Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

This comprehensive review provides information on astaxanthin-loaded topical nanocarrier-based formulations for targeted skin enhancement. Astaxanthin, a potent carotenoid derived from microalgae, has garnered considerable attention for its multifaceted potential in skincare, particularly when incorporated into nanocarriers. These nanocarriers, like nanoemulsions, micelles, hydrogels and nanoparticles, have revolutionized the field of dermatology by providing innovative solutions to overcome the limitations associated with astaxanthin's solubility and stability. Astaxanthin's exceptional antioxidant properties, including its ability to neutralize free radicals within both lipid and aqueous environments, make it a compelling bioactive ingredient for combatting oxidative stress, a central contributor to skin aging and various dermatological conditions. The nanoscale size of these carriers facilitates enhanced skin penetration, controlled release, and improved bioavailability, thereby augmenting astaxanthin's therapeutic efficacy. This review meticulously explores the mechanistic insights behind astaxanthin's enhanced delivery and its multifaceted benefits, including photoprotection, anti-inflammatory effects, and wound healing properties. The diverse applications of astaxanthin-loaded nanocarriers in skincare, spanning anti-aging formulations, UV protection, scar healing, and wound repair, are elucidated. Safety considerations are also addressed, drawing from an extensive analysis of preclinical and clinical studies. The review provides valuable insights into optimal concentrations, formulation strategies, and regulatory aspects governing astaxanthin-loaded nanocarriers in skincare products.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855310234240909083156
2024-09-19
2026-02-04
Loading full text...

Full text loading...

References

  1. AbdelazimK. GhitA. AssalD. Production and therapeutic use of astaxanthin in the nanotechnology era.Pharmacol. Rep.20232024120
    [Google Scholar]
  2. MorillaM.J. GhosalK. RomeroE.L. More than pigments: The potential of astaxanthin and bacterioruberin-based nanomedicines.Pharmaceutics2023157182810.3390/pharmaceutics15071828 37514016
    [Google Scholar]
  3. TorresJ. PereiraJ.M. Marques-OliveiraR. An in vitro evaluation of the potential neuroprotective effects of intranasal lipid nanoparticles containing astaxanthin obtained from different sources: Comparative studies.Pharmaceutics2023154103510.3390/pharmaceutics15041035 37111521
    [Google Scholar]
  4. LimaS.G.M. FreireM.C.L.C. OliveiraV.S. SolisioC. ConvertiA. de LimaÁ.A.N. Astaxanthin delivery systems for skin application: A review.Mar. Drugs202119951110.3390/md19090511 34564173
    [Google Scholar]
  5. Ostrovit Details. Astaxanthin - an antioxidant 6000 times more powerful than vitamin C.2023Available from: [https://ostrovit.com/en/blog/astaxanthin-an-antioxidant-6000-times-more-powerful-than-vitamin-c-1638772748.html
  6. JafariZ. BighamA. SadeghiS. Nanotechnology-abetted astaxanthin formulations in multimodel therapeutic and biomedical applications.J. Med. Chem.202265123610.1021/acs.jmedchem.1c01144 34919379
    [Google Scholar]
  7. GuoM. CuiW. LiY. Microfluidic fabrication of size-controlled nanocarriers with improved stability and biocompatibility for astaxanthin delivery.Food Res. Int.202317011295810.1016/j.foodres.2023.112958 37316049
    [Google Scholar]
  8. Abdol WahabN.R. Meor Mohd AffandiM.M.R. FakuraziS. AliasE. HassanH. Nanocarrier system: State-of-the-Art in oral delivery of astaxanthin.Antioxidants2022119167610.3390/antiox11091676 36139750
    [Google Scholar]
  9. SoutoE.B. FangueiroJ.F. FernandesA.R. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery.Heliyon202282e0893810.1016/j.heliyon.2022.e08938 35198788
    [Google Scholar]
  10. GuL. WangW. WuB. JiS. XiaQ. Preparation and in vitro characterization studies of astaxanthin-loaded nanostructured lipid carriers with antioxidant properties.J. Biomater. Appl.202338229230110.1177/08853282231189779 37452613
    [Google Scholar]
  11. DavanI. FakuraziS. AliasE. IbrahimN.I. HweiN.M. HassanH. Astaxanthin as a Potent Antioxidant for Promoting Bone Health: An Up-to-Date Review.Antioxidants2023127148010.3390/antiox12071480 37508018
    [Google Scholar]
  12. KanwuguO.N. GlukharevaT.V. Activation of Nrf2 pathway as a protective mechanism against oxidative stress-induced diseases: Potential of astaxanthin.Arch. Biochem. Biophys.202374110960110.1016/j.abb.2023.109601 37086962
