Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Fungal infections of the skin are a major global health concern that requires specific and efficient treatment because of their resistant nature. Antifungal drugs used topically present a viable method for targeted therapy with less systemic adverse effects. Nevertheless, a number of challenges impede the effective distribution of these substances, such as restricted skin penetration, inadequate medication retention, and the rise of resistant strains. Overcoming these challenges is very much warranted to minimize the side effects associated with long-term systemic delivery of antifungal agents. This review examines recent developments and approaches to subdue these problems and improve topical antifungal therapy efficacy. The effectiveness of several formulation strategies, including nanotechnology-based treatments, nanostructures, vesicular carriers, Gelling Systems-polymeric Carriers, and some enhanced targeted therapies in enhancing medication penetration across the epidermal barrier is discussed. Polyenes, azoles, allylamines, echinocandins, hydroxypyridone, and other antifungals are the primary types of antifungal medications. Novel formulation techniques, such as the use of nanostructures, lipid-based carriers, and microneedle technology, show great promise for enhancing medication penetration across the skin barrier and emphasizing the significance of effective topical drug delivery. These tactics not only improve antifungal agent distribution to the intended site but also create opportunities for more focused and effective therapy. This review outlines recent developments in novel strategies used in topical carriers to boost the therapeutic performance of anti-fungal drugs with minimal side effects as compared to systemic therapy.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855307149240725103440
2024-08-02
2025-12-03
Loading full text...

Full text loading...

References

  1. ChanyachailertP. LeeyaphanC. BunyaratavejS. Cutaneous fungal infections caused by dermatophytes and non-dermatophytes: An updated comprehensive review of epidemiology, clinical presentations, and diagnostic testing.J. Fungi20239666910.3390/jof906066937367605
    [Google Scholar]
  2. PetrucelliM.F. AbreuM.H. CantelliB.A.M. SeguraG.G. NishimuraF.G. BitencourtT.A. MarinsM. FachinA.L. Epidemiology and diagnostic perspectives of dermatophytoses.J. Fungi20206431010.3390/jof604031033238603
    [Google Scholar]
  3. GuptaA.K. MacLeodM.A. FoleyK.A. GuptaG. FriedlanderS.F. Fungal skin infections.Pediatr. Rev.201738182210.1542/pir.2015‑014028044030
    [Google Scholar]
  4. QadriH. Haseeb ShahA. Mudasir AhmadS. AlshehriB. AlmilaibaryA. Ahmad MirM. Natural products and their semi-synthetic derivatives against antimicrobial-resistant human pathogenic bacteria and fungi.Saudi J. Biol. Sci.202229910337610.1016/j.sjbs.2022.10337635874656
    [Google Scholar]
  5. ReddyG. K. K. PadmavathiA. R. NancharaiahY. V. Fungal infections: Pathogenesis, antifungals and alternate treatment approaches.Curr Res Microb Sci2022310013710.1016/j.crmicr.2022.100137
    [Google Scholar]
  6. GräserY. SaunteD. A hundred years of diagnosing superficial fungal infections: Where do we come from, where are we now and where would we like to go?Acta Derm. Venereol.20201009adv00111adv0022410.2340/00015555‑346732207536
    [Google Scholar]
  7. KovitwanichkanontT. ChongA. Superficial fungal infections.Aust. J. Gen. Pract.2019481070671110.31128/AJGP‑05‑19‑493031569324
    [Google Scholar]
  8. OchoaS. ConstantineG.M. LionakisM.S. Genetic susceptibility to fungal infection in children.Curr. Opin. Pediatr.202032678078910.1097/MOP.000000000000094833009121
    [Google Scholar]
  9. StricklandA.B. ShiM. Mechanisms of fungal dissemination.Cell. Mol. Life Sci.20217873219323810.1007/s00018‑020‑03736‑z33449153
    [Google Scholar]
  10. GuptaA.K. FriedlanderS.F. SimkovichA.J. Tinea capitis: An update.Pediatr. Dermatol.202239216717210.1111/pde.1492535075666
    [Google Scholar]
  11. Ginter-HanselmayerG. NenoffP. Tinea capitis: An update.Pediatric dermatology201939216717210.1111/pde.14925
