellI. DrayC. AttanéC. DuparcT. KnaufC. ValetP. Apelin, diabetes, and obesity.Endocrine20114011910.1007/s12020‑011‑9507‑921725702
    [Google Scholar]
  135. GaoZ. ZhongX. TanY.X. LiuD. Apelin‑13 alleviates diabetic nephropathy by enhancing nitric oxide production and suppressing kidney tissue fibrosis.Int. J. Mol. Med.202148317510.3892/ijmm.2021.500834278446
    [Google Scholar]
  136. ChenH. ZhengC. ZhangX. LiJ. LiJ. ZhengL. HuangK. Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice.Peptides20113281634163910.1016/j.peptides.2011.06.02521762740
    [Google Scholar]
  137. FengJ. ZhaoH. DuM. WuX. The effect of apelin-13 on pancreatic islet beta cell mass and myocardial fatty acid and glucose metabolism of experimental type 2 diabetic rats.Peptides20191141710.1016/j.peptides.2019.03.00630954534
    [Google Scholar]
  138. LiC. ChengH. AdhikariB.K. WangS. YangN. LiuW. SunJ. WangY. The Role of Apelin–APJ System in Diabetes and Obesity.Front. Endocrinol.20221382000210.3389/fendo.2022.82000235355561
    [Google Scholar]
  139. GuoC. LiuY. ZhaoW. WeiS. ZhangX. WangW. ZengX. Apelin promotes diabetic nephropathy by inducing podocyte dysfunction via inhibiting proteasome activities.J. Cell. Mol. Med.20151992273228510.1111/jcmm.1261926103809
    [Google Scholar]
  140. GourdyP. CazalsL. ThalamasC. SommetA. CalvasF. GalitzkyM. VinelC. DrayC. HanaireH. Castan-LaurellI. ValetP. Apelin administration improves insulin sensitivity in overweight men during hyperinsulinaemic-euglycaemic clamp.Diabetes Obes. Metab.201820115716410.1111/dom.1305528681996
    [Google Scholar]
  141. MughalA. O’RourkeS.T. Vascular effects of apelin: Mechanisms and therapeutic potential.Pharmacol. Ther.201819013914710.1016/j.pharmthera.2018.05.01329807055
    [Google Scholar]
  142. PinkertonA.B. SmithL.H. Agonists of the apelin receptor and methods of use thereof.WO Patent 2015184011A22021
  143. LinZ. NatesanV. ShiH. HamikA. KawanamiD. HaoC. MahabaleshwarG.H. WangW. JinZ.G. AtkinsG.B. FirthS.M. RittiéL. PerbalB. JainM.K. A novel role of CCN3 in regulating endothelial inflammation.J. Cell Commun. Signal.20104314115310.1007/s12079‑010‑0095‑x21063504
    [Google Scholar]
  144. PengL WeiY ShaoY LiY LiuN DuanL The emerging roles of CCN3 protein in immune-related diseases.Mediators Inflamm20212021557605910.1155/2021/5576059
    [Google Scholar]
  145. LiJ.Y. WangY.D. QiX.Y. RanL. HongT. YangJ. YanB. LiaoZ.Z. LiuJ.H. XiaoX.H. Serum CCN3 levels are increased in type 2 diabetes mellitus and associated with obesity, insulin resistance and inflammation.Clin. Chim. Acta2019494525710.1016/j.cca.2019.03.00630876855
    [Google Scholar]
  146. KangS. TsaiL.T.Y. RosenE.D. Nuclear mechanisms of insulin resistance.Trends Cell Biol.201626534135110.1016/j.tcb.2016.01.00226822036
    [Google Scholar]
  147. SargsyanA. HermanM.A. Regulation of glucose production in the pathogenesis of type 2 diabetes.Curr. Diab. Rep.20191997710.1007/s11892‑019‑1195‑531377934
    [Google Scholar]
  148. LundellL.S. MassartJ. AltıntaşA. KrookA. ZierathJ.R. Regulation of glucose uptake and inflammation markers by FOXO1 and FOXO3 in skeletal muscle.Mol. Metab.201920798810.1016/j.molmet.2018.09.01130502001
    [Google Scholar]
  149. TitchenellP.M. QuinnW.J. LuM. ChuQ. LuW. LiC. ChenH. MonksB.R. ChenJ. RabinowitzJ.D. BirnbaumM.J. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production.Cell Metab.20162361154116610.1016/j.cmet.2016.04.02227238637
    [Google Scholar]
  150. SunX. CaoZ. MaY. ShaoY. ZhangJ. YuanG. GuoX. Resveratrol attenuates dapagliflozin-induced renal gluconeogenesis via activating the PI3K/Akt pathway and suppressing the FoxO1 pathway in type 2 diabetes.Food Funct.20211231207121810.1039/D0FO02387F33432947
    [Google Scholar]
  151. Le PoulE. LoisonC. StruyfS. SpringaelJ.Y. LannoyV. DecobecqM.E. BrezillonS. DupriezV. VassartG. Van DammeJ. ParmentierM. DetheuxM. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.J. Biol. Chem.200327828254812548910.1074/jbc.M30140320012711604