    [Google Scholar]
  13. AmbatiR. PhangS.M. RaviS. AswathanarayanaR. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications--a review.Mar. Drugs201412112815210.3390/md12010128 24402174
    [Google Scholar]
  14. NishidaY. BergP. ShakersainB. Astaxanthin: Past, Present, and Future.Mar. Drugs2023211051410.3390/md21100514 37888449
    [Google Scholar]
  15. LiuX XieJ ZhouL Recent advances in health benefits and bioavailability of dietary astaxanthin and its isomers.Food Chem2023404Pt B13460510.1016/j.foodchem.2022.13460536306703
    [Google Scholar]
  16. VuN.B. PhamN.D. TranT.N. PhamX.H. NgoD.N. NguyenM.H. Possibility of nanostructured lipid carriers encapsulating astaxanthin from Haematococcus pluvialis to alleviate skin injury in radiotherapy.Int. J. Radiat. Biol.2023202311 37819928
    [Google Scholar]
  17. NakaoR. NelsonO.L. ParkJ.S. MathisonB.D. ThompsonP.A. ChewB.P. Effect of astaxanthin supplementation on inflammation and cardiac function in BALB/c mice.Anticancer Res.201030727212725 20683004
    [Google Scholar]
  18. ChewB.P. ParkJ.S. WongM.W. WongT.S. A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo.Anticancer Res.1999193A18491853 10470126
    [Google Scholar]
  19. CarazoE. Borrego-SánchezA. García-VillénF. Advanced inorganic nanosystems for skin drug delivery.Chem. Rec.2018187-889189910.1002/tcr.201700061 29314634
    [Google Scholar]
  20. GhasemiyehP. AzadiA. DaneshamouzS. HeidariR. AzarpiraN. Mohammadi-SamaniS. Cyproterone acetate-loaded nanostructured lipid carriers: Effect of particle size on skin penetration and follicular targeting.Pharm. Dev. Technol.201924781282310.1080/10837450.2019.1596133
    [Google Scholar]
  21. ParveenN. AbourehabM.A.S. ThanikachalamP.V. KharR.K. KesharwaniP. Nanocrystals as an emerging nanocarrier for the management of dermatological diseases.Colloids Surf. B Biointerfaces202322511323110.1016/j.colsurfb.2023.113231 36907135
    [Google Scholar]
  22. MohamedD. SkranW. Abo-zeidY. Application of Several Nano Carriers to Improve the Solubility and the Bioavailability of Carvedilol.J. Adv. Pharm. Educ. Res.2023715065
    [Google Scholar]
  23. YousefH.A. FahmyH.M. ArafaF.N. Nanotechnology in pest management: Advantages, applications, and challenges.Int. J. Trop. Insect Sci.20234351387139910.1007/s42690‑023‑01053‑z
    [Google Scholar]
  24. KulkarniD. ShelkeS. MusaleS. PanzadeP. SharmaK. GiramP. Nanomaterials in cosmetics and dermatology.Advances in Smart Nanomaterials and their Applications.AmsterdamElsevier202310.1016/B978‑0‑323‑99546‑7.00017‑3
    [Google Scholar]
  25. NeubertR.H. Potentials of new nanocarriers for dermal and transdermal drug delivery.Eur. J. Pharm. Biopharm.20117711210.1016/j.ejpb.2010.11.003
    [Google Scholar]
  26. FangC.L. AljuffaliI.A. LiY.C. FangJ.Y. Delivery and targeting of nanoparticles into hair follicles.Ther. Deliv.201459991100610.4155/tde.14.61 25375342
    [Google Scholar]
  27. BaspinarY. BorchertH.H. Penetration and release studies of positively and negatively charged nanoemulsions—is there a benefit of the positive charge?.Int. J. Pharmaceut.20124301-22475
    [Google Scholar]
  28. LuesakulU. PuthongS. SansanaphongprichaK. MuangsinN. Quaternized chitosan-coated nanoemulsions: A novel platform for improving the stability, anti-inflammatory, anti-cancer and transdermal properties of Plai extract.Carbohydr. Polym.202023023011562510.1016/j.carbpol.2019.115625 31887856
    [Google Scholar]
  29. GarcêsA. AmaralM.H. Sousa LoboJ.M. SilvaA.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review.Eur. J. Pharm. Sci.201811211215916710.1016/j.ejps.2017.11.023 29183800
    [Google Scholar]
  30. GhasemiyehP. AzadiA. DaneshamouzS. Mohammadi SamaniS. Cyproterone acetate-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): Preparation and optimization.Trends Pharmaceut. Sci.201734275286
    [Google Scholar]
  31. AroraR. KatiyarS.S. KushwahV. JainS. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: A comparative study.Expert Opin. Drug Deliv.201714216517710.1080/17425247.2017.1264386
    [Google Scholar]
  32. PokharkarV.B. MendirattaC. KyadarkunteA.Y. BhosaleS.H. BarhateG.A. Skin delivery aspects of benzoyl peroxide-loaded solid lipid nanoparticles for acne treatment.Ther. Deliv.20145663565210.4155/tde.14.31 25090278
    [Google Scholar]
  33. PandeS. Liposomes for drug delivery: Review of vesicular composition, factors affecting drug release and drug loading in liposomes.Artif. Cells Nanomed. Biotechnol.202351142844010.1080/21691401.2023.2247036 37594208