    [Google Scholar]
  12. PowellJ. PorterE. FieldS. O’ConnellN.H. CartyK. DunneC.P. Epidemiology of dermatomycoses and onychomycoses in Ireland (2001–2020): A single-institution review.Mycoses202265777077910.1111/myc.1347335598177
    [Google Scholar]
  13. ZhangQ. ZhangZ. ZouX. LiuZ. LiQ. ZhouJ. GaoS. XuH. GuoJ. YanF. Nitric oxide-releasing poly(ionic liquid)-based microneedle for subcutaneous fungal infection treatment.Biomater. Sci.20231193114312710.1039/D2BM02096C36917099
    [Google Scholar]
  14. GargA. SharmaG.S. GoyalA.K. GhoshG. SiS.C. RathG. Recent advances in topical carriers of anti-fungal agents.Heliyon202068e0466310.1016/j.heliyon.2020.e0466332904164
    [Google Scholar]
  15. LionakisM.S. LewisR.E. KontoyiannisD.P. Breakthrough invasive mold infections in the hematology patient: Current concepts and future directions.Clin. Infect. Dis.201867101621163010.1093/cid/ciy47329860307
    [Google Scholar]
  16. MaY WangX LiR Cutaneous and subcutaneous fungal infections: recent developments on host–fungus interactions.Current Opinion in Microbiology20216293102
    [Google Scholar]
  17. NasrA.M. BadawiN.M. TartorY.H. SobhyN.M. SwidanS.A. Development, optimization, and in vitro/in vivo evaluation of azelaic acid transethosomal gel for antidermatophyte activity.Antibiotics202312470710.3390/antibiotics1204070737107069
    [Google Scholar]
  18. NwezeE.I. EkeI.E. Dermatophytes and dermatophytosis in the eastern and southern parts of Africa.Med. Mycol.2018561132810.1093/mmy/myx02528419352
    [Google Scholar]
  19. MathurM. AcharyaP. KarkiA. KcN. ShahJ. Dermoscopic pattern of pityriasis versicolor.Clin. Cosmet. Investig. Dermatol.20191230330910.2147/CCID.S19516631118732
    [Google Scholar]
  20. ChebilW. HaouasN. Chaâbane-BanaouesR. RemadiL. CharguiN. M’radS. BelgacemS. SalahA.B. AliH.B. ChemliZ. LakoudiM. CafarchiaC. BabbaH. Epidemiology of pityriasis versicolor in tunisia: Clinical features and characterization of Malassezia species.J. Mycol. Med.202232210124610.1016/j.mycmed.2022.10124635066344
    [Google Scholar]
  21. SingalA. KaurI. JakharD. Dermoscopy in the evaluation of pityriasis versicolor: A cross sectional study.Indian Dermatol. Online J.201910668268510.4103/idoj.IDOJ_502_1831807448
    [Google Scholar]
  22. ZanardelliM. SkobowiatC. KaliszukR. PietrzakA. Tinea Versicolor (Pityriasis Versicolor).European Handbook of Dermatological TreatmentsChamSpringer International Publishing20231001100810.1007/978‑3‑031‑15130‑9_96
    [Google Scholar]
  23. SepaskhahM. SadatM.S. PakshirK. BagheriZ. Comparative efficacy of topical application of tacrolimus and clotrimazole in the treatment of pityriasis versicolor: A single blind, randomised clinical trial.Mycoses201760533834210.1111/myc.1259828120351
    [Google Scholar]
  24. PappasP.G. LionakisM.S. ArendrupM.C. Ostrosky-ZeichnerL. KullbergB.J. Invasive candidiasis.Nat. Rev. Dis. Primers2018411802610.1038/nrdp.2018.2629749387
    [Google Scholar]
  25. Lass-FlörlC. KanjS.S. GovenderN.P. ThompsonG.R.III Ostrosky- ZeichnerL. GovrinsM.A. Invasive candidiasis.Nat. Rev. Dis. Primers20241012010.1038/s41572‑024‑00503‑338514673
    [Google Scholar]
  26. LopesJ.P. LionakisM.S. Pathogenesis and virulence of Candida albicans.Virulence20221318912110.1080/21505594.2021.201995034964702
    [Google Scholar]
  27. VilaT. SultanA.S. Montelongo-JaureguiD. Jabra-RizkM.A. Oral candidiasis: A disease of opportunity.J. Fungi2020611510.3390/jof601001531963180
    [Google Scholar]
  28. LamothF. KontoyiannisD.P. Therapeutic challenges of non-Aspergillus invasive mold infections in immunosuppressed patients.Antimicrob. Agents Chemother.20196311e01244-1910.1128/AAC.01244‑1931481441
    [Google Scholar]
  29. RichardsonM. PageI. Role of serological tests in the diagnosis of mold infections.Curr. Fungal Infect. Rep.201812312713610.1007/s12281‑018‑0321‑130294405
    [Google Scholar]
  30. BuckleyD. Fungal and yeast infection of skin, hair and nails.Textbook of Primary Care DermatologySpringerCham2021243249
    [Google Scholar]