    [Google Scholar]
  152. JiL WangQ HuangF AnT GuoF ZhaoY LiuY HeY SongY QinG. FOXO1 overexpression attenuates tubulointerstitial fibrosis and apoptosis in diabetic kidneys by ameliorating oxidative injury via TXNIP-TRX.Oxid Med Cell Longev.20192019328692810.1155/2019/3286928
    [Google Scholar]
  153. MoriH. Svegliati BaroniG. MarzioniM. Di NicolaF. SantoriP. MaroniL. AbenavoliL. ScarpelliniE. Farnesoid X receptor, bile acid metabolism, and gut microbiota.Metabolites202212764710.3390/metabo1207064735888771
    [Google Scholar]
  154. HanS.Y. SongH.K. ChaJ.J. HanJ.Y. KangY.S. ChaD.R. Farnesoid X receptor (FXR) agonist ameliorates systemic insulin resistance, dysregulation of lipid metabolism, and alterations of various organs in a type 2 diabetic kidney animal model.Acta Diabetol.202158449550310.1007/s00592‑020‑01652‑z33399988
    [Google Scholar]
  155. ZhouZ. SunB. YuD. ZhuC. Gut microbiota: An important player in type 2 diabetes mellitus.Front. Cell. Infect. Microbiol.20221283448510.3389/fcimb.2022.83448535242721
    [Google Scholar]
  156. SmithN.D. GovekS.P. NagasawaJ.Y. Farnesoid X receptor agonists and uses thereof.WO Patent 2017049172A12021
  157. AlmeidaC. MonteiroC. SilvestreS. Inhibitors of 11β-hydroxysteroid dehydrogenase type 1 as potential drugs for type 2 diabetes mellitus—a systematic review of clinical and in vivo preclinical studies.Sci. Pharm.2021891510.3390/scipharm89010005
    [Google Scholar]
  158. BeaupereC. LibozA. FèveB. BlondeauB. GuillemainG. Molecular mechanisms of glucocorticoid-induced insulin resistance.Int. J. Mol. Sci.202122262310.3390/ijms2202062333435513
    [Google Scholar]
  159. YangS. ZhaoT. MaA. HuangZ. LiuZ. CuiW. ZhangJ. ZhuC. GuoX. YuanC. Metabolic responses in Scophthalmus maximus kidney subjected to thermal stress.Fish Shellfish Immunol.2020103374610.1016/j.fsi.2020.04.00332278112
    [Google Scholar]
  160. AndrewsR.C. RooyackersO. WalkerB.R. Effects of the 11 β-hydroxysteroid dehydrogenase inhibitor carbenoxolone on insulin sensitivity in men with type 2 diabetes.J. Clin. Endocrinol. Metab.200388128529110.1210/jc.2002‑02119412519867
    [Google Scholar]
  161. HollisG. HuberR. 11β-Hydroxysteroid dehydrogenase type 1 inhibition in type 2 diabetes mellitus.Diabetes Obes. Metab.20111311610.1111/j.1463‑1326.2010.01305.x21114597
    [Google Scholar]
  162. SlominskiA.T. ZmijewskiM.A. Glucocorticoids inhibit wound healing: Novel mechanism of action.J. Invest. Dermatol.201713751012101410.1016/j.jid.2017.01.02428411834
    [Google Scholar]
  163. RohdeJ.J. SorensenB.K. KurukulasuriyaR. Inhibitors of the 11-β-hydroxysteroid dehydrogenase type 1 enzyme.EP Patent 1846362A22010
  164. EbdrupS. N-adamantyl benzamides as inhibitors of 11-β-hydroxysteroid dehydrogenase.US Patent 8907096B22014
  165. KitadaM. OguraY. MonnoI. KoyaD. Sirtuins and type 2 diabetes: Role in inflammation, oxidative stress, and mitochondrial function.Front. Endocrinol.20191018710.3389/fendo.2019.0018730972029
    [Google Scholar]
  166. KitadaM. KumeS. KanasakiK. Takeda-WatanabeA. KoyaD. Sirtuins as possible drug targets in type 2 diabetes.Curr. Drug Targets201314662263610.2174/138945011131406000223445543
    [Google Scholar]
  167. KitadaM. KoyaD. SIRT1 in type 2 diabetes: Mechanisms and therapeutic potential.Diabetes Metab. J.201337531532510.4093/dmj.2013.37.5.31524199159
    [Google Scholar]
  168. FröjdöS. DurandC. MolinL. CareyA.L. El-OstaA. KingwellB.A. FebbraioM.A. SolariF. VidalH. PirolaL. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1.Mol. Cell. Endocrinol.2011335216617610.1016/j.mce.2011.01.00821241768
    [Google Scholar]
  169. GomesP. Fleming OuteiroT. CavadasC. Emerging role of sirtuin 2 in the regulation of mammalian metabolism.Trends Pharmacol. Sci.2015361175676810.1016/j.tips.2015.08.00126538315