    [Google Scholar]
  34. SiafakaP.I. Özcan BülbülE. OkurM.E. KarantasI.D. Üstündağ OkurN. The application of nanogels as efficient drug delivery platforms for dermal/transdermal delivery.Gels20239975310.3390/gels9090753 37754434
    [Google Scholar]
  35. KhizarS. AlrushaidN. Alam KhanF. Nanocarriers based novel and effective drug delivery system.Int. J. Pharm.202363212257010.1016/j.ijpharm.2022.122570 36587775
    [Google Scholar]
  36. ChantaburananT. TeeranachaideekulV. ChantasartD. JintapattanakitA. JunyaprasertV.B. Effect of binary solid lipid matrix of wax and triglyceride on lipid crystallinity, drug-lipid interaction and drug release of ibuprofen-loaded solid lipid nanoparticles (SLN) for dermal delivery.J. Colloid Interface Sci.201750424725610.1016/j.jcis.2017.05.038 28551519
    [Google Scholar]
  37. KelidariH.R. SaeediM. AkbariJ. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles.Colloids Surf. B Biointerfaces201512847347910.1016/j.colsurfb.2015.02.046 25797482
    [Google Scholar]
  38. ChenJ. WeiN. Lopez-GarciaM. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications.Eur. J. Pharm. Biopharm.201711728629110.1016/j.ejpb.2017.04.008 28411056
    [Google Scholar]
  39. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.235156 30065762
    [Google Scholar]
  40. ZoubariG. StaufenbielS. VolzP. AlexievU. BodmeierR. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery.Eur. J. Pharm. Biopharm.2017110394610.1016/j.ejpb.2016.10.021 27810471
    [Google Scholar]
  41. SalaM. DiabR. ElaissariA. FessiH. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications.Int. J. Pharm.20185351-211710.1016/j.ijpharm.2017.10.046 29111097
    [Google Scholar]
  42. SunJ. WeiZ. XueC. Recent research advances in astaxanthin delivery systems: Fabrication technologies, comparisons and applications.Crit. Rev. Food Sci. Nutr.202363193497351810.1080/10408398.2021.1989661 34657544
    [Google Scholar]
  43. CristianoM.C. FroiioF. SpaccapeloR. Sulforaphane-loaded ultradeformable vesicles as a potential natural nanomedicine for the treatment of skin cancer diseases.Pharmaceutics2019121610.3390/pharmaceutics12010006 31861672
    [Google Scholar]
  44. MuzzalupoR. PérezL. PinazoA. TavanoL. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release.Int. J. Pharm.20175291-224525210.1016/j.ijpharm.2017.06.083 28668583
    [Google Scholar]
  45. LiuL. ZhaoW. MaQ. Functional nano-systems for transdermal drug delivery and skin therapy.Nanoscale Adv.2023561527155810.1039/D2NA00530A 36926556
    [Google Scholar]
  46. ChewB.P. ParkJ.S. Carotenoid action on the immune response.J. Nutr.20041341257S261S10.1093/jn/134.1.257S 14704330
    [Google Scholar]
  47. ChenY. SuW. TieS. Orally deliverable sequence-targeted astaxanthin nanoparticles for colitis alleviation.Biomaterials202329312197610.1016/j.biomaterials.2022.121976 36566552
    [Google Scholar]
  48. EidR.K. EssaE.A. El MaghrabyG.M. Essential oils in niosomes for enhanced transdermal delivery of felodipine.Pharm. Dev. Technol.2019242157165 29441809
    [Google Scholar]
  49. JunyaprasertV.B. SinghsaP. SuksiriworapongJ. ChantasartD. Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid.Int. J. Pharm.2012423230331110.1016/j.ijpharm.2011.11.032 22155414
    [Google Scholar]
  50. AmoabedinyG. HaghiralsadatF. NaderinezhadS. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review.Int. J. Polym. Mater.201867638340010.1080/00914037.2017.1332623
    [Google Scholar]
  51. PatelV. SharmaO.P. MehtaT. Nanocrystal: A novel approach to overcome skin barriers for improved topical drug delivery.Expert Opin. Drug Deliv.201815435136810.1080/17425247.2018.1444025 29465253
    [Google Scholar]
  52. NairA. AhirwarA. SinghS. Astaxanthin as a King of Ketocarotenoids: Structure, Synthesis, Accumulation, Bioavailability and Antioxidant Properties.Mar. Drugs202321317610.3390/md21030176 36976225
    [Google Scholar]
  53. LiB. LeeJ.Y. LuoY. Health benefits of astaxanthin and its encapsulation for improving bioavailability: A review.J. Agric. Food Res.20231410068510.1016/j.jafr.2023.100685
    [Google Scholar]
  54. WuB. LiY. LiY. LiH. JiS. XiaQ. Pickering emulsions-chitosan hydrogel beads carrier system for loading of resveratrol: Formulation approach and characterization studies.React. Funct. Polym.202116910507410.1016/j.reactfunctpolym.2021.105074
    [Google Scholar]
  55. GiangH.N. PhamL.T. HuynhT.N. Fabrication of astaxanthin emulsion and effect of cellulose derivatives.VNUHCM J Sci Technol Develop202326227642775
    [Google Scholar]