  31. GuptaA.K. ChowM. DanielC.R. AlyR. Treatments of tinea pedis.Dermatol. Clin.200321343146210.1016/S0733‑8635(03)00032‑912956197
    [Google Scholar]
  32. LeungA.K.C. LamJ.M. LeongK.F. HonK.L. Tinea corporis: An updated review.Drugs Context2020911210.7573/dic.2020‑5‑632742295
    [Google Scholar]
  33. FodorL. DumitrascuD. Skin anatomy.Aesthetic Applications of Intense Pulsed Light2020112
    [Google Scholar]
  34. MohamedS.A. HargestR. Surgical anatomy of the skin.Surgery20224011710.1016/j.mpsur.2021.11.021
    [Google Scholar]
  35. WhitmanP. A. AdigunO. O. Anatomy, skin, dermatomes.StatPearlsTreasure Island (FL)StatPearls Publishing2018
    [Google Scholar]
  36. MilnerS.M. Skin anatomy.Eplasty202323QA837519927
    [Google Scholar]
  37. YadavN. ParveenS. ChakravartyS. BanerjeeM. Skin anatomy and morphology.Skin Aging & Cancer: Ambient UV-R ExposureSpringer, Singapore201911010.1007/978‑981‑13‑2541‑0
    [Google Scholar]
  38. AbdoJ.M. SopkoN.A. MilnerS.M. The applied anatomy of human skin: A model for regeneration.Wound Medicine20202810017910.1016/j.wndm.2020.100179
    [Google Scholar]
  39. VestitaM. TedeschiP. BonamonteD. Anatomy and physiology of the skin.Textbook of Plastic and Reconstructive Surgery: Basic Principles and New PerspectivesSpringer, Cham2022313
    [Google Scholar]
  40. von Lilienfeld-ToalM. WagenerJ. EinseleH. CornelyO.A. KurzaiO. Invasive fungal infection: New treatments to meet new challenges.Dtsch. Arztebl. Int.20191161627127831159914
    [Google Scholar]
  41. MiaoH. DongR. ZhangS. YangL. LiuY. WangT. Inherited ichthyosis and fungal infection: An update on pathogenesis and treatment strategies.J. Dtsch. Dermatol. Ges.202119334135010.1111/ddg.1438933448147
    [Google Scholar]
  42. SatoT. Practical management of deep cutaneous fungal infections.Med. Mycol. J.2017582E71E7710.3314/mmj.17.00628566662
    [Google Scholar]
  43. HoF.K.H. BolhuisA. Delgado-CharroM.B. Prevention and treatment of fungal skin infections using cationic polymeric films.Pharmaceutics2021138116110.3390/pharmaceutics1308116134452122
    [Google Scholar]
  44. ShafieiM. PeytonL. HashemzadehM. ForoumadiA. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action.Bioorg. Chem.202010410424010.1016/j.bioorg.2020.10424032906036
    [Google Scholar]
  45. HayR.J. Antifungal drugs.European Handbook of Dermatological Treatments.ChamSpringer International Publishing20231543155410.1007/978‑3‑031‑15130‑9_135
    [Google Scholar]
  46. NicolaA.M. AlbuquerqueP. PaesH.C. FernandesL. CostaF.F. KioshimaE.S. AbadioA.K.R. BoccaA.L. FelipeM.S. Antifungal drugs: New insights in research & development.Pharmacol. Ther.2019195213810.1016/j.pharmthera.2018.10.00830347212
    [Google Scholar]
  47. JanaS. GayenS. KumariR. PatraS. HaldarP.K. BhowmikR. KarmakarS. Mechanism of action of antifungal agents.How Synthetic Drugs Work.Academic Press202343144510.1016/B978‑0‑323‑99855‑0.00019‑1
    [Google Scholar]
  48. VanreppelenG. WuytsJ. Van DijckP. VandecruysP. Sources of antifungal drugs.J. Fungi20239217110.3390/jof902017136836286
    [Google Scholar]
  49. DaleyM. J. HodgeE. K. RoseD. T. Antibiotic and antifungal therapy in the ICU.Surgical Critical Care Therapy: A Clinically Oriented Practical ApproachSpringerCham2018373389
    [Google Scholar]
  50. Al-FakihA.M. QasimM.K. AlgamalZ.Y. AlharthiA.M. Zainal-AbidinM.H. QSAR classification model for diverse series of antifungal agents based on binary coyote optimization algorithm.SAR QSAR Environ. Res.202334428529810.1080/1062936X.2023.220837437157994
    [Google Scholar]
  51. Fernández de UllivarriM. ArbuluS. Garcia-GutierrezE. CotterP.D. Antifungal peptides as therapeutic agents.Front. Cell. Infect. Microbiol.20201010510.3389/fcimb.2020.0010532257965
    [Google Scholar]
  52. McKenyP. T. NesselT. A. ZitoP. M. Antifungal antibiotics.Appl Microbiol Biotechnol2019584657
    [Google Scholar]
  53. CampoyS. AdrioJ.L. Antifungals.Biochem. Pharmacol.2017133869610.1016/j.bcp.2016.11.01927884742
    [Google Scholar]
  54. DeutschP.G. WhittakerJ. PrasadS. Invasive and non-invasive fungal rhinosinusitis—a review and update of the evidence.Medicina201955731910.3390/medicina5507031931261788