    [Google Scholar]
  170. ZhouY. ChungA.C.K. FanR. LeeH.M. XuG. TomlinsonB. ChanJ.C.N. KongA.P.S. Sirt3 deficiency increased the vulnerability of pancreatic beta cells to oxidative stress-induced dysfunction.Antioxid. Redox Signal.2017271396297610.1089/ars.2016.685928375738
    [Google Scholar]
  171. XiongX. WangG. TaoR. WuP. KonoT. LiK. DingW.X. TongX. TerseyS.A. HarrisR.A. MirmiraR.G. Evans-MolinaC. DongX.C. Sirtuin 6 regulates glucose-stimulated insulin secretion in mouse pancreatic beta cells.Diabetologia201659115116010.1007/s00125‑015‑3778‑226471901
    [Google Scholar]
  172. XiongX. SunX. WangQ. QianX. ZhangY. PanX. DongX.C. SIRT6 protects against palmitate-induced pancreatic β-cell dysfunction and apoptosis.J. Endocrinol.2016231215916510.1530/JOE‑16‑031727601447
    [Google Scholar]
  173. MilneJ.C. LambertP.D. SchenkS. CarneyD.P. SmithJ.J. GagneD.J. JinL. BossO. PerniR.B. VuC.B. BemisJ.E. XieR. DischJ.S. NgP.Y. NunesJ.J. LynchA.V. YangH. GalonekH. IsraelianK. ChoyW. IfflandA. LavuS. MedvedikO. SinclairD.A. OlefskyJ.M. JirousekM.R. ElliottP.J. WestphalC.H. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.Nature2007450717071271610.1038/nature0626118046409
    [Google Scholar]
  174. SmoligaJ.M. BaurJ.A. HausenblasH.A. Resveratrol and health – A comprehensive review of human clinical trials.Mol. Nutr. Food Res.20115581129114110.1002/mnfr.20110014321688389
    [Google Scholar]
  175. NgP.Y. BlumC. McphersonL. PerniR.B. VuC.B. AhmedM.M. DischJ.S. Bicyclic pyridines and analogs as sirtuin modulators.WO Patent 2011059839A12017
    [Google Scholar]
  176. XieZ. LiuJ. XieT. LiuP. HuiX. ZhangQ. XiaoX. Integration of proteomics and metabolomics reveals energy and metabolic alterations induced by glucokinase (GCK) partial inactivation in hepatocytes.Cell. Signal.202411411100910.1016/j.cellsig.2023.11100938092300
    [Google Scholar]
  177. ZhaoJ. ZhaoY. HuY. PengJ. Targeting the GPR119/incretin axis: A promising new therapy for metabolic-associated fatty liver disease.Cell. Mol. Biol. Lett.20212613210.1186/s11658‑021‑00276‑734233623
    [Google Scholar]
  178. YadavJ.P. PatelD.K. PathakP. GrishinaM. Role of G-protein coupled receptor (GPCRs)/(GPR-120) as an agonists in diabetic wound healing.Obes. Med.20223610046610.1016/j.obmed.2022.100466
    [Google Scholar]
  179. ChaurasiaB. SummersS.A. Ceramides in metabolism: Key lipotoxic players.Annu. Rev. Physiol.202183130333010.1146/annurev‑physiol‑031620‑09381533158378
    [Google Scholar]
  180. GagginiM. NdreuR. MichelucciE. RocchiccioliS. VassalleC. Ceramides as mediators of oxidative stress and inflammation in cardiometabolic disease.Int. J. Mol. Sci.2022235271910.3390/ijms2305271935269861
    [Google Scholar]
  181. LiJ. ChoiE. YuH. BaiX. Structural basis of the activation of type 1 insulin-like growth factor receptor.Nat. Commun.2019101456710.1038/s41467‑019‑12564‑031594955
    [Google Scholar]
  182. NguyenD.T. ToD.C. TranT.T. TranM.H. NguyenP.H. PTP1B and α-glucosidase inhibitors from Selaginella rolandi-principis and their glucose uptake stimulation.J. Nat. Med.202175118619310.1007/s11418‑020‑01448‑z32926336
    [Google Scholar]
  183. WangX. ZhangL. LiP. ZhengY. YangY. JiS. Apelin/APJ system in inflammation.Int. Immunopharmacol.202210910882210.1016/j.intimp.2022.10882235605524
    [Google Scholar]
  184. AlluP.K.R. CardamoneM.D. GomesA.S. Dall’agneseA. CederquistC. PanH. DreyfussJ.M. EnerbäckS. KahnC.R. FoxK1 associated gene regulatory network in hepatic insulin action and its relationship to FoxO1 and insulin receptor mediated transcriptional regulation.Mol. Metab.20237810182510.1016/j.molmet.2023.10182537852413
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855313087240719072514
Loading
/content/journals/cdth/10.2174/0115748855313087240719072514
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test