  56. DögeN. HönzkeS. SchumacherF. Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers.J. Control. Release2016242253410.1016/j.jconrel.2016.07.009 27394682
    [Google Scholar]
  57. PyoS.M. HespelerD. KeckC.M. MüllerR.H. Dermal miconazole nitrate nanocrystals – formulation development, increased antifungal efficacy & skin penetration.Int. J. Pharm.2017531135035910.1016/j.ijpharm.2017.08.108 28855137
    [Google Scholar]
  58. YoshiokaC. ItoY. NagaiN. Enhanced percutaneous absorption of cilostazol nanocrystals using aqueous gel patch systems and clarification of the absorption mechanism.Exp. Ther. Med.20181543501350810.3892/etm.2018.5820 29545875
    [Google Scholar]
  59. ChavesL.L. SilveriA. VieiraA.C.C. pH-responsive chitosan based hydrogels affect the release of dapsone: Design, set-up, and physicochemical characterization.Int. J. Biol. Macromol.20191331268127910.1016/j.ijbiomac.2019.04.178 31034906
    [Google Scholar]
  60. GhasemiyehP. Mohammadi-SamaniS. Hydrogels as drug delivery systems; pros and cons.Trends Pharmacol. Sci.201951724
    [Google Scholar]
  61. ChellappanD.K. YeeN.J. Kaur Ambar Jeet SinghB.J. Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation.Ther. Deliv.201910528129310.4155/tde‑2019‑0019 31094299
    [Google Scholar]
  62. BalzusB. SahleF.F. HönzkeS. Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium.Eur. J. Pharm. Biopharm.201711512213010.1016/j.ejpb.2017.02.001 28189623
    [Google Scholar]
  63. PivettaT.P. SimõesS. AraújoM.M. CarvalhoT. ArrudaC. MarcatoP.D. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties.Colloids Surf. B Biointerfaces201816428129010.1016/j.colsurfb.2018.01.053 29413607
    [Google Scholar]
  64. WolfM. KlangV. StojcicT. FuchsC. WolztM. ValentaC. NLC versus nanoemulsions: Effect on physiological skin parameters during regular in vivo application and impact on drug penetration.Int. J. Pharm.20185491-234335110.1016/j.ijpharm.2018.08.007 30099212
    [Google Scholar]
  65. ChenS. WangJ. FengJ. XuanR. Research progress of Astaxanthin nano-based drug delivery system: Applications, prospects and challenges?.Front. Pharmacol.202314110288810.3389/fphar.2023.1102888 36969867
    [Google Scholar]
  66. VerardiA. SangiorgioP. LoprestoC.G. CasellaP. ErricoS. Enhancing Carotenoids’ Efficacy by Using Chitosan-Based Delivery Systems.Nutraceuticals20233345148010.3390/nutraceuticals3030033
    [Google Scholar]
  67. Martínez-ÁlvarezÓ. CalvoM.M. Gómez-EstacaJ. Recent advances in astaxanthin micro/nanoencapsulation to improve its stability and functionality as a food ingredient.Mar. Drugs202018840610.3390/md18080406 32752203
    [Google Scholar]
  68. Silva NietoR. Samaniego LópezC. MorettonM.A. Chitosan-Based Nanogels Designed for Betanin-Rich Beetroot Extract Transport: Physicochemical and Biological Aspects.Polymers (Basel)20231519387510.3390/polym15193875 37835924
    [Google Scholar]
  69. Farghaly AlyU. AboutalebH.A. AbdellatifA.A.H. Sameh TolbaN. Formulation and evaluation of simvastatin polymeric nanoparticles loaded in hydrogel for optimum wound healing purpose.Drug Des. Devel. Ther.2019131567158010.2147/DDDT.S198413 31190737
    [Google Scholar]
  70. PatelV. SharmaO.P. MehtaT.A. Impact of process parameters on particle size involved in media milling technique used for preparing clotrimazole nanocrystals for the management of cutaneous candidiasis.AAPS PharmSciTech201920517510.1208/s12249‑019‑1368‑1 31028492
    [Google Scholar]
  71. YuB. TaiH.C. XueW. LeeL.J. LeeR.J. Receptor-targeted nanocarriers for therapeutic delivery to cancer.Mol. Membr. Biol.201027728629810.3109/09687688.2010.521200 21028937
    [Google Scholar]
  72. ZylberbergC. MatosevicS. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape.Drug Deliv.20162393319332910.1080/10717544.2016.1177136 27145899
    [Google Scholar]
  73. GomesM.J. MartinsS. FerreiraD. SegundoM.A. ReisS. Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization, and in vitro release and penetration studies.Int. J. Nanomedicine2014912311242 24634584
    [Google Scholar]
  74. TaratulaO. SavlaR. HeH. MinkoT. Poly(propyleneimine) dendrimers as potential siRNA delivery nanocarrier: From structure to function.Int. J. Nanotechnol.201181/2365210.1504/IJNT.2011.037169
    [Google Scholar]
  75. FliervoetLAL MastrobattistaE Drug delivery with living cells.Adv Drug Deliv Rev2016106Pt A637210.1016/j.addr.2016.04.02127129442
    [Google Scholar]
  76. OberoiH.S. NukolovaN.V. KabanovA.V. BronichT.K. Nanocarriers for delivery of platinum anticancer drugs.Adv. Drug Deliv. Rev.20136513-141667168510.1016/j.addr.2013.09.014 24113520