    [Google Scholar]
  55. RabaanA.A. SulaimanT. Al-AhmedS.H. BuhaliqahZ.A. BuhaliqahA.A. AlYuosofB. AlfaresiM. Al FaresM.A. AlwarthanS. AlkathlanM.S. AlmaghrabiR.S. AbuzaidA.A. AltowailebJ.A. Al IbrahimM. AlSalmanE.M. AlsalmanF. AlghounaimM. BueidA.S. Al-OmariA. MohapatraR.K. Potential strategies to control the risk of antifungal resistance in humans: A comprehensive review.Antibiotics202312360810.3390/antibiotics1203060836978475
    [Google Scholar]
  56. KhorshidS. GoffiR. MauriziiG. BenedettiS. SotgiuG. ZamboniR. BuosoS. GaluppiR. BordoniT. TiboniM. AluigiA. CasettariL. Microfluidic manufacturing of tioconazole loaded keratin nanocarriers: Development and optimization by design of experiments.Int. J. Pharm.202364712348910.1016/j.ijpharm.2023.12348937805150
    [Google Scholar]
  57. OxfordA.E. RaistrickH. SimonartP. Studies in the biochemistry of micro-organisms: Griseofulvin, C(17)H(17)O(6)Cl, a metabolic product of Penicillium griseo-fulvum Dierckx.Biochem J1939332240810.1042/bj033024016746904
    [Google Scholar]
  58. SousaF. FerreiraD. ReisS. CostaP. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources.Pharmaceuticals202013924810.3390/ph1309024832942693
    [Google Scholar]
  59. SinghS. PatilV.M. PaliwalS.K. MasandN. Nanotechnology-based drug delivery of topical antifungal agents.Pharm. Nanotechnol.202310.2174/221173851166623081812503137594096
    [Google Scholar]
  60. KurmiB.D. TekchandaniP. PaliwalR. PaliwalS.R. Transdermal drug delivery: Opportunities and challenges for controlled delivery of therapeutic agents using nanocarriers.Curr. Drug Metab.201718548149510.2174/138920021866617022215055528228076
    [Google Scholar]
  61. YuniarsihN. ChaerunisaaA. ElaminK. WathoniN. Polymeric nanohydrogel in topical drug delivery system.Int. J. Nanomedicine2024192733275410.2147/IJN.S44212338505165
    [Google Scholar]
  62. MosallamS. AlbashR. AbdelbariM.A. Advanced vesicular systems for antifungal drug delivery.AAPS PharmSciTech202223620610.1208/s12249‑022‑02357‑y35896903
    [Google Scholar]
  63. WaghuleT. SankarS. RapalliV.K. GorantlaS. DubeyS.K. ChellappanD.K. DuaK. SinghviG. Emerging role of nanocarriers based topical delivery of anti-fungal agents in combating growing fungal infections.Dermatol. Ther.2020336e1390510.1111/dth.1390532588940
    [Google Scholar]
  64. NamiS. Aghebati-MalekiA. Aghebati-MalekiL. Current applications and prospects of nanoparticles for antifungal drug delivery.EXCLI J.20212056258433883983
    [Google Scholar]
  65. ThakurK. SharmaG. SinghB. KatareO.P. Topical drug delivery of anti-infectives employing lipid-based nanocarriers: Dermatokinetics as an important tool.Curr. Pharm. Des.201924435108512810.2174/138161282566619011815584330657036
    [Google Scholar]
  66. NagasaG.D. BeleteA. Review on nanomaterials and nano-scaled systems for topical and systemic delivery of antifungal drugs.J. Multidiscip. Healthc.2022151819184010.2147/JMDH.S35928236060421
    [Google Scholar]
  67. JuarranzÁ. GilaberteY. GonzálezS. Photodynamic therapy (PDT) in oncology.Cancers20201211334110.3390/cancers1211334133198063
    [Google Scholar]
  68. HwangH.S. ShinH. HanJ. NaK. Combination of photodynamic therapy (PDT) and anti-tumor immunity in cancer therapy.J. Pharm. Investig.201848214315110.1007/s40005‑017‑0377‑x30680248
    [Google Scholar]
  69. JiB. WeiM. YangB. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy.Theranostics202212143445810.7150/thno.6730034987658
    [Google Scholar]
  70. ShenJ.J. JemecG.B.E. ArendrupM.C. SaunteD.M.L. Photodynamic therapy treatment of superficial fungal infections: A systematic review.Photodiagn. Photodyn. Ther.20203110177410.1016/j.pdpdt.2020.10177432339671
    [Google Scholar]
  71. HayR. Therapy of skin, hair and nail fungal infections.J. Fungi2018439910.3390/jof403009930127244
    [Google Scholar]
  72. MoskvinS.V. Low-level laser therapy in russia: History, science and practice.J. Lasers Med. Sci.201782566510.15171/jlms.2017.1128652897
    [Google Scholar]
  73. KhalkhalE. RazzaghiM. Rostami-NejadM. Rezaei-TaviraniM. Heidari BeigvandH. Rezaei TaviraniM. Evaluation of laser effects on the human body after laser therapy.J. Lasers Med. Sci.2020111919710.15171/jlms.2020.1532099633