    [Google Scholar]
  77. RehmanF.U. ShahK.U. ShahS.U. KhanI.U. KhanG.M. KhanA. From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS).Expert Opin. Drug Deliv.201714111325134010.1080/17425247.2016.1218462 27485144
    [Google Scholar]
  78. ShreyaA.B. RautS.Y. ManaguliR.S. UdupaN. MutalikS. Active targeting of drugs and bioactive molecules via oral administration by ligand-conjugated lipidic nanocarriers: Recent advances.AAPS PharmSciTech20192011510.1208/s12249‑018‑1262‑2 30564942
    [Google Scholar]
  79. GrossenP. WitzigmannD. SieberS. HuwylerJ. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application.J. Control. Release2017260466010.1016/j.jconrel.2017.05.028 28536049
    [Google Scholar]
  80. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  81. GarbuzenkoO.B. MainelisG. TaratulaO. MinkoT. Inhalation treatment of lung cancer: The influence of composition, size and shape of nanocarriers on their lung accumulation and retention.Cancer Biol. Med.20141114455 24738038
    [Google Scholar]
  82. ChangH.I. YehM.K. Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy.Int. J. Nanomedicine201274960 22275822
    [Google Scholar]
  83. KhosaA. ReddiS. SahaR.N. Nanostructured lipid carriers for site-specific drug delivery.Biomed. Pharmacother.201810359861310.1016/j.biopha.2018.04.055 29677547
    [Google Scholar]
  84. GabaB. FazilM. AliA. BabootaS. SahniJ.K. AliJ. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration.Drug Deliv.201522669170010.3109/10717544.2014.898110 24670099
    [Google Scholar]
  85. Abd El-HalimS.M. AbdelbaryG.A. AminM.M. ZakariaM.Y. Shamsel-DinH.A. IbrahimA.B. Stabilized oral nanostructured lipid carriers of Adefovir Dipivoxil as a potential liver targeting: Estimation of liver function panel and uptake following intravenous injection of radioiodinated indicator.Daru202028251753210.1007/s40199‑020‑00355‑8 32564282
    [Google Scholar]
  86. FangC.L. Al-SuwayehS.A. FangJ.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting.Recent Pat. Nanotechnol.201371415510.2174/187221013804484827 22946628
    [Google Scholar]
  87. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.004 26410277
    [Google Scholar]
  88. HanF. YinR. CheX. Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: Design, characterization and in vivo evaluation.Int. J. Pharm.20124391-234935710.1016/j.ijpharm.2012.08.040 22989987
    [Google Scholar]
  89. KelebE. SharmaR.K. MosaE.B. AljahwiA.A.Z. Transdermal Drug Delivery System-Design and Evaluation, Int J.Adv. Pharm. Sci.20101201211
    [Google Scholar]
  90. SinghM. KunduS. ReddyM.A. Injectable small molecule hydrogel as a potential nanocarrier for localized and sustained in vivo delivery of doxorubicin.Nanoscale2014621128491285510.1039/C4NR04064C 25227567
    [Google Scholar]
  91. GuoD. ShiC. WangL. JiX. ZhangS. LuoJ. A rationally designed micellar nanocarrier for the delivery of hydrophilic methotrexate in psoriasis treatment.ACS Appl. Bio Mater.2020384832484610.1021/acsabm.0c00342 34136761
    [Google Scholar]
  92. XiL. LinZ. QiuF. Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment.Acta Pharm. Sin. B202212133935210.1016/j.apsb.2021.07.019 35127390
    [Google Scholar]
  93. KumarP. SharmaD.K. AshawatM.S. Topical creams of piperine loaded lipid nanocarriers for management of atopic dermatitis: Development, characterization, and in vivo investigation using BALB/c mice model.J. Liposome Res.2022321627310.1080/08982104.2021.1880436 33944670
    [Google Scholar]
  94. AssemM. KhowessahO.M. GhorabD. Optimization and evaluation of beclomethasone dipropionate micelles incorporated into biocompatible hydrogel using a sub-chronic dermatitis animal model.AAPS PharmSciTech201920415210.1208/s12249‑019‑1355‑6 30911861
    [Google Scholar]
  95. WangY. CaoS. YuK. Integrating tacrolimus into eutectic oil-based microemulsion for atopic dermatitis: Simultaneously enhancing percutaneous delivery and treatment efficacy with relieving side effects.Int. J. Nanomedicine2019145849586310.2147/IJN.S212260 31440050
    [Google Scholar]
  96. HarunM.S. WongT.W. FongC.W. Advancing skin delivery of α-tocopherol and γ-tocotrienol for dermatitis treatment via nanotechnology and microwave technology.Int. J. Pharm.202159312009910.1016/j.ijpharm.2020.120099 33259902
    [Google Scholar]
  97. HussainA. SinghS. WebsterT.J. AhmadF.J. New perspectives in the topical delivery of optimized amphotericin B loaded nanoemulsions using excipients with innate anti-fungal activities: A mechanistic and histopathological investigation.Nanomedicine20171331117112610.1016/j.nano.2016.12.002 28007632
    [Google Scholar]
  98. LinC.Y. HsiehY.T. ChanL.Y. Dictamnine delivered by PLGA nanocarriers ameliorated inflammation in an oxazolone-induced dermatitis mouse model.J. Control. Release202132973174210.1016/j.jconrel.2020.10.007 33031879
    [Google Scholar]
  99. LeeY.S. JeonS.H. HamH.J. LeeH.P. SongM.J. HongJ.T. Improved anti-inflammatory effects of liposomal astaxanthin on a phthalic anhydride-induced atopic dermatitis model.Front. Immunol.20201156528510.3389/fimmu.2020.565285 33335525
    [Google Scholar]
  100. ZuluagaM. GueguenV. LetourneurD. Pavon-DjavidG. Astaxanthin-antioxidant impact on excessive Reactive Oxygen Species generation induced by ischemia and reperfusion injury.Chem. Biol. Interact.201827914515810.1016/j.cbi.2017.11.012 29179950
    [Google Scholar]
  101. HanJ.H. JuJ.H. LeeY.S. Astaxanthin alleviated ethanol-induced liver injury by inhibition of oxidative stress and inflammatory responses via blocking of STAT3 activity.Sci. Rep.2018811409010.1038/s41598‑018‑32497‑w 30237578
    [Google Scholar]
  102. Chandra BhattP. SrivastavaP. PandeyP. KhanW. PandaB.P. Nose to brain delivery of astaxanthin-loaded solid lipid nanoparticles: Fabrication, radio labeling, optimization and biological studies.RSC Advances2016612100011001010.1039/C5RA19113K
    [Google Scholar]
  103. ShinS. SaravanakumarK. MariadossA.V.A. HuX. SathiyaseelanA. WangM.H. Functionalization of selenium nanoparticles using the methanolic extract of Cirsium setidens and its antibacterial, antioxidant, and cytotoxicity activities.J. Nanostructure Chem.2022121233210.1007/s40097‑021‑00397‑7
    [Google Scholar]
  104. XuL. YuH. SunH. YuX. TaoY. Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina: In vivo and ex vivo evaluations.Drug Deliv.20192611222123410.1080/10717544.2019.1682718 31747793
    [Google Scholar]
  105. ShanmugapriyaK. KimH. KangH.W. A new alternative insight of nanoemulsion conjugated with κ-carrageenan for wound healing study in diabetic mice: In vitro and in vivo evaluation.Eur. J. Pharm. Sci.201913323625010.1016/j.ejps.2019.04.006 30965083
    [Google Scholar]
  106. SunR. XiaN. XiaQ. Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin.J. Dispers. Sci. Technol.2019411217771788
    [Google Scholar]
  107. SunJ. YanJ. DongH. Astaxanthin with different configurations: Sources, activity, post modification, and application in foods.Curr. Opin. Food Sci.20234910095510.1016/j.cofs.2022.100955
    [Google Scholar]
  108. WangT. HuQ. LeeJ.Y. LuoY. Solid lipid–polymer hybrid nanoparticles by in situconjugation for oral delivery of astaxanthin.J. Agric. Food Chem.201866369473948010.1021/acs.jafc.8b02827 30130387
    [Google Scholar]
  109. Aşcı ÇelikD. ToğayV.A. In vivo protective efficacy of astaxanthin against ionizing radiation‐induced DNA damage.Chem. Biol. Drug Des.2023102488288810.1111/cbdd.14321 37545012
    [Google Scholar]
  110. BoseV.B. BalaganesanV. GovindarajG. VeerichettyV. Cellular antioxidant and cytotoxic activity of astaxanthin and ellagic acid on UV irradiated skin melanoma cells and gel formulation.Mater. Today Proc.20232023S2214785323044784
    [Google Scholar]
  111. VilgrainL. MapsF. BasedowS. Copepods’ true colors: Astaxanthin pigmentation as an indicator of fitness.Ecosphere2023146e448910.1002/ecs2.4489
    [Google Scholar]
  112. SolomonovY. LevyR. Astaxanthin Supports Normal Human Dermal Fibroblasts from Neutrophil-Induced Collagen Damage in Co-Culture.J Food Nutr Sci202351614
    [Google Scholar]
  113. TanakaT. MorishitaY. SuzuiM. KojimaT. OkumuraA. MoriH. Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin.Carcinogenesis1994151151910.1093/carcin/15.1.15 8293542
    [Google Scholar]
  114. DuttaS. KumarS.P.J. BanerjeeR. A comprehensive review on astaxanthin sources, structure, biochemistry and applications in the cosmetic industry.Algal Res.20237410316810.1016/j.algal.2023.103168
    [Google Scholar]
  115. WolfG. Retinoids and carotenoids as inhibitors of carcinogenesis and inducers of cell-cell communication.Nutr. Rev.199250927027410.1111/j.1753‑4887.1992.tb01345.x 1461590
    [Google Scholar]
  116. CaoY. YangL. QiaoX. XueC. XuJ. Dietary astaxanthin: An excellent carotenoid with multiple health benefits.Crit. Rev. Food Sci. Nutr.202363183019304510.1080/10408398.2021.1983766 34581210
    [Google Scholar]
  117. HondaM. NishidaY. In Vitro Evaluation of Skin-Related Physicochemical Properties and Biological Activities of Astaxanthin Isomers.ACS Omega2023822193111931910.1021/acsomega.2c08173 37305308