    [Google Scholar]
  74. MoskvinS. V. KhadartsevA. A. Basic techniques of low level laser therapy.Triada2017
    [Google Scholar]
  75. ChenJ. RenH. ZhouP. ZhengS. DuB. LiuX. XiaoF. Microneedle-mediated drug delivery for cutaneous diseases.Front. Bioeng. Biotechnol.202210103204110.3389/fbioe.2022.103204136324904
    [Google Scholar]
  76. YangD. ChenM. SunY. JinY. LuC. PanX. QuanG. WuC. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases.Acta Biomater.202112111913310.1016/j.actbio.2020.12.00433285323
    [Google Scholar]
  77. ZareM.R. KhorramM. BarzegarS. SarkariB. AsgariQ. AhadianS. ZomorodianK. Dissolvable carboxymethyl cellulose/polyvinylpyrrolidone microneedle arrays for transdermal delivery of Amphotericin B to treat cutaneous leishmaniasis.Int. J. Biol. Macromol.20211821310132110.1016/j.ijbiomac.2021.05.07534000308
    [Google Scholar]
  78. MoR. ZhangH. XuY. WuX. WangS. DongZ. XiaY. ZhengD. TanQ. Transdermal drug delivery via microneedles to mediate wound microenvironment.Adv. Drug Deliv. Rev.202319511475310.1016/j.addr.2023.11475336828300
    [Google Scholar]
  79. KhozeimehF. Jabbari AzadF. Mahboubi OskoueiY. JafariM. TehranianS. AlizadehsaniR. LayeghP. Intralesional immunotherapy compared to cryotherapy in the treatment of warts.Int. J. Dermatol.201756447447810.1111/ijd.1353528108992
    [Google Scholar]
  80. ChandraS. Assessment of the therapeutic efficacy and safety of liquid nitrogen cryotherapy in treating interdigital candidiasis.Journal of Advanced Medical and Dental Sciences Research202195
    [Google Scholar]
  81. RoseC. EdwardsK. SieglerJ. GrahamK. CaillaudC. Whole-body cryotherapy as a recovery technique after exercise: A review of the literature.Int. J. Sports Med.201738141049106010.1055/s‑0043‑11486129161748
    [Google Scholar]
  82. ParhizkarA.R. SharafiM. MansuriS. HadibarhaghtalabM. AfrashtehS. FatemianH. ChijanM.R. Comparing the efficacy of fluconazole and cryotherapy Versus cryotherapy alone on treating cutaneous leishmaniasis: A triple-blind randomized clinical trial.BMC Infect. Dis.202424133210.1186/s12879‑024‑09211‑538509490
    [Google Scholar]
  83. García-CansinoL. MarinaM.L. GarcíaM.Á. Chiral analysis of pesticides and emerging contaminants by capillary electrophoresis—application to toxicity evaluation.Toxics202412318510.3390/toxics1203018538535919
    [Google Scholar]
  84. DhandaP. KajlaS. SiwachP. Optimization of conditions for in vitro regeneration of Chlorophytum borivilianum: An indigenous medicinal plant.Agri Bio2022
    [Google Scholar]
  85. TaudorfE.H. JemecG.B.E. HayR.J. SaunteD.M.L. Cutaneous candidiasis – an evidence-based review of topical and systemic treatments to inform clinical practice.J. Eur. Acad. Dermatol. Venereol.201933101863187310.1111/jdv.1578231287594
    [Google Scholar]
  86. Rautemaa-RichardsonR. RichardsonM.D. Systemic fungal infections.Medicine (Abingdon)2017451275776210.1016/j.mpmed.2017.09.007
    [Google Scholar]
  87. ChenX. JiangX. YangM. BennettC. GonzálezU. LinX. HuaX. XueS. ZhangM. Systemic antifungal therapy for tinea capitis in children: An abridged cochrane review.J. Am. Acad. Dermatol.201776236837410.1016/j.jaad.2016.08.06127816294
    [Google Scholar]
  88. RengasamyM. ChellamJ. GanapatiS. Systemic therapy of dermatophytosis: Practical and systematic approach.Clinical Dermatology Review201713Suppl. 11910.4103/CDR.CDR_36_17
    [Google Scholar]
  89. LivengoodS.J. DrewR.H. PerfectJ.R. Combination therapy for invasive fungal infections.Curr. Fungal Infect. Rep.2020141404910.1007/s12281‑020‑00369‑4
    [Google Scholar]
  90. SinghA. AgarwalA. XuY. Novel cell-killing mechanisms of hydroxyurea and the implication toward combination therapy for the treatment of fungal infections.Antimicrob. Agents Chemother.20176111e00734-1710.1128/AAC.00734‑1728893786
    [Google Scholar]
  91. SpitzerM. RobbinsN. WrightG.D. Combinatorial strategies for combating invasive fungal infections.Virulence20178216918510.1080/21505594.2016.119630027268286
    [Google Scholar]