    [Google Scholar]
  118. YaoQ. MaJ. ChenX. ZhaoG. ZangJ. A natural strategy for astaxanthin stabilization and color regulation: Interaction with proteins.Food Chem.202340213434310.1016/j.foodchem.2022.134343 36174351
    [Google Scholar]
  119. KoniskyH. BoweW.P. YangP. KobetsK. A clinical evaluation of the efficacy and tolerability of a novel topical antioxidant formulation featuring vitamin C, astaxanthin, and fermented turmeric.J. Cosmet. Dermatol.202322113088309410.1111/jocd.15967 37608511
    [Google Scholar]
  120. ZhuJ. ZhuangP. LuanL. SunQ. CaoF. Preparation and characterization of novel nanocarriers containing krill oil for food application.J. Funct. Foods20151990291210.1016/j.jff.2015.06.017
    [Google Scholar]
  121. OliyaeiN. Moosavi-NasabM. TanidehN. IrajiA. Multiple roles of fucoxanthin and astaxanthin against Alzheimer’s disease: Their pharmacological potential and therapeutic insights.Brain Res. Bull.2023193112110.1016/j.brainresbull.2022.11.018 36435362
    [Google Scholar]
  122. AlugojuP. Krishna SwamyV.K.D. AnthikapalliN.V.A. TencomnaoT. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review.Crit. Rev. Food Sci. Nutr.20236331107091077410.1080/10408398.2022.2084600 35708049
    [Google Scholar]
  123. BakacE.R. PercinE. Gunes-BayirA. DadakA. A Narrative Review: The Effect and Importance of Carotenoids on Aging and Aging-Related Diseases.Int. J. Mol. Sci.202324201519910.3390/ijms242015199 37894880
    [Google Scholar]
  124. StonehouseW. Benassi-EvansB. BednarzJ. VincentA.D. HallS. HillC.L. Krill oil improved osteoarthritic knee pain in adults with mild to moderate knee osteoarthritis: A 6-month multicenter, randomized, double-blind, placebo-controlled trial.Am. J. Clin. Nutr.2022116367268510.1093/ajcn/nqac125 35880828
    [Google Scholar]
  125. HillW.S. DohnalekM.H. HaY. KimS.J. JungJ.C. KangS.B. A multicenter, randomized, double-blinded, placebo-controlled clinical trial to evaluate the efficacy and safety of a krill oil, astaxanthin, and oral hyaluronic acid complex on joint health in people with mild osteoarthritis.Nutrients20231517376910.3390/nu15173769 37686801
    [Google Scholar]
  126. HamaS. UenishiS. YamadaA. Scavenging of hydroxyl radicals in aqueous solution by astaxanthin encapsulated in liposomes.Biol. Pharm. Bull.201235122238224210.1248/bpb.b12‑00715 23207776
    [Google Scholar]
  127. GulzarS. BenjakulS. Characteristics and storage stability of nanoliposomes loaded with shrimp oil as affected by ultrasonication and microfluidization.Food Chem.202031012591610.1016/j.foodchem.2019.125916 31838370
    [Google Scholar]
  128. TurkezH. GeyikogluF. YousefM.I. Beneficial effect of astaxanthin on 2,3,7,8-tetrachlorodibenzo- p -dioxin-induced liver injury in rats.Toxicol. Ind. Health201329759159910.1177/0748233711434959 22312033
    [Google Scholar]
  129. SayutiN.H. Muhammad NawawiK.N. GoonJ.A. MokhtarN.M. MakpolS. TanJ.K. Preventative and therapeutic effects of astaxanthin on NAFLD.Antioxidants2023128155210.3390/antiox12081552 37627546
    [Google Scholar]
  130. QiangM. PangX. MaD. MaC. LiuF. Effect of membrane surface modification using chitosan hydrochloride and lactoferrin on the properties of astaxanthin-loaded liposomes.Molecules202025361010.3390/molecules25030610 32019205
    [Google Scholar]
  131. FengZ.Z. LiM.Y. WangY.T. ZhuM.J. Astaxanthin from Phaffia rhodozyma: Microencapsulation with carboxymethyl cellulose sodium and microcrystalline cellulose and effects of microencapsulated astaxanthin on yogurt properties.Lebensm. Wiss. Technol.20189615216010.1016/j.lwt.2018.04.084
    [Google Scholar]
  132. ChewB ParkJ Natural astaxanthin extract reduces DNA oxidation.WO Patent 2005011712A1,2023
    [Google Scholar]
  133. TsujiS ShirasawaT ShimizuT Neurocyte Protective Agent.US Patent 20070021397A1,2007
    [Google Scholar]
  134. LeighS StevenLeight ML HogevestPV Crystal forms of astaxanthin.EP Patent 2279171A1,2007
    [Google Scholar]
  135. LockwoodSF MasonRP Use of carotenoids and/or carotenoid derivatives/analogs for reduction/inhibition of certain negative effects of cox inhibitors.WO Patent 2006119168,2008
    [Google Scholar]
  136. TakahashiJ YamashitaE FukamauchiM TanakaI Composition For Body Fat Reduction.US Patent 11792211,2009
    [Google Scholar]
  137. SharoniY LevyJ SelaY NirZ Carotenoid oxidation products as chemopreventive and chemotherapeutic agents.WO Patent 2007043046A2,2007
    [Google Scholar]
  138. SeninP SetnikarI RovatiLA Formulation for oral administration with beneficial effects on the cardiovascular system.US Patent 9623108B2,2017