  92. TitsJ. CammueB.P.A. ThevissenK. Combination therapy to treat fungal biofilm-based infections.Int. J. Mol. Sci.20202122887310.3390/ijms2122887333238622
    [Google Scholar]
  93. MenghaniS.S. NandurkarD. RarokarN.R. Editorial: Synergistic therapy for invasive fungal infection.Front. Cell. Infect. Microbiol.202313122783710.3389/fcimb.2023.122783737520443
    [Google Scholar]
  94. Morteza-SemnaniK. SaeediM. AkbariJ. MoazeniM. SerajH. DaftarifardE. TajbakhshM. HashemiS.M.H. BabaeiA. Fluconazole nanosuspension enhances in vitro antifungal activity against resistant strains of Candida albicans.Ulum-i Daruyi202128111212910.34172/PS.2021.21
    [Google Scholar]
  95. Dos Santos RamosM.A. Da SilvaP. SpósitoL. De ToledoL. BonifácioB. RoderoC.F. Dos SantosK. ChorilliM. BauabT.M. Nanotechnology-based drug delivery systems for control of microbial biofilms: A review.Int. J. Nanomedicine2018131179121310.2147/IJN.S14619529520143
    [Google Scholar]
  96. FreitasC.G. FelipeM.S. Candida albicans and antifungal peptides.Infect. Dis. Ther.202312122631264810.1007/s40121‑023‑00889‑937940816
    [Google Scholar]
  97. SamQ.H. YewW.S. SeneviratneC.J. ChangM.W. ChaiL.Y.A. Immunomodulation as therapy for fungal infection: Are we closer?Front. Microbiol.20189161210.3389/fmicb.2018.0161230090091
    [Google Scholar]
  98. CandelF.J. PeñuelasM. TabaresC. Garcia-VidalC. MatesanzM. SalavertM. RivasP. PemánJ. Fungal infections following treatment with monoclonal antibodies and other immunomodulatory therapies.Rev. Iberoam. Micol.202037151610.1016/j.riam.2019.09.00131843275
    [Google Scholar]
  99. AdemeM. Immunomodulation for the treatment of fungal infections: Opportunities and challenges.Front. Cell. Infect. Microbiol.20201046910.3389/fcimb.2020.0046933042859
    [Google Scholar]
  100. Armstrong-JamesD. BrownG.D. NeteaM.G. ZelanteT. GresnigtM.S. van de VeerdonkF.L. LevitzS.M. Immunotherapeutic approaches to treatment of fungal diseases.Lancet Infect. Dis.20171712e393e40210.1016/S1473‑3099(17)30442‑528774700
    [Google Scholar]
  101. SwaffordA.J.M. HusseyS.P. Fritz-LaylinL.K. High-efficiency electroporation of chytrid fungi.Sci. Rep.20201011514510.1038/s41598‑020‑71618‑232934254
    [Google Scholar]
  102. GeboersB. SchefferH.J. GraybillP.M. RuarusA.H. NieuwenhuizenS. PuijkR.S. van den TolP.M. DavalosR.V. RubinskyB. de GruijlT.D. MiklavčičD. MeijerinkM.R. High-voltage electrical pulses in oncology: Irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy.Radiology2020295225427210.1148/radiol.202019219032208094
    [Google Scholar]
  103. NovickijV. ZinkevičienėA. PerminaitėE. ČėsnaR. LastauskienėE. PaškevičiusA. ŠvedienėJ. MarkovskajaS. NovickijJ. GirkontaitėI. Non-invasive nanosecond electroporation for biocontrol of surface infections: An in vivo study.Sci. Rep.2018811451610.1038/s41598‑018‑32783‑730266920
    [Google Scholar]
  104. MatsumotoY. NagamachiT. YoshikawaA. YamadaT. SugitaT. A joint PCR-based gene-targeting method using electroporation in the pathogenic fungus trichosporon asahii.AMB Express20221219110.1186/s13568‑022‑01431‑935834071
    [Google Scholar]
  105. TimofeevS. TsarevA. SenderskiyI. RogozhinE. MitinaG. KozlovS. DolgikhV. Efficient transformation of the entomopathogenic fungus Lecanicillium muscarium by electroporation of germinated conidia.Mycoscience201960319720010.1016/j.myc.2019.02.010
    [Google Scholar]
  106. AraujoV.H.S. Delello Di FilippoL. DuarteJ.L. SpósitoL. CamargoB.A.F. da SilvaP.B. ChorilliM. Exploiting solid lipid nanoparticles and nanostructured lipid carriers for drug delivery against cutaneous fungal infections.Crit. Rev. Microbiol.2021471799010.1080/1040841X.2020.184339933156736
    [Google Scholar]
  107. AraujoH.C. AriasL.S. CaldeirãoA.C.M. AssumpçãoL.C.F. MorceliM.G. de Souza NetoF.N. de CamargoE.R. OliveiraS.H.P. PessanJ.P. MonteiroD.R. Novel colloidal nanocarrier of cetylpyridinium chloride: Antifungal activities on candida species and cytotoxic potential on murine fibroblasts.J. Fungi20206421810.3390/jof604021833053629
    [Google Scholar]
  108. NegiP. RathoreC. SharmaG. SinghB. KatareO.P. Thymoquinone a potential therapeutic molecule from the plant Nigella sativa: Role of colloidal carriers in its effective delivery.Recent Pat. Drug Deliv. Formul.201812132210.2174/187221131166617112912112829189187
    [Google Scholar]
  109. ShettyT. DubeyA. RaviG.S. HebbarS. ShastryC.S. CharyuluN. Antifungal and antioxidant therapy for the treatment of fungal infection with microemulsion gel containing curcumin and vitamin C.Asian J. Pharm.201711Suppl.S717S725
    [Google Scholar]
  110. SolimanG.M. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges.Int. J. Pharm.20175231153210.1016/j.ijpharm.2017.03.01928323096
    [Google Scholar]
  111. GandhiJ. SutharD. PatelH. ShelatP. ParejiyaP. Development and characterization of microemulsion based topical gel of essential oil of clove (Syzygium aromaticum) for superficial fungal infections.ADTM202121351953410.1007/s13596‑020‑00462‑6
    [Google Scholar]
  112. NoshiS.H. BashaM. AwadG.E. ElsayyadN.M.E. Miconazole nitrate loaded Soluplus®-Pluronic® nano-micelles as promising drug delivery systems for ocular fungal infections: In vitro and in vivo considerations.RJPT202215250251110.52711/0974‑360X.2022.00081
    [Google Scholar]
  113. QurtM.S. Esentürkİ. Birteksöz TanS. ErdalM.S. AramanA. GüngörS. Voriconazole and sertaconazole loaded colloidal nano-carriers for enhanced skin deposition and improved topical fungal treatment.J. Drug Deliv. Sci. Technol.20184821522210.1016/j.jddst.2018.09.020
    [Google Scholar]
  114. HsiehS.H. BrunkeS. BrockM. Encapsulation of antifungals in micelles protects Candida albicans during gall-bladder infection.Front. Microbiol.2017811710.3389/fmicb.2017.0011728203228
    [Google Scholar]
  115. GarciaA. FanY.Y. VellankiS. HuhE.Y. VanegasD. WangS.H. LeeS.C. Nanoemulsion as an effective treatment against human-pathogenic fungi.MSphere201946e00729-1910.1128/mSphere.00729‑1931852807
    [Google Scholar]
  116. AlhakamyN.A. MdS. AlamM.S. ShaikR.A. AhmadJ. AhmadA. KutbiH.I. NoorA.O. BagalagelA. BannanD.F. GorainB. SivakumarP.M. Development, optimization, and evaluation of luliconazole nanoemulgel for the treatment of fungal infection.J. Chem.2021202111310.1155/2021/4942659
    [Google Scholar]
  117. EnayatifardR. AkbariJ. BabaeiA. RostamkalaeiS.S. HashemiS.M.H. HabibiE. Anti-microbial potential of nano-emulsion form of essential oil obtained from aerial parts of origanum vulgare L. as food additive.Adv. Pharm. Bull.202111232733433880355
    [Google Scholar]
  118. AlvandiH. Hatamian-ZarmiA. Mokhtari-HosseiniZ.B. WebsterT.J. Ebrahimi HosseinzadehB. Selective biological effects of natural selenized polysaccharides from fomes fomentarius mycelia loaded solid lipid nanoparticles on bacteria and gastric cancer cells.J. Drug Deliv. Sci. Technol.20227710390010.1016/j.jddst.2022.103900
    [Google Scholar]
  119. MenossiM. TejadaG. ColmanS.L. NercessianD. MendietaJ.R. IslanG.A. AlvarezV.A. Cannabis extract-loaded lipid and chitosan-coated lipid nanoparticles with antifungal activity.Colloids Surf. A Physicochem. Eng. Asp.202468513320710.1016/j.colsurfa.2024.133207
    [Google Scholar]
  120. AlmawashS. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs.Saudi Pharm. J.20233171167118010.1016/j.jsps.2023.05.01137273269
    [Google Scholar]
  121. RarokarN.R. MenghaniS.S. KerzareD.R. KhedekarP.B. BharneA.P. AlamriA.S. AlsanieW.F. AlhomraniM. SreeharshaN. AsdaqS.M.B. Preparation of terbinafin-encapsulated solid lipid nanoparticles containing antifungal carbopol® Hydrogel with Improved Efficacy: In Vitro,Ex Vivo and In Vivo Study.Pharmaceutics2022147139310.3390/pharmaceutics1407139335890289
    [Google Scholar]
  122. NguyenT.T.L. MaengH.J. Solid lipid nanoparticles.Pharmaceutics202214395297335335948
    [Google Scholar]
  123. PATIL Formulation and evaluation of antifungal nanogel for topical drug delivery system.Asian J. Pharm. Clin. Res.2021141012713410.22159/ajpcr.2021.v14i10.42436
    [Google Scholar]
  124. HassanS. KhalidI. HussainL. ImamM.T. ShahidI. Topical delivery of terbinafine HCL using nanogels: A new approach to superficial fungal infection treatment.Gels202391184110.3390/gels911084137998931