    [Google Scholar]
  139. EvansDA RabieM Algal and algal extract dietary supplement composition.US Patent 20080124391A1,2009
    [Google Scholar]
  140. SatohA TsujiS Method for improving cognitive performance.US Patent 20090297492,2009
    [Google Scholar]
  141. QvyjtF Encapsulates.US Patent 20100158984,2010
    [Google Scholar]
  142. TominagaK KaratoM HongoN YamashitaE Method of preventing discoloration of carotenoid pigment and container used therefor.EP Patent 2322579B1,2010
    [Google Scholar]
  143. KöpselC Pulverulent carotenoid preparation for colouring drinks.WO Patent 2009068432A1,2021
    [Google Scholar]
  144. ClaytonD RutterR Inflammatory disease treatment.US Patent 20100291053,2010
    [Google Scholar]
  145. HigashiN TakahashiJ Agent for Alleviating Vascular Failure.US Patent 13199056,2012
    [Google Scholar]
  146. HigashiN TakahashiJ Agent for Alleviating Vascular Failure.US Patent 11887329,2009
    [Google Scholar]
  147. KoppeWM MoellerNP BaardsenGK Feed additive for improved pigment retention.US Patent 20120114823A1,2012
    [Google Scholar]
  148. JouniZ MakhoulZ Carotenoid containing compositions and methods.US Patent 20120238522,2012
    [Google Scholar]
  149. Al-TarifiB.Y. MahmoodA. AssawS. SheikhH.I. Application of astaxanthin and its lipid stability in bakery product.Curr Res Nutr Food Sci J,20208396297410.12944/CRNFSJ.8.3.24
    [Google Scholar]
  150. MonahanP HiuS Agent for improving carcass performance in finishing hogs.US Patent 20120253078A1,2010
    [Google Scholar]
  151. MinatelliJA ThomasS RajendranL MoerckE Composition and method to alleviate joint pain.US Patent 20130004582,2013
    [Google Scholar]
  152. OoiY KitamuraA YamashitaE Baked food produced from astaxanthin-containing dough.US Patent 20130108764A1,2018
    [Google Scholar]
  153. OoiY KitamuraA YamashitaE Baked food produced from astaxanthin-containing dough.US Patent 13695371,2013
    [Google Scholar]
  154. ZhuX. MengC. SunF. Sustainable production of astaxanthin in microorganisms: The past, present, and future.Crit. Rev. Food Sci. Nutr.20236330102391025510.1080/10408398.2022.2080176 35694786
    [Google Scholar]
  155. LiaoY. WangH. LiS. Preparation of astaxanthin‐loaded composite micelles with coaxial electrospray technology for enhanced oral bioavailability and improved antioxidation capability.J. Sci. Food Agric.2023104314081419 37782057
    [Google Scholar]
  156. HuangJ. FengX. ZhangS. WangL. YueJ. ChuL. Preparation and characterization of astaxanthin‐loaded microcapsules and its application in effervescent tablets.J. Sci. Food Agric.202310331421143110.1002/jsfa.12237 36156800
    [Google Scholar]
  157. OmotayoT. OtenaikeT.A. AdedaraA.O. AdeyemiO.E. JonhnsonT.O. AbolajiA.O. Biological interactions and attenuation of MPTP-induced toxicity in Drosophila melanogaster by Trans-astaxanthin.Neurosci. Res.2023196525810.1016/j.neures.2023.06.005 37329901
    [Google Scholar]
  158. ElbahnaswyS. ElshopakeyG.E. Recent progress in practical applications of a potential carotenoid astaxanthin in aquaculture industry: A review.Fish Physiol. Biochem.20232023130 36607534
    [Google Scholar]
  159. LiyanaarachchiV.C. NishshankaG.K.S.H. NimarshanaP.H.V. ChangJ.S. AriyadasaT.U. NagarajanD. Modeling of astaxanthin biosynthesis via machine learning, mathematical and metabolic network modeling.Crit. Rev. Biotechnol.2023202312210.1080/07388551.2023.2237183 37587012
    [Google Scholar]
  160. MonavariM. HomaeigoharS. MedhekarR. A 3D-Printed Wound-Healing Material Composed of Alginate Dialdehyde–Gelatin Incorporating Astaxanthin and Borate Bioactive Glass Microparticles.ACS Appl. Mater. Interfaces20231544506265063710.1021/acsami.2c23252 37155412
    [Google Scholar]
  161. Bustos-GarzaC. Yáñez-FernándezJ. Barragán-HuertaB.E. Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcus pluvialis using several encapsulation wall materials.Food Res. Int.201354164164910.1016/j.foodres.2013.07.061
    [Google Scholar]
  162. HassanzadehP. AtyabiF. DinarvandR. The significance of artificial intelligence in drug delivery system design.Adv. Drug Deliv. Rev.2019151-15216919010.1016/j.addr.2019.05.001 31071378
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855310234240909083156
Loading
/content/journals/cdth/10.2174/0115748855310234240909083156
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Astaxanthin; enhancement; nanocarriers; oxidative stress; skin; targeting
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test