    [Google Scholar]
  125. FarooqU. RasulA. SherM. QadirM.I. NazirI. MehmoodY. RiazH. ShahP.A. JamilQ.A. KhanB.A. Development, characterization and evaluation of anti-fungal activity of miconazole based nanogel prepared from biodegradable polymer.Pak. J. Pharm. Sci.2020331(Special)44945732173643
    [Google Scholar]
  126. SenguptaP. DasA. DattaD. DewanjeeS. KhanamJ. GhosalK. Novel super porous nanosponge-based drug delivery system synthesized from cyclodextrin/polymer for anti-fungal medication.React. Funct. Polym.202419610583010.1016/j.reactfunctpolym.2024.105830
    [Google Scholar]
  127. AnjuG. SwarupD.P. PoojaS. RohitB. EVOLUTIONARY ASPECT OF ANTIFUNGAL TOPICAL GEL.RE:viewIJPRR2018811530
    [Google Scholar]
  128. KeservaniR.K. KesharwaniR.K. SharmaA.K. Advances in Novel Formulations for Drug Delivery.John Wiley & Sons202310.1002/9781394167708
    [Google Scholar]
  129. GodgeG.R. BharatS.C. ShaikhA.B. RandhawanB.B. RaskarM.A. HiremathS.N. Formulation perspectives in topical antifungal drug therapy: A review.J. Drug Deliv. Ther.202313511011910.22270/jddt.v13i5.6079
    [Google Scholar]
  130. WróblewskaM. SzymańskaE. WinnickaK. The influence of tea tree oil on antifungal activity and pharmaceutical characteristics of Pluronic® F-127 gel formulations with ketoconazole.Int. J. Mol. Sci.202122211132610.3390/ijms22211132634768755
    [Google Scholar]
  131. DwivediS. ChaurasiaR. BijwarR.S. MateP.C. PotdarM.B. MukatiS. Niosomal formulation loaded with Leonotis nepetaefolia (L.) R. Br. Extract for the treatment of fungal infection.J. Biomed. Eng.20234021823
    [Google Scholar]
  132. AparajayP. DevA. Functionalized niosomes as a smart delivery device in cancer and fungal infection.Eur. J. Pharm. Sci.202216810605210.1016/j.ejps.2021.10605234740786
    [Google Scholar]
  133. Morteza-SemnaniK. SaeediM. AkbariJ. MoazeniM. BabaeiA. NegarandehR. AziziM. EghbaliM. HashemiS.M.H. Preparation and In-vitro evaluation of ketoconazole-loaded niosome (ketosome) for drug delivery to cutaneous candidiasis.Ulum-i Daruyi202329220821810.34172/PS.2022.34
    [Google Scholar]
  134. VermaS. UtrejaP. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy.AJPS201914211712910.1016/j.ajps.2018.05.007
    [Google Scholar]
  135. HeY. ZhangW. XiaoQ. FanL. HuangD. ChenW. HeW. Liposomes and liposome-like nanoparticles: From anti-fungal infection to the COVID-19 pandemic treatment.AJPS202217681783710.1016/j.ajps.2022.11.00236415834
    [Google Scholar]
  136. NisiniR. PoerioN. MariottiS. De SantisF. FrazianoM. The multirole of liposomes in therapy and prevention of infectious diseases.Front. Immunol.2018915510.3389/fimmu.2018.0015529459867
    [Google Scholar]
  137. WalshT.J. LewisR.E. Adler-MooreJ. Pharmacology of liposomal amphotericin B: An introduction to preclinical and clinical advances for treatment of life-threatening invasive fungal infections.Clin. Infect. Dis.201968Suppl. 4S241S24310.1093/cid/ciz09131222252
    [Google Scholar]
  138. GuptaP. KushwahaP. HafeezA. Development and characterization of topical ethosomal gel for improved antifungal therapeutics.J. Mol. Liq.202440512511110.1016/j.molliq.2024.125111
    [Google Scholar]
  139. AsgharZ. JamshaidT. JamshaidU. MadniA. AkhtarN. LashkarM.O. GadH.A. In Vivo evaluation of miconazole-nitrate-loaded transethosomal gel using a rat model infected with Candida albicans. Pharmaceuticals202417554610.3390/ph1705054638794118
    [Google Scholar]
  140. GuptaP. HafeezA. KushwahaP. Development and evaluation of topical ethosomal gel for fungal infections.Drug Res2023731465310.1055/a‑1924‑781836138545
    [Google Scholar]
  141. AhmedM. M. FatimaF. AnwerM. K. IbnoufE. O. KalamM. A. AlshamsanA. AldawsariM. F. AlalaiweA. AnsariM. J. Formulation and in vitro evaluation of topical nanosponge-based gel containing butenafine for the treatment of fungal skin infection.Saudi Pharm J202129546747710.1016/j.jsps.2021.04.010
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855307149240725103440
Loading
/content/journals/cdth/10.2174/0115748855307149240725103440
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test